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A B S T R A C T

The control of plant diseases is a major challenge to ensure global food security and sustainable agriculture.
Several recent studies have proposed to improve existing procedures for early detection of plant diseases through
modern automatic image recognition systems based on deep learning. In this article, we study these methods in
detail, especially those based on convolutional neural networks. We first examine whether it is more relevant to
fine-tune a pre-trained model on a plant identification task rather than a general object recognition task. In
particular, we show, through visualization techniques, that the characteristics learned differ according to the
approach adopted and that they do not necessarily focus on the part affected by the disease. Therefore, we
introduce a more intuitive method that considers diseases independently of crops, and we show that it is more
effective than the classic crop-disease pair approach, especially when dealing with disease involving crops that
are not illustrated in the training database. This finding therefore encourages future research to rethink the
current de facto paradigm of crop disease categorization.

1. Introduction

A plant disease is an alteration of the original state of the plant that
affects or modifies its vital functions. It is mainly caused by bacteria,
fungi, microscopic animals or viruses, and has a strong impact on
agricultural yields and on farm budget. According to the Food and
Agriculture Organization of the United Nations, transboundary plant
diseases have increased significantly in recent years due to globaliza-
tion, trade, climate change and the reduction in the resilience of pro-
duction systems due to decades of agricultural intensification. The risk
of transboundary epidemics is increasing and can cause huge losses in
crops, threatening the livelihoods of vulnerable farmers and the food
and nutritional security of millions of people.1 Early detection of dis-
ease symptoms is one of the main challenges in protecting crops and
limiting epidemics. Initial disease identification is usually done by vi-
sual assessment (Barbedo, 2016) and the quality of the diagnosis de-
pends heavily on the knowledge of human experts (Liu et al., 2017).
However, human expertise is not easily acquired by all actors of the
agricultural world, and is less accessible, especially in the case of small
farms in developing countries.

Automatic recognition of plant diseases by image analysis re-
presents a promising solution to overcome this problem and reduce the
lack of expertise in this field (Ramcharan et al., 2017). Several studies

have been carried out on isolated crops, such as maize (Wiesner-Hanks
et al., 2018), cassava (Ramcharan et al., 2017), tomato (Fuentes et al.,
2017; Durmus et al., 2017; Fuentes et al., 2018), apple (Liu et al.,
2017), wheat (Johannes et al., 2017; Picon et al., 2018), citrus (Iqbal
et al., 2018) or potato (Oppenheim and Shani, 2017). Deep Learning
(DL) techniques, including Convolutional Neural Networks (CNN), have
emerged as the most promising approaches given their ability to learn
reliable and discriminative visual characteristics. Tranfer learning,
which is used in most cases (Slado Jevic et al., 2016; Too et al., 2019;
Fuentes et al., 2017; Liu et al., 2017; Mohanty et al., 2016; Ramcharan
et al., 2017), is not a single technique, but a whole family of methods,
comprising, among others those commonly known as fine-tuning. Un-
like learning from scratch where the weights of a model are learned
from scratch, the weights of a pre-trained model on a large general
dataset (in terms of number of images and classes, such as ImageNet)
are fine-tuned. Transfer learning allows to build accurate models even
on a specialized dataset such as those containing plant diseases where
there are usually a small number of images and classes compared to
ImageNet. Indeed, when used to training a CNN model based on images
of diseased and healthy plant leaves captured under controlled condi-
tions, it has been proven that fine-tuning is better than training a deep
model from scratch (Mohanty et al., 2016). However, the ability of a
deep learning model to transfer knowledge from one domain to
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another, from one task to another, is not yet well understood and
performances may vary according to the used datasets for pre-training a
model (Torralba and Efros, 2011). In particular, (Zhou et al., 2014)
showed that fine-tuning a CNN pre-trained on scene recognition data-
sets rather than the general Imagenet dataset can perform better in any
urban scene recognition tasks. We can then assume that a model pre-
trained on a dataset of images dedicated to plant identification could
provide better features for plant disease identification rather than a pre-
trained model on ImageNet which contains actually few visual bota-
nical concepts. However, no previous study has reported such results.
The first contribution of this article is to study the impact of transfer
learning depending on whether the transfer learning is from a general
domain or from the plant domain.

In recent years, more and more studies address the multi-crop dis-
ease problems where data modelling covers several varieties of crops
and diseases at the same time (Mohanty et al., 2016; Too et al., 2019;
Slado Jevic et al., 2016; Ferentinos, 2018). These investigations cor-
respond to the needs of actors such as farm technicians, agricultural
engineers, market gardeners or arboriculturists, who would potentially
be confronted with different types of diseases on different types of
crops, and where a more general approach (particularly through the use
of smartphones) could provide a valuable help (Mohanty et al., 2016).
From a technological point of view, this type of use is now possible
thanks to deep learning techniques that prove to have sufficiently high
recognition capabilities for wide datasets in terms of number of images,
thus avoiding the need to design hand-crafted features dedicated to a
specific domain. To date, two main datasets have been used to assess
identification performance on multi-crop diseases: Plant Village (PV)2

(Hughes and Salathé, 2015) and Digipathos3 (Barbedo et al., 2018). The
majority of studies are based on the PV dataset (Slado Jevic et al., 2016;
Ferentinos, 2018; Mohanty et al., 2016; Hughes and Salathé, 2015),
which is currently the largest dataset in terms of number of images. The
PV dataset is organized into target classes where each one represents a
crop-disease pair, i.e. an association of one type of crop and one disease.
In the PV dataset, a particular crop may be present in several classes
and, conversely, visually similar diseases with the same disease
common name may be present in several classes. Most of the previous
studies based on CNNs follow this data organization, where the last
layer dedicated to the classification contains output of crop-disease
pairs (Mohanty et al., 2016; Too et al., 2019; Slado Jevic et al., 2016;
Ferentinos, 2018).

