

ICT FOR FOOD

APPLICATION OF ICT FOR DISEASE PREVENTION IN RICE

POOJA SHIVANAND^{1*} AND RAMA RAO KARRI²

¹Faculty of Science, Universiti Brunei Darussalam (UBD), Brunei Darussalam ²Faculty of Engineering, Universiti Teknologi Brunei (UTB), Brunei Darussalam

AGENDA

PURPOSE

BACKGROUND

METHODOLOGY

CLOSING

PURPOSE

RATIONALE OF THIS STUDY

To ensure regional self-sufficiency in rice production by providing ICT solutions to crop disease (sheath blight).

Borneo Bulletin Year Book 2020 Credit: Google images

DIVERSIFICATION OF ECONOMY HAS LED TO AN EMPHASIS ON REVAMPING AGRICULTURE SECTOR IN BRUNEI

CURRENT CHALLENGE PLANT DISEASE TRIANGLE

METHODOLOGY

ICT FOR AGRIFOOD

SAMPLE COLLECTION

Infected plant samples (sheath blight) collected from Paddy Industry Unit and Brunei Agricultural Research Centre (BARC) paddy plots at Wasan and Kandol.

Sampling at Wasan, Brunei-Muara and Kandol area (500 hectare commercial paddy planting), Kuala Belait.

DNA BARCODING

Collect air and related sample

DNA extraction

Shotgun sequencing

• Sequence alignment

• Phylogenetic analysis

• Identification of pathogenic microorganisms

DATA-MODEL INTEGRATION

MODELLING STAGES

Correlation and regression analysis of disease presence and severity with

spectral response in specific bands and/or intervals of electromagnetic spectrum

Assessment of spectral vegetation indices (SVIs)

general or specifically introduced, which are sensitive to disease presence

Data mining algorithms applied to spectral data processing and feature extraction/selection for data dimensionality reduction and

Machine learning and classification techniques supervised

and unsupervised, for producing results which are classified depending on disease presence/absence and possibly severity levels

STRUCTURE FOR DATA MODEL INTEGRATION

INTEGRATING PARAMETERS TO BETTER REPRESENT THE SYSTEM

ROADMAP TO IMPROVE THE PREDICTION OF THE IMPACTS OF PESTS AND DISEASES IN AGRICULTURAL CROP YIELD

The action plan covers six areas:

- i) Improve the quality and availability of crop data as model inputs
- ii) Develop a systematic crop model
- iii) Design a structure for data model integration
- iv) Integrate the crop model with weather models
- v) Establish diseases and pests mitigation framework
- vi) Provide a robust and reliable crop model for predictable crop yield

TEAM MEMBERS

Pooja Shivanand

Universiti Brunei Darussalam

Rama Rao Karri

Universiti Teknologi Brunei

Hussein Taha

Universiti Brunei Darussalam

Sachin S Gunthe

Indian Institute of Technology Madras

WHAT'S NEXT?

MATCH FUNDING EXTERNAL COLLABORATION

HALF-YEARLY TIMELINE

Т1			T1			ТЗ			Τ4		
JUL	to	DEC	JAN	to	JUN	JUL	to	DEC	JAN	to	JUN
S A M P L Collect air a	E COLLE Ind other sa agri-fields.	E C T I O N mples from	DNA BARCODING Identify pathogens through DNA analysis.			M O D E L L I N G Develop models to predict crop damage by pathogens.			S O L U T I O N S Offer strategies and solutions to counter causative organisms.		

BENEFITS OF PROJECT

AGRICULTURE

- Identification of specific rice pathogens (bacteria, fungi & spores) in Brunei
- ICT solutions to counter widely prevalent sheath blight
- Prevention of losses due to crop disease
- Self sufficiency and diversified economy

FOOD

- Increased production of staple rice (BDR5)
- Reduce wastage of food and chemicals
- Better supply chain and storage

GOALS FOR T1

PROCURE EQUIPMENT

- Air sampler
- Consumables

COLLECT SAMPLES FROM AGRI-FIELDS

- Air sample for spores
- Plant specimen

DNA BARCODING THROUGH COLLABORATION

- Metagenomics
- Phylogenetic analyses

SUMMARY

Diversification of economy

Thrust on agricultural sector in Brunei

Identify causative organisms Sheath blight a widespread concern of crop loss

Develop models for prediction Predict scale of crop damage though modelling

Apply ICT for self sufficiency Offer solutions based on prediction

THANK YOU

POOJA SHIVANAND

+673 246 0923 (1378)

 \sim

pooja.shivanand@ubd.edu.bn

https://expert.ubd.edu.bn/pooja.shivanand