

2.5D Technology-based Integrated

Antenna Array mm-Wave System For

Non-Invasive Food Safety Scanner (TIAS)

Nguyen Ngoc Mai-Khanh⁽¹⁾, Tran Thi My-Hanh⁽²⁾,

Vo Nguyen Quoc-Bao⁽³⁾, Tetsuya Kawanishi⁽⁴⁾

(1) The University of Tokyo, Japan, (2) NhaTrang University, Vietnam

(3) Posts and Telecommunications Institute of Technology (PTIT), Vietnam

(4) Waseda University, Japan

Outline

1. Background & Motivation Food Safety and Risk Assessment to

Animals and Humans

- ➤ Existing Methods for Melamine Detection
- 2. The Proposed System
 - ➤ Mm-Wave & Antenna Array
 - ➤ 2.5D Packaging Technology
 - ➤ The proposed three-tier TIAS
- 3. Conclusions

Motivation

- Food safety/public health concerns [1]:
 - Including animal feed up to sale or supply of food to the consumer
- Food safety is not only essential for human health but also plays an important role in the development of national economies, trade, and tourism

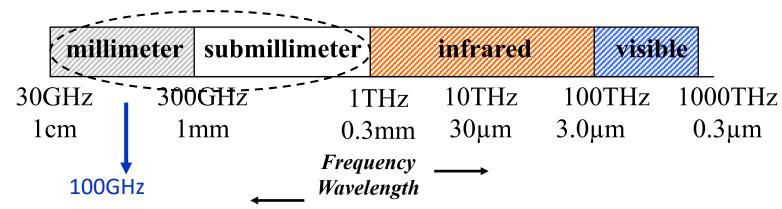
 Unsafe food poses a global threat, particularly to vulnerable groups such as pregnant women, young children, infants, and the elderly

Melamine

$$H_2$$
 N N N N N N N N N

 Harmful substances such as cyromazine or melamine in daily foods, milk and animal feeds causes actual environmental and human health problems

- **Illegally** added to inflate the apparent protein content of food and animal feeds:
 - 50% of dietary supplements are contaminated with melamine
 - Found in baby formula milk in China, 2008, which was responsible for severe **renal** problems and **kidney** stones in infants.

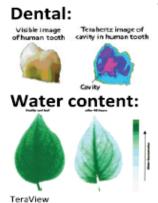

Food safety should be widely monitored and improved

Existing Methods for Melamine Detection

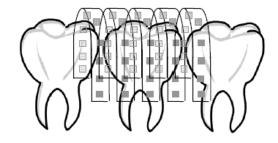
$$H_2$$
 N N N N N N N N

- Melamine analysis mainly by chemical or gas methods:
 - chromatographic analysis: gas chromatography—mass spectrometry (GC-MS); High performance liquid chromatography(HPLC);
 - liquid chromatography-tandem mass spectrometry (LC-MS/MS); ultraperformance liquid chromatography (UPLC)
- However,
 - cost of equipment, complex operation for inspection
 - takes a long time
 - limit the application of these methods for foods/milks consumers
 - -> Research and develop a <u>non-invasive</u> method for <u>rapid</u> detection of melamine.

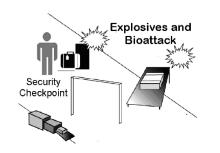
Mm-Wave Applications



Mm-Wave radiation:

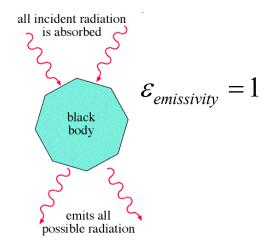

- non-ionizing
- no damage to DNA and possibly cause cancer

Mm-Wave Applications:


- Communication
- Material detection: based on dielectric properties

Mm wave imaging tranceiver

(E. Laskin, Univ. of Toronto, Canada)



Mm-Wave Imaging Principle

 Spectral radiance of Planck's Law (for black body):

$$L_{f}(f) = \frac{2hf^{3}}{c^{2}} \cdot \frac{1}{e^{\frac{hf}{kT}} - 1} \qquad [W/m^{2}/Hz/sr] \qquad (1)$$

• Real object (ε_{emissivity})<1), replace T in (1) by

$$T_S = \varepsilon_{\text{emissivity}}.T$$

• For example: water in 100 GHz, $\varepsilon_{\text{emissivity}}$ =0.59, @27°C Spectral Radiance L_f = 0.537 [mW/m²/sr/THz]

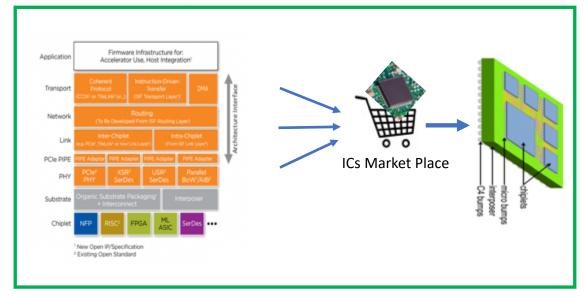

 $L_f(f)$ is the black body spectral energy density, c: light's speed, f: frequency, h : Planck's constant, k: Boltzman's constant, T: absolute temperature. $\epsilon_{\text{emissivity}}$: emissivity of a material, T_S : radiometric temperature,