However, although previous studies have reported high identifica-
tion performances, it is possible that the models learned are not optimal
by extracting to many irrelevant features related more to crop than to
disease. For example, as reported in (Mohanty et al., 2016), it has been
proven that removing the background with image segmentation is less
effective than using the ordinary colored background images to train a
CNN, confirming a dependency of background features for disease
identification. Furthermore, (Toda and Okura, 2019) showed that
model which is supposed to learn plant disease visual appearance, tends
to highlight irrelevant crop features like the shape of the leaf, and in
fact, it is possible when a crop contains more visual discrimination
characteristics than the disease itself such as a deeply grooved leaf of
tomato. Therefore, the second contribution of this paper is to propose a
new intuitive way of characterizing plant diseases in the context of
multi-crop diseases, focusing on the common names of diseases re-
gardless of the type of crop. We show that this approach is more gen-
eralizable and robust in identifying diseases of new data taken in do-
mains different from those in the training set.

Next, we consider that it would be very difficult, if not impossible,
in a real-world application to collect a complete set of images illus-
trating each crop-disease pair. Also, it may not be easy to establish a

specific list of all diseases for each host species. We note that pathogens
with a wide host range can infect many different host species. For ex-
ample, as reported in (Prospero and Cleary, 2017), nearly 200 plant
species can be infected with bacterial wilt (Ralstonia solanacearum).
Therefore, the ability of a model to transfer knowledge from one disease
context to another is crucial for practical application to reduce the time
and cost of data collection and retraining a deep model. We show that
by using our new strategy mentioned above to identify plant diseases,
we could have the significant advantage of being able to identify a
disease known to the classifier without the type of crop being known.
Therefore, the third contribution of this paper is to study the general-
ization of a deep model to identify diseases of “unseen” crops. Unseen
crops in this context refer to unknown crops that have never been seen
by a deep model during the training.

To summarize the contributions of this paper:

1. We investigate the impact of two transfer learning strategies, one
based on a pre-trained model on a plant dataset and the other using
a general object dataset. We found that, it is sometimes more ef-
fective to fine-tune a model pre-trained on plant identification, or
one which is pre-trained on general object recognition.

2. We qualitatively investigate the features learned from the models
trained with crop-disease classes (Mohanty et al., 2016; Too et al.,
2018). We highlight that the learned features might not necessarily
be relevant to plant disease identification because they also focus on
crop-specific features such as the leaf venation and lamina.

3. We demonstrate a simple and intuitive way of considering plant
diseases alone, without any association with a crop. With this, it
shown to enable a better generalization not only to new data taken
in domains different from those in the training (different in data
distribution), but also to unseen crops.

2. Datasets

2.1. Plant Village

Plant Village (PV) (Hughes and Salathé, 2015) is a popular dataset
collected for evaluation of automatic plant disease identification sys-
tems. It contains healthy and infected leaves isolated on a uniform
background. We used the initial version of the PV dataset2 that is still
publicly available as a benchmark in this study. It has 38 crop-disease
pairs, with 26 crop-disease categories for 14 crop plants. Note that, the
data comes with predefined training and test subsets. In our study, we
use the reported configuration as the one that produces the best iden-
tification performances in the original document (Mohanty et al.,
2016), where 80% of the data is for the training set and the remaining
20% for the test (more precisely, 43,810 training images and 10,495
images for the test). Table 1 gives for the 38 pairs, the common names
of the host plant and the disease, the scientific name of the disease and
the number of training and testing images.

We can see in this table that different crops can be infected with
pathogens associated with the same common disease name. It is mainly
due to their similar ways of infecting the crops, which hence has led the
agricultural community to call them by the same name. Table 2 illus-
trates the distribution of images based on a total of 14 crops and 20
common diseases4 with 1 healthy class. Some diseases such as Apple
scab or Tomato mosaic virus can only be found in apple and tomato crops
respectively, but other diseases such as Black rot or Bacterial spot are
common in different crops.

2 https://github.com/spMohanty/PlantVillage-Dataset.
3 https://www.digipathos-rep.cnptia.embrapa.br/.

4 common names of plant diseases that have been recommended based on
similar symptoms of potentially different pathogens.
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2.2. IPM and Bing test datasets

Two complementary datasets named IPM and Bing, which were
initially introduced in (Mohanty et al., 2016), are used in this work to
evaluate the robustness of a model for predicting plant diseases on
exterior images. Unlike in PV, these test images are not limited to a
controlled environment (see Fig. 1) and are extracted from a reliable
online sources for IPM5 and downloaded from Bing Image Search. These
images were verified in (Mohanty et al., 2016). We were able to retrieve
all the 119 images from IPM6 mentioned in (Mohanty et al., 2016), but
we could only retrieve 64 of the 121 images expected for Bing6 (missing
images are no longer available online). Tables 3 and 4 show the dis-
tribution of the IPM and Bing images. Among the 38 crop-disease pairs
in PV, the IPM test set allows to evaluate 19 pairs while Bing test
set allows to evaluate 26 pairs. A qualitative assessment of the data, as
shown in Fig. 1, shows that Bing images contain background noise (i.e.
cluttered backgrounds) more often than IPM image, suggesting a more
difficult recognition on Bing than on IPM.

3. Transfer learning and pre-trained models

Transfer learning is not a single technique, but a whole family of
methods, comprising, among others those commonly known as fine-
tuning. Using such approaches, a model trained on a task is re-purposed

to a second related task (Goodfellow et al., 2016). A basic example of
transfer learning is using a deep model just as fixed feature extractor
(Karpathy, 2019), without tuning the weights of a pre-trained model
and by removing the last fully connected layer related to the class
outputs of the initial task. Then any learning algorithms such as sup-
port-vector machines can be used to perform new classification. One of
the most popular transfer learning approaches is to fine-tune all the
weights of a pre-trained model, with the last fully connected layer being
replaced and randomly initialized on a new classification task. In fact, it
is possible to fine-tune only some layers, which are generally the last
layers corresponding to a higher level of abstraction. However,
(Yosinski et al., 2014) showed that by transferring the features and fine-
tuning all the layers of a network, one can boost the generalization
capability of a model. Fine-tuning helps to prevent overfitting, leading
to significantly better generalization especially when the number of
labelled examples is scarce, or in a transfer setting where we have lots
of examples for some source tasks but very few for some target tasks
(LeCun et al., 2015). Additionally, it has been proven to be more ef-
fective if the pre-training and the target task are correlated (Yosinski
et al., 2014; Huh et al., 1608).

