
Verifying Hardware/Software Co-Design for 

Remote Attestation in IoT

Joint work with:
Ivan de Oliveira Nunes (UCI)

Gene Tsudik (UCI)
Karim Eldefrawy (SRI Intl)

Michael Steiner (Intel Research)

1

Norrathep Rattanavipanon

(PSU, Phuket Campus)

VRASED: A Verified Hardware/Software Co-Design for Remote Attestation, 
Usenix Security Symposium (Usenix'Sec), 2019.
https://www.usenix.org/conference/usenixsecurity19/presentation/de-oliveira-nunes

https://www.usenix.org/conference/usenixsecurity19/presentation/de-oliveira-nunes


Outline

● Past

● Present
- Background on Remote Attestation
- Our Approach (VRASED)
- Implementation + Results

● Future Work

2



Background on Remote Attestation
for Low-End IoT/CPS Devices

3



Internet-of-Things (IoT) Gadgets

4



IoT-specific Attacks On:

Sensing: Privacy

Actuation: Security & Safety

Either: DDoS Sourcing (aka Zombification)

5



Constraints for Simple IoT Devices: large 
scale + low price

6

CPU Power Battery

Memory Size Hardware Cost

Hard to prevent malware from entry

Next best thing is to detect malware!



Low-end IoT Devices
(aka amoebas of the computing world)

● Designed for: Low-Cost, Low-Energy, Small-Size.
● Memory: Program (~32kB) and Data (~2-16 kB)
● Single core CPU (~8-16MHz; 8- or 16-bit)
● Simple Communication (I/O) Interfaces (a few kbps)
● Examples: TI MSP-430, AVR ATMega32 (Arduino)

8



Detection vs. Prevention for IoT Amoebas

• Prevention is hard & expensive:
• Simple devices can not run fancy crypto, anti-malware, verify 

certificates, etc.

• Detection is the next best thing:
• Goal: Remotely measure internal state of device and detect 

anomalous/compromised states

9



Remote Attestation (RA)

• A general approach of detecting malware presence on devices

• Two-party interaction between:
• Verifier: trusted entity
• Prover: potentially infected and untrusted remote IoT device

• Goal: measure current internal state of prover

10



(1) Challenge

(3) Response

(2) Response = authenticated 
challenge-based measurement 
(via some cryptographic 
integrity-ensuring function)

(4) Verify response,
decide outcome

Verifier Prover

11

RA Interaction

Often implemented as a 

Message Authentication 

Code (MAC) over prover’s 

memory



RA Techniques
• Hardware-based RA

• Dedicated hardware support (e.g., TMP, TrustZone-M, SGX)
• Effective
• Overkill for low-end IoT devices

• Software-based RA
• Relies on precise or negligible timing 
• Unrealistic assumptions for remote provers, except for peripherals and 

legacy devices
• Hybrid RA

• SW/HW co-design
• Minimal hardware impact
• Best fit for resource-constrained IoT devices?

12



Hybrid RA Security Properties

13



Hybrid RA Security Properties
Authenticated measurement requires prover to have a unique secret key 

If this key is leaked, RA is totally broken/useless

14

Potential malware on prover should be 

unable to access this key

Safe Execution:

- Key must not be leaked during 

execution of trusted code

- Malware can escape detection 



Why bother with formally verified RA?

15

• FV promises higher confidence and concrete security guarantees

• Current RA techniques do not offer high-assurance and rigor derivable 

from FV to guarantee security of the design and its implementation.

• Since they are not systematically designed from abstract models, 

soundness and security (of current RA) cannot be formally argued. 

• Need to design more-or-less from scratch in order to construct a 

formally verifiable RA scheme.