Why Antenna Array for The Proposal

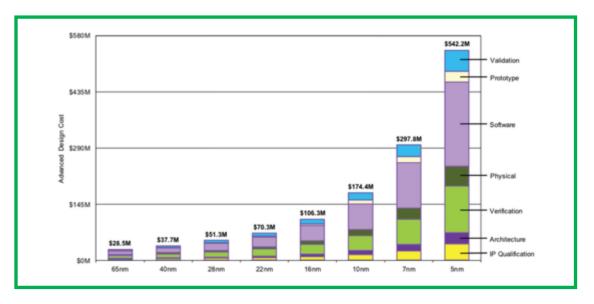
- Gaining more sensitivity
- Beamforming controllability for the sensing purpose
- More accurate and faster than non-phased antenna arrays
- other EM benefits

11/22/20

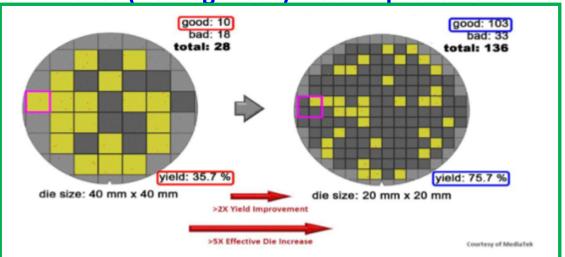
System-in-Package (SiP) Technologies

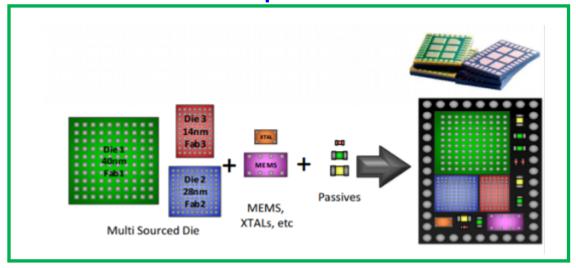


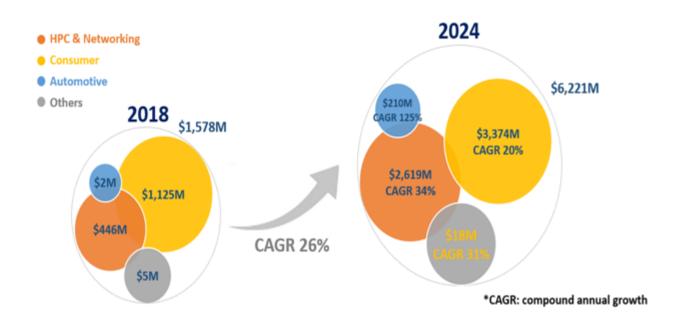
einfochip.com


- System on Chip (SoC): functions on multiple chips are integrated onto the same die.
- * SiP, is a way of bundling two or more ICs inside a single package.

System-in-Package (SiP) Technologies: Key Trend Drivers


Driver 1- Chiplets


Driver 2- Si Node Dev Cost


Driver 3- (Homogenous) Yield Improvement

Driver 4- Si Node Optimization

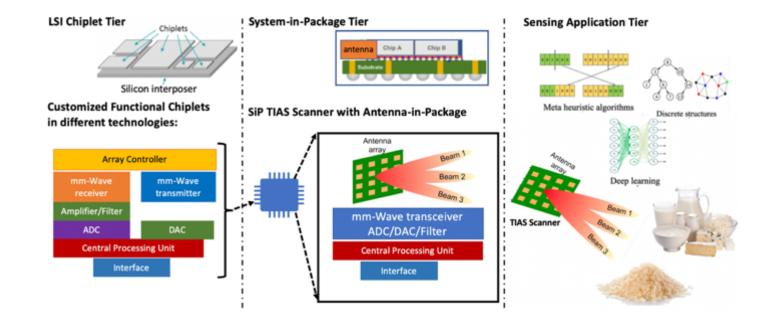
System-in-Package (SiP) Technologies: Market Analysis

[Source: Yole, 2019]

Accelerating Adoption

Segment	2018	2019	2020	2019- 2020
				Growth
Utilities	0.98	1.17	1.37	17.09%
Government	0.4	0.53	0.7	32.08%
Building Automation	0.23	0.31	0.44	41.94%
Physical Security	0.83	0.95	1.09	14.74%
Manufacturing & Natural Resources	0.33	0.4	0.49	22.50%
Automotive	0.27	0.36	0.47	30.56%
Healthcare Providers	0.21	0.28	0.36	28.57%
Retail & Wholesale Trade	0.29	0.36	0.44	22.22%
Information	0.37	0.37	0.37	0.00%
Transportation	0.06	0.07	0.08	14.29%
Total	3.96	4.81	5.81	20.79%

IoT Endpoint Market by Segment, 2018-2020, Worldwide (Installed Base, Billions of Units) Source: Gartner (August 2019)


The Proposed TIAS

• "2.5D Technology-based Integrated Antenna Array mm-Wave System For Non-Invasive Food Safety Scanner (TIAS)"

Target:

- detect plastic/melamine materials or harmful substances in foods by employing this mm-Wave property
- Heterogeneous integrated sensing system:
 - 2.5D packaging technology:
 - Design architecture: Flexible adoption of suitable IP and chiplet
 - Easier upgrade by **reusing** and plugging in new accelerators
 - **Yield**: Since each chiplet is tested before integrating into the system, this approach has a better yield as compared to a giant monolithic SoC design.
 - Integrated anntena array

The Proposed TIAS (cont)

Conclusions

TIAS

- Portable system to detect melamine in feeds and food mm-Wave frequency properties
- 2.5D packaging fabrication technology and antenna-array technology
- Low-power; low-loss for mm-Wave signals; and small form factor
- Look ahead:
 - Artificial Intelligence and Internet-of-Things (AIoT) library for mm-Wave-based sensing data
 - Database for consumer users with a traceability to e-society