In plant disease classification tasks, it has been shown that the
transfer learning approach is more accurate than a “from scratch”
learning approach where all the weights of a model are learned from
scratch (Too et al., 2018; Mohanty et al., 2016; Slado Jevic et al., 2016;
Ferentinos, 2018). Most of these previous works are based on models
pre-trained on ImageNet (Russakovsky et al., 2015), a general image
database containing about 1,2 million images associated to 1000 very
diverse classes (animals, vehicles, buildings, landscapes, plants, etc).

Table 1
Description of the PV dataset. Note that (%) is the percentage per class.

Class Plant common name Disease common name Disease scientific name Train (%) Test (%)

C1 Apple Apple scab Venturia inaequalis 498 1.14 132 1.26
C2 Apple Black rot Diplodia seriata 484 1.10 137 1.31
C3 Apple Cedar apple rust Gymnosporangium juniperi-virginianae 220 0.50 55 0.52
C4 Apple Healthy – 1336 30.5 309 2.94
C5 Blueberry Healthy – 1231 2.81 271 2.58
C6 Cherry (including sour) Powdery mildew Podosphaera clandestina 948 2.16 104 0.99
C7 Cherry (including sour) Healthy – 703 1.60 151 1.44
C8 Corn (maize) Cercospora leaf spot Gray leaf spot Cercospora zeae-maydis 409 0.93 104 0.99
C9 Corn (maize) Common rust Puccinia sorghi 954 2.18 238 2.27
C10 Corn (maize) Northern Leaf Blight Setosphaeria turcica 798 1.82 187 1.78
C11 Corn (maize) Healthy – 934 2.13 228 2.17
C12 Grape Black rot Guignardia bidwellii 884 2.02 296 2.82
C13 Grape Esca (Black Measles) Togninia minima 1099 2.51 284 2.71
C14 Grape Leaf blight (Isariopsis Leaf Spot) Pseudocercospora vitis 828 1.89 248 2.36
C15 Grape Healthy – 341 0.78 82 0.78
C16 Orange Haunglongbing (Citrus greening) Liberibacter asiaticus 4361 9.95 1146 10.92
C17 Peach Bacterial spot Xanthomonas arboricola 1819 4.15 478 4.55
C18 Peach Healthy – 280 0.64 80 0.76
C19 Pepper bell Bacteria spot Xanthomonas campestris 781 1.78 216 2.06
C20 Pepper bell Healthy – 1267 2.89 211 2.01
C21 Potato Early blight Alternaria solani 824 1.88 176 1.68
C22 Potato Late blight Phytophthora infestans 768 1.75 232 2.21
C23 Potato Healthy – 116 0.26 36 0.34
C24 Raspberry Healthy – 208 0.47 163 1.55
C25 Soybean Healthy – 4202 9.59 888 8.46
C26 Squash Powdery mildew Podosphaera xanthii (including Erysiphe cichoracearum) 1503 3.43 332 3.16
C27 Strawberry Leaf scorch Diplocarpon earlianum 931 2.13 178 1.70
C28 Strawberry Healthy – 388 0.89 68 0.65
C29 Tomato Bacteria spot Xanthomonas campestris 1739 3.97 388 3.70
C30 Tomato Early blight Alternaria solani 839 1.92 161 1.53
C31 Tomato Late blight Phytophthora infestans 1560 3.56 349 3.33
C32 Tomato Leaf mold Mycovellosiella fulva 768 1.75 184 1.75
C33 Tomato Septoria leaf spot Septoria lycopersici 1456 3.32 315 3.00
C34 Tomato Spider mites Two-spotted spider mite Tetranychidae spp. 1312 2.99 364 3.47
C35 Tomato Target Spot Corynespora cassiicola 1136 2.59 268 2.55
C36 Tomato Tomato Yellow Leaf Curl Virus TYLCV 4312 9.84 1045 9.96
C37 Tomato Tomato mosaic virus ToMV 307 0.70 66 0.63
C38 Tomato Healthy – 1266 2.89 325 3.10
Total 43,810 100 10,495 100

5 https://images.bugwood.org/.
6 https://github.com/salathegroup/plantvillage_deeplearning_paper_analysis.
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However, in the case of plant diseases, one can suppose that it would be
appropriate to pre-train a model on domain with a dataset containing
exclusively plant images. Therefore, in this study, we compare two fine-
tuning strategies, one directly using a model pre-trained on ImageNet
and another one using PlantCLEF2015, a dataset dedicated to plant
identification (H. Go¨eau, P. Bonnet, A. Joly, Lifeclef plant identifica-
tion task, 2015). This dataset is related to the plant identification
challenge in LifeCLEF (Joly et al., 2015) and addresses the problem of
species identification based on multi-organ and multi-image observa-
tions of specimens. It has the same number of classes as ImageNet, but
is two orders of magnitude smaller with precisely 91,759 training
images (see Fig. 2 for some illustrations).

4. Identification based on common names of diseases and
generalization to unseen crops

4.1. Identification based on visual features of common diseases

With regard to previous works on crop-disease pairs (Mohanty et al.,
2016; Ferentinos, 2018), there remains a doubt that a deep model can
be forced to discriminate similar diseases that have the same common
name and most likely visually similar ways of infecting the crops. A
potentially undesirable effect that may occur is that the model learns
more from the content related to the crop than the visual content re-
lated to the disease (Toda and Okura, 2019; Mohanty et al., 2016). This

adverse effect can potentially be amplified if a crop has a very pro-
nounced characteristic such as toothed margins leaves, while the dis-
ease is not very visible, for example, with a slight bleaching at an early
stage of infection. In this section, we study an alternative approach to
the usual crop-disease pair modeling by considering only on common
names of diseases regardless of crop categories. The hypothesis is that
such intuitive modelling will engage the model to learn more in-
dependent features from the host plants.