• No prior formally verified secure HW/SW co-design



ARCHITECTURE Overview

OUR MAIN GOAL: Formally Verified RA Design and Implementation

16

VRASED: 

Verifiable Remote Attestation for Simple Embedded Devices



VRASED Architecture

17



VRASED Architecture

• Verified Implementation of HMAC stored in ROM

(SW-Att): Immutability + SW correctness

• Malware can not modify SW-Att

18



Hybrid RA Security Properties

19



VRASED Architecture

• Verified Implementation of HMAC stored in 

read only memory (SW-Att): Immutability + SW 

correctness

• Malware can not modify attestation software

• Does SW-Att execute properly?

• HW-Mod enforces proper invocation and 

atomicity

20



Hybrid RA Security Properties

21



VRASED Architecture

• Verified Implementation of HMAC stored in 

read only memory (SW-Att): Immutability + SW 

correctness

• Malware can not modify the attestation 

software

• Does SW-Att execute properly?

• HW-Mod enforces proper invocation and 

atomicity

• Can Malware learn something it should not 

from SW-Att execution?

• HW-Mod makes sure it can not

• Access control to the key and to memory 

used by SW-Att

22



Hybrid RA Security Properties

23



VERIFYING VRASED

24



Verifying VRASED Security

Goals:

● Verify HW-Mod hardware design with respect to 
aforementioned properties

● Verify software implementation of SW-Att

25



Verifying VRASED Security
● Verify HW-Mod hardware design with respect to 

aforementioned properties

● Verify implementation of SW-Att

● Prove that conjunction of such properties implies some formal 
notion of end-to-end “Secure Remote Attestation”

26



Our Approach
1. Use a formally verified HMAC implementation for SW-Att
2. Model RA security properties as Linear Temporal Logic (LTL) Specs
3. Design HW-Mod as a set of FSMs, and use a model-checker to verify 

its conformance to LTL Specs
4. Prove (in LTL) that combination of SW-Att & HW-Mod properties 

imply “Secure Remote Attestation”

27



Design and Tools:

● Design hardware modules as FSMs in Verilog
● Use Verilog2SMV to convert between Verilog and SMV FSM 

representations
● Use NuSMV (Symbolic Model Checker) to verify FSMs against LTL 

specifications
● Implement by extending OpenMSP430 open-hardware project

28



Implementation 
and 

Performance

29



Implementation

● VRASED prototype on Open Cores 

OpenMSP430 Verilog Design

● Synthesized on Basys3 FPGA 

30



Performance

31



Performance

32



33

SUMMARY

Formally Verified RA:

❑ Important

❑Has not been done before

❑Hard

❑But doable!



I. De Oliveira Nunes, K. Eldefrawy, N. Rattanavipanon, M. Steiner and G. Tsudik, 

VRASED: A Verified Hardware/Software Co-Design for Remote Attestation, 

Usenix Security Symposium (Usenix'Sec), 2019.

I. De Oliveira Nunes, K. Eldefrawy, N. Rattanavipanon and G. Tsudik, 

PURE: Using Verified Remote Attestation to Obtain Proofs of Update, Reset and Erasure in 

Low-End Embedded Systems, 

International Conference On Computer Aided Design (ICCAD), 2019.

K. Eldefrawy and G. Tsudik, 

Advancing Secure Remote Attestation via Automated Formal Verification of Designs and 

Synthesis of Executables, 

ACM Conference on Security and Privacy in Wireless and Mobile Networks (WiSEC), 2019.

34

For More Info:



What’s next?

● Extend VRASED verified TCB to use RA for Provable Code Execution 

(Done: https://www.usenix.org/conference/usenixsecurity20/presentation/nunes, USENIX Sec 2020)

● Formal Verification of other hybrid architectures aimed at medium/higher-end devices

(On-going!)

● Formal Verification of collective (e.g., swarm) attestation

(somewhat done: https://ieeexplore.ieee.org/document/8885355/, ICDCS 2019)

35

https://www.usenix.org/conference/usenixsecurity20/presentation/nunes
https://ieeexplore.ieee.org/document/8885355/

