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Introduction

* Widespread deployment of the Internet of Things (loT) has changed the way
network services are developed, deployed and operated.

* Recently, most advanced loT devices are equipped with visual sensors,
subsequently forming the so-called visual loT (V-loT).

* The V-loT utilizes visual processing techniques due to the need for sensing and
processing visual data which has direct impact on computational complexity, cost
(data storage and processing) and efficiency of transmissions
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loT Data Generation
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Figure 1: loT data generation at different levels and deep learning models to address their knowledge abstraction. Source: IEEE
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Issues with current loT adoption

* NB-loT & LPWAN IoT is limited to serial/time series data

e Constraint on limited coverage of LPWAN loT esp. in the terrestrial landscapes /
propagation in foliage-rich areas

* Optimisation and configuration of transmission parameters such as spreading
factor (SF) and data rate for LPWAN loT to transmit 2D/3D data (images, video,
sounds etc) are not a straight forward task

 5G is paving a way for better transmission of massive loT data
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Objectives

The objectives of this project are:

* To develop an intelligent agriculture system based on Visual loT (V-loT)
architecture;

* To evaluate the performance of the V-loT framework in term of communication
capability (latency, data rates and effective utilization of channels) using latest
communication platform such as LTE/5G;

* To verify the proposed V-loT architecture for intelligent agricultural applications
in terms of analytical accuracy.
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Methods & Project Planning
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Figure 2: 5G Visual-loT Framework that will be developed at MARDI’s Agro Technology Park, Langkawi
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nsect Pest Recognition using Machine Learning
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<2xml version="1.0"2>
<annotation>
<folder>train</folder>
<filename>1596715514.1708589.jpg</fllename>
<path>C:\tensorflow1\models\research\object_detection\images\train\1596715514.1708589.jpg</path>
<source>
<database>Unknown</database>
</source>
- <size>
<width>1296</width>
<height>1536</height>
<depth>3</depth>
<[size>
<segmented>0</segmented>
- <object>
<name>Cyrthorhinus lividipennis</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
- <bndbox>
<xmin>12</xmin>
<ymin>411</ymin>
<xmax>139</xmax>
<ymax>597</ymax>
</bndbox>
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- <obje

.xml files created when the insects
were labeled. There were 1 .xml file

per image
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e Based on our pilot study, a
Deep Learning model was
developed using Faster R-
CNN pretrained model

* The model had accuracy
around 93% on identifying A

insect pests in the field WA

others: 99%
others: 99%
others: 99% -

Insect pests were labeled, recognized and counted using deep learning
analytics

12



Methods & Project Planning

Figure 4: This work will be extended to the full deployment of 5G V-loT architecture at MARDI Agro
Technology Park located near Kuah, Langkawi accessible to a TM 5G New Radio (NR) base station
delivering 5G on 700MHz and C-Band simultaneously.
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Gantt Chart and Project Milestones
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Milestones

Project Activities

2021

2022

J

J

A

Development of
visual-based 5G I-
loT framework

Stakeholder engagement

Visibility investigation on hardware components for the end
nodes

Design and development of a 5G vision-based |oT module

Re-train the pre-trained the deep learning model

Design and conversion of deep learning model at edge device

Communication protocol implementation

Experimental Setup
of the System

Test bed set up at MARDI Agro Technology Park

Updating the pre-trained model with new data

Run measurement campaign for 5G communication capability
analysis for images data

System Verification

Run the full 5G V-loT pest recognition system at the test site

Validation of the data analytics accuracy of the pest
recognition

Efficiency assessment of full end-to-end application

Results interpretation, discussion and documentation




Benefits

* For community: Visual-loT can be adapted for a wide range of
applications

* For M&C Industry: help accelerate innovation and progress to be

used once 5G technology is fully rolled out
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Figure 5: 1oT verticals and the foundational services. Source: IEEE Communications Surveys & Tutorials
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Standards Development

Table 1. Comparison of requirements for agricultural solutions based on loT functional architecture

Visual loT- 5G NB-loT

Computing

Connectivity

Security

Manageability

Analytics

Complexity and computational capabilities

Nodes— edge computing systems— cloud-
based services (latency, data rates, effective
utilization of channels)

Confidentiality, integrity and authentication

Device, network and functionality
management

Analytical accuracy
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Challenges and Future Trends

* Challenges:

» Computation: High noise visual data (overlapped and condensed insects on
images; or complex image conditions: require high level computational
algorithms)

* Availability of communication network

e Future Trends:

* Advanced data analytics algorithms to process large visual data at much
faster rate are expected to boost the adoption of V-loT applications in
agriculture.

* Wide and good coverage of communication network could improve adoption
of the applications
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