In order to train a disease classifier based on common diseases in-
dependently of crops, the images of the PV dataset are first separated
into 21 classes (20 diseases and one healthy class). We randomly took a
subset of images (~20%) from each healthy crop and combined them

Fig. 1. Examples of the (a) IPM and (b) Bing images.

Table 3
Description of the IPM images.

Class Plant common
name

Disease common
name

Disease scientific name Test

C1 Apple Apple scab Venturia inaequalis 3
C2 Apple Black rot Diplodia seriata 2
C3 Apple Cedar apple rust Gymnosporangium

juniperi-virginianae
3

C6 Cherry
(including
sour)

Powdery mildew Podosphaera clandestina 2

C8 Corn (maize) Cercospora leaf spot
Gray leaf spot

Cercospora zeae-maydis 10

C9 Corn (maize) Common rust Puccinia sorghi 20
C10 Corn (maize) Northern Leaf Blight Setosphaeria turcica 8
C12 Grape Black rot Guignardia bidwellii 8
C14 Grape Leaf blight (Isariopsis

Leaf Spot)
Pseudocercospora vitis 2

C16 Orange Haunglongbing
(Citrus greening)

Liberibacter asiaticus 13

C17 Peach Bacterial spot Xanthomonas arboricola 12
C19 Pepper bell Bacteria spot Xanthomonas campestris 2
C21 Potato Early blight Alternaria solani 5
C27 Strawberry Leaf scorch Diplocarpon earlianum 5
C29 Tomato Bacteria spot Xanthomonas campestris 5
C30 Tomato Early blight Alternaria solani 7
C31 Tomato Late blight Phytophthora infestans 4
C32 Tomato Leaf mold Mycovellosiella fulva 4
C33 Tomato Septoria leaf spot Septoria lycopersici 4
Total 119

Table 4
Description of the Bing images.

Class Plant common
name

Disease common
name

Disease scientific name Test

C1 Apple Apple scab Venturia inaequalis 6
C2 Apple Black rot Diplodia seriata 3
C3 Apple Cedar apple rust Gymnosporangium

juniperi-virginianae
3

C4 Apple Healthy – 1
C7 Cherry

(including
sour)

Healthy – 1

C8 Corn (maize) Cercospora leaf spot
Gray leaf spot

Cercospora zeae-maydis 3

C9 Corn (maize) Common rust Puccinia sorghi 3
C10 Corn (maize) Northern Leaf Blight Setosphaeria turcica 1
C11 Corn (maize) Healthy – 2
C14 Grape Leaf blight (Isariopsis

Leaf Spot)
Pseudocercospora vitis 1

C16 Orange Haunglongbing
(Citrus greening)

Liberibacter asiaticus 3

C18 Peach Healthy – 1
C19 Pepper bell Bacteria spot Xanthomonas campestris 1
C21 Potato Early blight Alternaria solani 1
C22 Potato Late blight Phytophthora infestans 3
C24 Raspberry Healthy – 1
C28 Strawberry Healthy – 2
C29 Tomato Bacteria spot Xanthomonas campestris 1
C30 Tomato Early blight Alternaria solani 3
C31 Tomato Late blight Phytophthora infestans 3
C32 Tomato Leaf mold Mycovellosiella fulva 6
C33 Tomato Septoria leaf spot Septoria lycopersici 3
C34 Tomato Spider mites Two-

spotted spider mite
Tetranychidae spp. 1

C35 Tomato Target Spot Corynespora cassiicola 6
C36 Tomato Tomato Yellow Leaf

Curl Virus
TYLCV 1

C38 Tomato Healthy – 4
Total 64

Fig. 2. Examples of the PlantCLEF2015 images. The images are composed of
different plant organs, and captured in environment with cluttered back-
grounds, reflecting a realworld scenario.
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into a single healthy class, so as to limit the amount to 2601 images in
order to avoid imbalanced distributions (39,508 training images in
total). During the inference, we calculate the classification result from
the 21 probability outputs produced by the trained model. We call this
disease modeling strategy Sco which symbolizes the CNN modeling
strategy based on the common name of diseases.

We compare Sco with another disease modeling strategy called Scd,
which instantiates the CNN modeling strategy based on the crop-disease
pairs. In Scd, we first train a CNN based on 38 crop-disease pairs with a
total of 43,810 training images. During the inference, from the 38
probability outputs produced by the trained model, we perform a late
fusion method to integrate the probabilities corresponding to the in-
dividual common diseases. More precisely, we compute the average
probability output with respect to each individual common name of
disease for the conjoined crop-disease pairs. For example, the average
probability of the Back rot common disease which is associated with
apple and grape, is computed as:

=P mean P P( , )Blackrot Apple Black rot Grape Black rot__ _ __ _

With this formulation, Scd has the same number of accuracy outputs as
Sco.

4.2. Generalization to unseen crops

There are several hundred common plant diseases in the world that
can each of them potentially infect dozens or even hundreds of different
types of crops. It is difficult, if not impossible, to collect a complete set
of images illustrating each crop-disease combination for building an
exhaustive training set. In addition, diseases can mutate and become
transmissible to new cultivated species and then it is necessary to
complete regularly the training set with new crop-disease combina-
tions. On the other hand, an approach that considers diseases in-
dependently of crops has the advantage of making a classifier more
easily extensible to new crops, by allowing a model to identify a known
disease in the training dataset, even if the crop hosting the diseases on a
test image is unknown in the training dataset. To evaluate the ability of
a deep model to generalize to an unknown crop, in our methodology, all
the images related to pepper crops such as those from the class
Pepper_bell__Bacterial_spot and the class Pepper_bell__healthy are removed
from the training set, and the model is trained only with those images
which are not from pepper crop. It should be noted that, in doing so, the
number of crop-disease pairs to be learned by a model is reduced from
38 to 36, giving a total of 41,762 and 37,727 images in the training set
to train Scd and Sco respectively.

