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Background on Remote Attestation
for Low-End IoT/CPS Devices
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Internet-of-Things (IoT) Gadgets
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IoT-specific Attacks On:

Sensing: Privacy

Actuation: Security & Safety

Either: DDoS Sourcing (aka Zombification)
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Constraints for Simple IoT Devices: large 
scale + low price
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CPU Power Battery

Memory Size Hardware Cost

Hard to prevent malware from entry

Next best thing is to detect malware!



Low-end IoT Devices
(aka amoebas of the computing world)

● Designed for: Low-Cost, Low-Energy, Small-Size.
● Memory: Program (~32kB) and Data (~2-16 kB)
● Single core CPU (~8-16MHz; 8- or 16-bit)
● Simple Communication (I/O) Interfaces (a few kbps)
● Examples: TI MSP-430, AVR ATMega32 (Arduino)
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Detection vs. Prevention for IoT Amoebas

• Prevention is hard & expensive:
• Simple devices can not run fancy crypto, anti-malware, verify 

certificates, etc.

• Detection is the next best thing:
• Goal: Remotely measure internal state of device and detect 

anomalous/compromised states
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Remote Attestation (RA)

• A general approach of detecting malware presence on devices

• Two-party interaction between:
• Verifier: trusted entity
• Prover: potentially infected and untrusted remote IoT device

• Goal: measure current internal state of prover
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(1) Challenge

(3) Response

(2) Response = authenticated 
challenge-based measurement 
(via some cryptographic 
integrity-ensuring function)

(4) Verify response,
decide outcome

Verifier Prover
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RA Interaction

Often implemented as a 

Message Authentication 

Code (MAC) over prover’s 

memory



RA Techniques
• Hardware-based RA

• Dedicated hardware support (e.g., TMP, TrustZone-M, SGX)
• Effective
• Overkill for low-end IoT devices

• Software-based RA
• Relies on precise or negligible timing 
• Unrealistic assumptions for remote provers, except for peripherals and 

legacy devices
• Hybrid RA

• SW/HW co-design
• Minimal hardware impact
• Best fit for resource-constrained IoT devices?
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Hybrid RA Security Properties
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Hybrid RA Security Properties
Authenticated measurement requires prover to have a unique secret key 

If this key is leaked, RA is totally broken/useless
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Potential malware on prover should be 

unable to access this key

Safe Execution:

- Key must not be leaked during 

execution of trusted code

- Malware can escape detection 



Why bother with formally verified RA?

15

• FV promises higher confidence and concrete security guarantees

• Current RA techniques do not offer high-assurance and rigor derivable 

from FV to guarantee security of the design and its implementation.

• Since they are not systematically designed from abstract models, 

soundness and security (of current RA) cannot be formally argued. 

• Need to design more-or-less from scratch in order to construct a 

formally verifiable RA scheme.

• No prior formally verified secure HW/SW co-design



ARCHITECTURE Overview

OUR MAIN GOAL: Formally Verified RA Design and Implementation
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VRASED: 

Verifiable Remote Attestation for Simple Embedded Devices



VRASED Architecture
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VRASED Architecture

• Verified Implementation of HMAC stored in ROM

(SW-Att): Immutability + SW correctness

• Malware can not modify SW-Att
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Hybrid RA Security Properties
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VRASED Architecture

• Verified Implementation of HMAC stored in 

read only memory (SW-Att): Immutability + SW 

correctness

• Malware can not modify attestation software

• Does SW-Att execute properly?

• HW-Mod enforces proper invocation and 

atomicity
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Hybrid RA Security Properties
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VRASED Architecture

• Verified Implementation of HMAC stored in 

read only memory (SW-Att): Immutability + SW 

correctness

• Malware can not modify the attestation 

software

• Does SW-Att execute properly?

• HW-Mod enforces proper invocation and 

atomicity

• Can Malware learn something it should not 

from SW-Att execution?

• HW-Mod makes sure it can not

• Access control to the key and to memory 

used by SW-Att

22



Hybrid RA Security Properties
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VERIFYING VRASED
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Verifying VRASED Security

Goals:

● Verify HW-Mod hardware design with respect to 
aforementioned properties

● Verify software implementation of SW-Att
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Verifying VRASED Security
● Verify HW-Mod hardware design with respect to 

aforementioned properties

● Verify implementation of SW-Att

● Prove that conjunction of such properties implies some formal 
notion of end-to-end “Secure Remote Attestation”
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Our Approach
1. Use a formally verified HMAC implementation for SW-Att
2. Model RA security properties as Linear Temporal Logic (LTL) Specs
3. Design HW-Mod as a set of FSMs, and use a model-checker to verify 

its conformance to LTL Specs
4. Prove (in LTL) that combination of SW-Att & HW-Mod properties 

imply “Secure Remote Attestation”
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Design and Tools:

● Design hardware modules as FSMs in Verilog
● Use Verilog2SMV to convert between Verilog and SMV FSM 

representations
● Use NuSMV (Symbolic Model Checker) to verify FSMs against LTL 

specifications
● Implement by extending OpenMSP430 open-hardware project
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Implementation 
and 

Performance
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Implementation

● VRASED prototype on Open Cores 

OpenMSP430 Verilog Design

● Synthesized on Basys3 FPGA 
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Performance
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Performance
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SUMMARY

Formally Verified RA:

❑ Important

❑Has not been done before

❑Hard

❑But doable!
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For More Info:



What’s next?

● Extend VRASED verified TCB to use RA for Provable Code Execution 

(Done: https://www.usenix.org/conference/usenixsecurity20/presentation/nunes, USENIX Sec 2020)

● Formal Verification of other hybrid architectures aimed at medium/higher-end devices

(On-going!)

● Formal Verification of collective (e.g., swarm) attestation

(somewhat done: https://ieeexplore.ieee.org/document/8885355/, ICDCS 2019)
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