5. Approach

5.1. Deep architectures

In our study, we employ three types of CNN architectures with
different depth size: VGG16 (Simonyan and Zisserman, 1409) (16
layers), InceptionV3 (Szegedy et al., 2016) (48 layers) and our proposed
architecture GoogLeNetBN7 (34 layers). This last architecture is in-
spired by the InceptionV2 and InceptionV3 architectures (Ioffe and
Szegedy, 2015; Szegedy et al., 2016) that bring several upgrades to the
initial GoogLeNet architecture (Szegedy et al., 2014) for increasing the
accuracy and reducing the computational complexity. It is a 34 layers
deep CNN adding to each convolution a batch normalization (BN) op-
eration. BN has been proven to speed up convergence and limit over-
fitting. Besides applying BN to GoogLeNet, we update the network by
replacing the 5 × 5 convolutional layers with two consecutive layers of
3x3 convolutions like for the InceptionV3 architecture, so as to improve
computational speed. The ImageNet dataset used for the ILSVRC

challenge (Russakovsky et al., 2015), containing about 1.2 M images
related to 1000 classes, was then used to train the model from scratch
for a few days on a mini-cluster of GPU cards to produce a “pre-trained”
model.

5.2. Training from scratch versus transfer learning

All CNNs are trained by using stochastic gradient descent (SGD)
optimization technique. The batch size was set to 45, and momentum
set to 0.9. The L2 weight decay with penalty multiplier was set to

×2 10 4. By employing the CNNs mentioned in Section 5.1 and training
them based on the following training schemes, we will have 9 trained
models based on 3 experimental configurations:

1. Transfer learning

(a) Fine-tuning of ImageNet pre-trained model (FTIN)
(b) Fine-tuning of PlantCLEF2015 pre-trained model (FTPC)

2. Training from scratch (FS)

For the FTIN configuration, a model is first pre-trained with
ImageNet and then fine-tuned directly on the PV dataset. For the FTPC
configuration, a model is first pre-trained with ImageNet, then fine-
tuned on the PlantCLEF2015 dataset before being fine-tuned on the PV
dataset. For both configurations, all weights of the pre-trained models
are fine-tuned simultaneously, with the last fully connected layer being
replaced and initialized with target task classes. All the choices of
training hyper-parameters were made based on empirical observation
of the convergence of the network training as well as the training
performance. For the two architectures VGG16 and GoogLeNetBN, the
learning rate was initially set with a relatively low value of 10 4 in order
to change the weights not too quickly, except for the last full-connected
layer where the learning rate was set to a higher value of 10 3 to ac-
celerate the convergence of the weights initialized with random values.
For each model, the training are carried out for a total of 15 epochs,
where one epoch is defined as the number of iterations required for the
neural network to pass through the entire training set. The learning rate
followed a “step” policy, meaning that it is decreased by a factor of 10
during the training, for every 15/3 epochs in our case. The architecture
InceptionV3 with the configuration FTPC used the same hyper-para-
meters as the aforementioned two architectures, but when using the
configuration FTIN on ImageNet the initial learning rate was set to 10 3

for all the layers because we noticed that the model converged too
slowly with a low initial learning rate of 10 4. For the FS configuration,
we set for all the three models an initial learning rate of 10 3 for all the
layers. In this case, since all the weights are initialized with random
values, we need more iterations, 30 epochs in these experiments, for the
models to converge towards their best performances. Concerning the
inputs, during the training, the image at the input of GoogLeNetBN and
VGG16 is resized to 256 × 256 pixels and cropped to 224 × 224 pixels.
As with InceptionV3, the image is resized to 300 × 300 pixels and
cropped to 299 × 299 pixels. We augment our training image by
random cropping and mirroring. For final model evaluations, each test
image is cropped in its center and resized to the size imposed by the
model architecture.

Fig. 3 shows the progression of the top-1 accuracy on the training
set for all the different models and configurations limited to 15 epochs.
We can see that the models learned with a fine-tuning approach all
progress very quickly and tend to achieve a top-1 accuracy above 0.95
in less than 2 epochs, except for the InceptionV3 model pre-trained on
ImageNet, which requires at least 7 epochs to reach an equivalent ac-
curacy. We can also see that, in the FS configuration, the models con-
verge more slowly and requires at least 11 epochs before reaching ac-
curacies equivalent to the transfer learning configurations, except for
the model with the VGG16 architecture which seems to stagnate around7 https://github.com/AdelineMomo/CNN-plant-disease (Caffe).
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an accuracy of 0.91.

6. Experiments

In this section, we first studied the impact of the use of transfer
learning on the identification of plant diseases. Then, we evaluated a
new classification problem considering common names of diseases as
single classes, regardless of crop categories. Finally, we studied and
analyzed the extent to which the deep models we learned can be gen-
eralizable to diseases despite the fact that the hosting crop is not illu-
strated in the training set.

6.1. Comparison of models with different learning configurations

Evaluation measures on the test sets. To measure model classifica-
tion performance, the top-1 and top-3 accuracies were used to measure
the performance of model classification in our experiments. Further, we
also used the average accuracy per class to assess the performance of an
individual class: = =AVE TC i

C
i

1
1 , where Ti is the average accuracy for

all test images related to theCi class andC is the total number of classes.
Next, to overcome the stochasticity of learning a single neural network,
we used the same approach as described in (Mohanty et al., 2016),
which combines the predictions of several trained models. Specifically,
we aggregated and calculated the average of all the probabilities given

by the models saved at the end of each epoch, then we calculated the
average and overall accuracy of the entire test. By doing so, we are able
to reduce the variance of the prediction results and obtain a fair com-
parison result with (Mohanty et al., 2016).

Generalization. Table 5 shows the classification performance of the
CNNs trained with the different learning strategies. It can be seen that,
although models trained with FS configuration, especially the deeper
architectures, achieve relatively high performance in PV test set, they
have lower classification performance in IPM and Bing than fine-tuned
models. This result is consistent with the previous study (Mohanty
et al., 2016), showing the advantage of fine-tuning in this task. The
GoogLeNet model (Mohanty et al., 2016), which achieves the highest
accuracy on the PV test set, shows lower performance on IPM images
compared to GoogLeNetBN. This leads us to conclude that this model is
particularly overfitted. Unlike what is generally observed in many other
areas, the VGG16 model achieves the best performance on IPM and
Bing test sets, 44.54% and 28.13% respectively, surpassing deeper ar-
chitectures. This finding suggests that those models with deeper ar-
chitectures are more likely to be overfitting for this task, probably be-
cause the PV dataset is not large or diverse enough.

Pre-trained models. It is difficult to conclude which pre-training task
works best for the external IPM and Bing test data mainly because the
size of these two set of images is quite small. However, by comparing
the overall top-1 accuracy of the combined IPM and Bing images, the

Fig. 3. Progression of top-1 accuracy on the training set for the 3 models and the 3 configurations.

Table 5
Classification results of CNNs trained with 3 different training configurations: fine-tuning on ImageNet pre-trained CNN (FTIN), fine-tuning on PlantCLEF2015 pre-
trained CNN (FTPC) and training from scratch (FS). It shows the top-1 and top-3 accuracy (%) and the average accuracy per class AVE (%) for all the test sets.

2*Architecture 2*Configuration PV test set IPM images Bing images

top-1 top-3 AVE top-1 top-3 AVE top-1 top-3 AVE

GoogLeNetBN FTIN 98.22 99.80 97.51 39.50 63.87 32.98 17.19 39.06 23.08
FTPC 99.09 99.95 98.83 42.86 62.18 39.85 23.44 43.75 26.92
FS 98.21 99.80 97.40 20.17 45.38 19.95 10.94 21.88 10.26

VGG16 (Simonyan and Zisserman, 1409) FTIN 99.00 99.93 98.61 44.54 67.23 45.95 26.56 46.88 26.92
FTPC 98.56 99.90 97.84 36.13 64.71 35.43 28.13 43.75 33.97
FS 91.97 98.47 88.10 15.97 24.37 16.85 6.25 10.94 6.41

InceptionV3 (Szegedy et al., 2016) FTIN 98.33 99.82 97.47 26.89 53.78 36.70 15.63 34.38 21.14
FTPC 98.46 99.89 97.71 37.82 65.55 34.36 23.44 45.31 27.56
FS 99.31 99.81 99.01 21.01 37.82 17.83 10.94 18.75 10.26

GoogLeNet (Mohanty et al., 2016) FTIN 99.35 – – 31.69 – – –
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VGG16 pre-trained with the ImageNet dataset shows a better result
than the one pre-trained with PlantCLEF2015, which are 44.54% and
36.13% respectively. As for the GoogLeNetBN and InceptionV3, the
model pre-trained on PlantCLEF2015 leads to better performance than
the one pre-trained on the ImageNet dataset, unlike the VGG16. From
this observation, it is unfortunately not possible to conclude on the
usefulness or not of pre-training the models on a task closer to the target
domain rather than the general object dataset, ImageNet.

Confusions and misclassifications. By analyzing the performance
of each individual class of the PV test set (Supplementary Fig. 1), we
found that most classification errors occur in the Tomato Early blight
class. A closer analysis of the confusion matrix (Supplementary
Table 1–6) shows that these errors generally result from confusion be-
tween the classes Tomato Early blight, Tomato Late blight, Tomato Septoria
leaf spot and Tomato Target spot. Fig. 4 gives some examples of mis-
classified images related to these confusions and illustrates how they
visually share similarities in leaf appearance and disease patterns. Al-
though the disease Tomato Early blight may have specific visual char-
acteristics, the intra- and inter-class variability makes their learning
very difficult. This factor was discussed in (Barbedo, 2018), and one
suggested solution was to extend the training dataset to a more ex-
haustive and complete set, covering all the visual variability of symp-
toms, which is in fact very difficult to collect. Next, we found that
misclassification tends to occur within similar crops, particularly in
maize and potatoes, and is also misleading due to visually similar leaf
appearance and disease patterns.

Next, by analyzing the performance of the Bing images
(Supplementary Table 7-12), we observed that with the exception of the
VGG16 model pre-trained on PlantCLEF2015 (Supplementary
Table 10), which has the correct prediction for all the images of Potato
Late blight, the rest of the model configurations show major classifica-
tion errors, confusing these images with Tomato Late blight, which is
actually related to the same common name of disease but on different
crops. This observation suggests that a common disease, although in-
fecting different host types, produces very similar disease patterns.

6.1.1. Qualitative results
Attention map visualization. To better understand the visual fea-

tures learned by the models, we used one of the visualization methods
presented in (Yosinski et al., 2015), which consists of plotting the ac-
tivation values of neurons in a CNN layer in response to an input image.
Instead of individually visualizing the activation of a CNN layer as
implemented in (Mohanty et al., 2016), we examined the highest global
activation within all feature maps in a layer, so as to locate the regions
most voted by the model and then exploit those that have the most
impact in the final classification. More precisely, we started by plotting
the position of the neuron with the highest activation for all the features
maps extracted from the last convolutional layer, and from there we
accumulated the first 30 dominant activations and matched them to the
original image. It is possible to visualize any number of neural activa-
tions, but, based on our empirical observation, the accumulation of 30

dominant activations in this case is enough to visualize the difference in
the focus of attention between different models. We chose to visualize
the last convolutional layer because this layer corresponded to the
highest level of abstraction and it is more specific to the target classes
(Lee et al., 2017; Zeiler et al., 2011).

By comparing the visualization outputs of the GoogLeNetBN and
VGG16, we found that their neuron activations were activated in dif-
ferent regions. For example, in Fig. 5a, both the GoogLeNetBN models
pre-trained with ImageNet and PlantCLEF2015 are activated by areas of
yellowish venation, while the VGG16 models are activated by areas
infected with large brown spots with yellow tissues around. However,
when comparing the visualization outputs of different pre-training tasks
on the same network architecture, we found a certain degree of simi-
larity in the activated areas. For example, in Fig. 5b, the GoogLeNetBN
models pre-trained with ImageNet and PlantCLEF2015 concentrate
mainly on the center of the leaf, while the VGG16 models mostly focus
on infected secondary veins. On closer observation, we found that the
activated regions do not necessarily focus on the largest infected area,
but on regions with obvious leaf characteristics such as the venations.

6.1.2. Discussion
In connection to the above findings, we hereby make a few deduc-

tions. Firstly, we found that VGG achieves a better classification per-
formance compared to other deeper network architectures which tend
to overfit on the PV dataset. We believe that the lack of diversity in the
PV data set, which could make the learned model sometimes misleading
when used in real field data such as IPM and Bing. Secondly, it is not
possible to conclude that a model pre-trained on a task closer to the
final task is the best option to solve the PV dataset, as in our study we
found that pre-training on plant domains improves performance in the
case of deep networks, InceptionV3 and GoogLeNetBN, but not for the
simpler and shallower networks such as VGG16. However, in our ex-
periments, the generalization performances of the models were studied
on IPM and Bing, which is currently the only field test set available
online with verified field truth. It would be interesting to see if our
results hold up on a larger number of images. If not, it might suggest
that the size of the IPM and Bing is too small to generalize the results.
Further investigation of the complementary field datasets will be re-
quired to reach a more robust conclusion on this point. We hope that
this article will stimulate the curiosity of the scientific community in
this field and facilitate further research on this topic related to the
generalization of the deep model in cross domains to improve the
identification of plant diseases.

Lastly, we noticed that the features learned might not necessarily
look at the most obviously infected area but the region with the most
distinctive leaf characteristics, such as the venation. This is believed to
be due to the fact that models are trained with the terminology of crop-
disease pairs, where models trained in this way could be biased towards
crop-specific patterns, especially when crop features appear to be more
discriminative than diseases. Therefore, in the next section, we explore
an alternative approach to crop-disease modelling, attempting an

Fig. 4. Examples of leaf samples which are confused between classes of: (a) Tomato Early blight and Tomato Late blight, and (b) Tomato Early blight and Tomato
Septoria leaf spot. It can be seen that they share very similar leaf appearance and disease patterns.
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intuitive way to direct a deep model to learn feature representations
based on common diseases, regardless of crop.

6.2. Disease identification based on common names of diseases and
generalization to unseen crops

In this experiment we used the VGG16 model, which had been
proven to be the best model in previous experiments, to experiment
with the principle of learning based on common names of diseases. We
compared two disease modeling strategies that are: (1) the formation of
a model based on training solely on the common names of diseases (Sco),
and (2) based on training on previously proposed crop-disease target
classes and the subsequent implementation of a late fusion method to
integrate probabilities corresponding to the individual common names
of diseases (Scd). Details of these approaches can be found in section 4.

6.2.1. Evaluation on seen crops
Table 6 shows that the Scd approach is generally better than the Sco

approach at predicting the PV (seen) set. The VGG16 model pre-trained
with ImageNet gives the best result up to 98.98% top-1 accuracy and
98.20% average accuracy per class AVE. However, due to the nature of
the PV data set, which seriously lacks diversity, both strategies were

found achieving a relatively high accuracy (:98% for top-1 accuracy).
Through the analysis of the confusion matrices (Supplementary table
19–20) of the Sco and Scd approaches, we found that, compared to Scd, Sco
has more classification errors between early blight and late blight. In
fact, this misclassification occurs mainly in tomato crops where the
number of disease classes is highest in PV. From this observation, we
deduce that the lack of crop information may seem to affect Sco's ability
to recognize diseases with a very similar visual appearance. However,
we note that although crop characteristics that could be extracted by Scd
may provide additional information to help differentiate these classes,
these crop characteristics do not necessarily correspond to the char-
acteristics of plant diseases.

Next, we analyzed the performance of deep models to identify new
data (IPM and Bing) from other domains, typically pictures in the field.
Note that there are only two pepper crop images in IPM, and one pepper
crop image in Bing, of which the number of samples is insufficient to
infer the performance of deep models in recognizing the disease of an
unseen crop. We hence tested the deep model using only the seen crop
images. From Table 6, we can see that Sco approach in general works
better than Scd on IPM and Bing. Next, using the Sco approach, in order
to determine which pre-training task is the most effective, we compared
the top-1 accuracy of the combined IPM and Bing images, and found

Fig. 5. Visualization of the attention maps of the GoogLeNetBN and VGG16 for the PV sample. The upper and lower row images are the output visualization of the
model pre-trained with ImageNet and PlantCLEF2015 respectively.
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that with ImageNet pre-training can achieve the highest top-1 classifi-
cation performance, i.e. 45%, while the PlantCLEF2015 pre-training is
42.22%.

6.2.2. Generalization to unseen crops
From Table 6, we can see that, despite the fact that Scd can achieve a

better result in the PV (seen) set, Sco generalizes better to PV (unseen)
set, especially the PlantCLEF2015 model which reaches 65.11%, the
highest top-1 accuracy. Note that the overall accuracy of the PV (un-
seen) in Table 6 was calculated from all PV (unseen) images, which
means a combination of images from the Pepper_bell__Bacterial_spot and
Pepper_bell__healthy classes. Next, we explored the classification perfor-
mance of each individual PV (unseen) class in which, in this case, the
overall accuracy is calculated according to each individual PV (unseen)
class. The result of the classification is presented in Table 7.

We observed that different pre-training tasks can exert substantial
influence on different categories of pepper classes. Specifically, it can
be seen that, for the Sco, the ImageNet pre-trained model (83.89%) can
distinguish better between healthy and unhealthy pepper leaf samples
compared to that pre-trained with PlantCLEF2015 (65.40%). However,
the class of pepper leaves with bacteria spots shows a contrary result
where the model pre-trained with the PlantCLEF2015 (65.75%) is
better than the one pre-trained with the ImageNet (43.06%).

Next, based on failure analysis of the PV (unseen), we observed that,
with the ImageNet pre-trained models, a majority of Pepper bell Bacterial
spot are confused with target spot, Huanglongbing (Citrus greening) and
early blight; with the PlantCLEF2015 pre-trained models, most of the
Pepper bell Bacterial spot images are confused with Haunglongbing
(Citrus greening), Tomato Yellow Leaf Curl Virus and early blight.
Through visual analysis, we noticed that the symptoms of those mis-
classified samples are very similar to the disease from the other class.
For example, in Fig. 6a, the samples of Pepper bell Bacterial spot that are
confused with Haunglongbing (Citrus greening) have yellowish infected
regions and also yellow veins, resembling the characteristics of Haun-
glongbing (Citrus greening). Also, those samples that are confused with
the Target spot disease as shown in Fig. 6b have visually similar dark
brown spots characteristics. Likewise, the healthy pepper samples are
also found to be misled for the same reason. A majority of pepper
healthy samples are wrongly identified as Haunglongbing (Citrus

greening), most probably due to the characteristic of yellowing pepper
bell leaves.

From this analysis, it is obvious that the recognition of deep models
is highly affected by the symptom variations of one disease, analogous
to the findings reported in (Barbedo, 2018). However, it is undeniable
that, for the models formulated by both Scd and Sco that have never seen
any pepper bell leaf samples, they are still able to capture very similar
characteristics of pepper bell which could somehow help to improve the
predictive modeling for unseen crops.

Lastly, by aggregating multi-class outputs into two classes, we ana-
lyzed the performance of the models to differentiate between healthy and
unhealthy classes of the PV set. Note that, in this experiment, we verified
the classification performance on the basis of the entire PV set, which
includes the seen and unseen test set. From the ROC (Receiver Operating
Characteristic) curves shown in Supplementary Fig. 2, it can be seen that
the Sco is more robust in differentiating between healthy and unhealthy
leaf samples compared to the model trained with Scd. Indeed, through the
AUC (Area Under the Curve) as shown in Table 8, Sco as a whole per-
formed better than Scd.

6.2.3. Discussion
Based on this experiment, we make several deductions. Firstly,

classification based on Sco was proven generalizes better and robust in
identifying diseases of unseen crops as well as plant images taken in
domains different from those in the training set. Next, Sco can also better
distinguish between healthy and unhealthy leaf samples. This is parti-
cularly important in the context of phenotyping large field crops, in
which it is possible with new agricultural robots or drones to generate

Table 6
Performance of the VGG16 models on the disease classification problem based on Sco and Scd. Note that the performance of IPM and Bing is based on only seen crop
images while the unseen crop refers to Pepper_bellBacterial_spot and Pepper_bellhealthy.

Pretrained dataset PV (seen) (%) PV (unseen) (%) IPM images (%) Bing images (%)

(Scd/Sco) top-1 top-3 AVE top-1 top-3 top-1 top-3 AVE top-1 top-3 AVE

ImageNet (Sco) 98.94 99.96 98.19 63.23 90.87 46.15 76.92 52.29 42.86 63.49 34.31
ImageNet (Scd) 98.98 99.96 98.20 34.89 79.86 45.30 74.36 48.54 39.68 61.90 35.78
PlantCLEF2015 (Sco) 98.42 99.91 97.31 65.11 90.87 48.72 79.49 52.29 30.16 58.73 29.90
PlantCLEF2015 (Scd) 98.52 99.86 97.70 37.47 81.97 43.59 73.50 44.92 26.98 47.62 26.47

Table 7
Results of the individual classification of diseases related to the pepper bell crop
for the PV (unseen). It presents the top-1 accuracy of the
Pepper_bellBacterial_spot and Pepper_bellhealthy for the Sco and Scd with different
pre-training tasks.

Pepper class ImageNet PlantCLEF2015

Sco Scd Sco Scd

bacteria spot 43.06 18.98 65.74 42.59
healthy 83.89 51.18 65.40 32.23

Fig. 6. Examples of pepper bell leaves that are confused with (a)
Haunglongbing (Citrus greening) and (b) Target spot disease.

Table 8
Performance of the VGG16 models on the healthy and unhealthy classification
of the PV set.

Pretraining task Classifier AUC

ImageNet Sco 0.972
Scd 0.744

PlantCLEF2015 Sco 0.967
Scd 0.740
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massive volumes of visual data that can't be manually exhaustively
analyzed. In such cases, an early detection of unhealthy leaf samples
can contribute to quickly investigate their origins, and potentially im-
plement appropriate solutions.

7. Conclusion

First, this paper has examined and compared the performance of
different transfer learning mechanisms based on different (1) pre-
training tasks: the plant specialized domain and general object domain,
and the (2) network architectures: VGG16 (16 layers), GoogLeNetBN (34
layers) and InceptionV3 (48 layers). We have experimentally proven
that pre-training with plant specialized tasks could reduce the impact of
overfitting for the deeper Inception-based model but the VGG16 model
with ImageNet pre-training has shown a better generalization in
adapting to new data.

Second, the fact that the VGG16 perform better than the inception-
based models would be due to the lack of diversity in the PV data set,
which leads to a constraint in the deployment of deeper architectures.
Nevertheless, with regard to the fact that ImageNet pre-training does
not necessarily regularize or improve the accuracy of final target tasks,
as indicated in (He et al., 1811), we suggest that the agricultural
community move forward to create a broader and more diversified
plant disease database, without having to use a pre-training model. In
addition, for the model to better adapt to large-scale crops, a dataset of
images captured under real cultivation conditions (Barbedo, 2018;
Ferentinos, 2018) is needed, as demonstrated by (Ferentinos, 2018).

Third, by interpreting the underlying learned characteristics
through the visualization of activations, we have showed that a CNN
trained in this crop-disease terminology may not always focus on dis-
ease regions but crop-specific characteristics such as leaf venation or
lamination to facilitate data discrimination. Therefore, in order to
capture the visual symptoms of plant diseases, we demonstrated an
intuitive way of leading a deep model to learn the representation of
characteristics based on the common names of diseases instead of target
classes of crop-disease pairs. We have shown experimentally that the
model trained with common diseases, regardless of crop is more gen-
eralizable, especially for new data taken in different domains and also
for unseen crops.
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