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Abstract

In light of Industry 4.0, the new technologies have brought huge benefit to a wide range of
industries. In this work, we introduce the common vulnerabilities and potential cyber-security risks
and focus on manufacturing system. Based on its architecture and operating principle, we analyse
the security threats that directly affect on the system. This will be fundamental for analysing and
building risk assessment tools.
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I. The architecture and operating principle of manufacturing
systems in Industry 4.0

A. Architecture of Manufacturing Systems in Industry 4.0

Industry 4.0 bases on the technical integration of Cyber-Physical Systems (CPS) in produc-
tion and the application of Internet of Things (IoT) services in industrial processes (Fig. 1) [1].
Its basic principle is that a manufacturer can create “intelligent” networks with significantly
reduced intervention by operators by connecting machines that communicate and control each
other autonomously.

1) Cyber–Physical Systems Architecture: The structure and methodology of CPS as guide-
lines for its implementation in Industry 4.0 [2] is illustrated in Figure 2, 3, and 4.

2) Internet of things-IoT: The Internet of Things involves adding sensors and networking
technologies to the devices and systems that we use every day in the physical world. In [3],
the concept of IoT was defined as “Interconnection of sensing and actuating devices providing
the ability to share information across platforms through a unified framework, developing a
common operating picture for enabling innovative applications. This is achieved by seamless
ubiquitous sensing, data analytics and information representation with Cloud computing as
the unifying framework”.

B. Operation Principle of Manufacturing Systems in Industry 4.0

The transition to the Industry 4.0 is facilitated through the advances of the suportive
technologies related to adaptive robotics, embedded systems, cloud technologies, virtualiza-
tion technologies, augmented reality, data analytics and artificial intelligence, information
and communication technologies (e.g. Cloud and networking), smart sensors and others [4]
(Fig. 4).

Fig. 1: Industry Revolution [1]
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CPS are open, linked-up systems that operate flexibly, cooperatively (system-to-system
cooperation), and interactively (human-to-system cooperation). They link the physical world
seamlessly with the virtual world of information technology and software [2], and to do so
they use various types of available data, digital communication facilities, and services. CPS
are closely related to the Internet of Things, where seamless communication among physical
objects is achieved through embedded systems and communication networks.

A step forward is the integration of the digital tools related to product development into
Cloud platforms, in order to enhance collaboration among the various actors at this stage of
the product lifecycle providing ubiquitous access to information [2]. It can be concluded that

Fig. 2: Cyber–Physical Systems logical architecture.

Fig. 3: Cyber – Physical Systems leveled architecture.
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the latest advances in ICT technologies are the means for the interconnection of the different
elements of a manufacturing system towards a digitalized ecosystem.

Integration standards with semantic representation of information, such as OPC-UA, along
with Web services and wireless sensor networks enable the seamless communication among
tangible resources and humans. Especially, with the use of mobile and wearable devices
humans enter the cyber world and communicate with machines

Fig. 4: Applications and techniques with each level of the CPS architecture.

Fig. 5: Manufacturing work flow in Industry 4.0 [2]
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II. Vulnerabilities And Potential Cyber-Security Risks of Man-
ufacturing System In Industry 4.0

It is estimated that cyber risks costs the global economy up to $400 billion a year maybe
even more [5]. For industrial control systems (ICSs) however, the risks are even more acute
in the Industry 4.0. To understand the risk, we need a definition.

A. What is Vulnerability, Threats, and Risk?

Vulnerability - Weaknesses or gaps in a security program that can be exploited by threats
to gain unauthorized access to an asset.

Threat - Anything that can exploit vulnerability, intentionally or accidentally, and obtain,
damage, or destroy an asset.

Risk - The organizations such as the International Standards Organization (ISO) and
National Institute of Standards and Technology (NIST) have developed definitions that are
widely accepted and used. In both cases, risk is seen as a function of the vulnerability of an
asset, the threat, which is the likelihood an attack will occur, and the consequence of such
an attack being successful. So risks are defined by ISO and NIST as:

ISO: The potential that a given threat will exploit vulnerabilities of an asset or group of
assets and thereby cause harm to the organization.

NIST: A function of the likelihood of a given threat-source’s exercising a particular potential
vulnerability, and the resulting impact of that adverse event on the organization.

To put those definitions in another way:

Risk � V ulnerability � Threat� Consequence.

B. Steps guide to Identify Cyber-security risks

Step 1 - Knowing Your Vulnerabilities: A vulnerability is any quality of an asset that could
allow it to be exploited. All digital assets have them. Some are known; some aren’t. Some
are easier to exploit than others.

Step 2 - Identifying Threats: It is threats that turn vulnerability into an incident so we need
to know about the importance of regular review and understanding the relationship between
threats and vulnerabilities.

Step 3 - Measuring Consequences - The Final Piece: Consequences put these threats and
vulnerabilities into perspective.

Step 4 - Bringing it together and Measuring Risk: Understanding and addressing the
preceding elements gives a plant what it needs to begin to make a realistic assessment of its
risks.
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C. Security Threats and Vulnerabilities of IoT

Different architectures have been proposed by different researchers. In general, the IoT can
be divided into four main levels. Figure 5 shows both the level architecture of the IoT and
some basic components in each level.

 Perception (Sensing) layer: The perception layer is also called as ‘Sensing Layer’. It
composed of physical objects and the sensing devices such as various forms of sensory
technologies, RFID sensors. These technologies allow devices to sense other objects.

 Network layer: Network layer is the infrastructure to support wireless or wired connec-
tions between sensor devices and the information processing system.

 Service layer: This layer is to ensure and manage services required by users or applica-
tions. It is responsible for the service management and has a link to the database.

 Application (Interface) layer: Application or interface layer composed of interaction
methods with users or applications. It is responsible for delivering application services
to the user.

1) Common security threats and vulnerabilities in the perception layer:

 Unauthorized access: At first node, unauthorized accesses are important threats due to
physical capture or logic attack.

 Confidentiality: Attackers can place malicious sensors or devices in order to acquire
information from the system.

 Availability: The system component stops working because it is physically captured or
logically attacked.

 Noisy data (transmission threats): The data may contain incomplete information or
incorrect information due to transmission over networks covering large distances.

 Malicious code attacks: Attackers can cause software failure through malicious code
such as virus, Trojan, and junk message.

2) Common security threats and vulnerabilities in the network layer:

 Denial of Services (DoS) attack: Attackers continually bombard a targeted network
with failure messages, fake requests, and/or other commands. DoS attacks are the most
common threat to the network.

 Routing attack: These are attacks on a routing path such as altering the routing infor-
mation, creating routing loops or sending error messages.

 Transmission threats: These are threats in transmission such as blocking, data manipu-
lation, interrupting.

 Data breach: A data breach is the intentional or unintentional release of secure or
confidential information to an untrusted environment.

 Network congestion: A large number of sensor data along with a large number of device
authentication can cause network congestion.

3) Common security threats and vulnerabilities in the services layer:

 Manipulation: The information in services is manipulated by the attacker.
 Spoofing: The information is returned by an attacker to spoof the receiver.
 Unauthorized access: Abuse of services accessed by unauthorized users.
 Malicious information: Privacy and data security are threatened with malicious tracking.
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 DoS attacks: A useful service resource is made unavailable by being exposed to traffic
above its capacity.

4) Common security threats and vulnerabilities in the application layer:

 Configuration threats: Failing configurations at interfaces and/or incorrect misconfigura-
tion at remote nodes are the most important threats for this layer.

 Malicious code (Malware) attacks: These attacks are intentionally made directly to the
software system in order to intentionally cause harm or subvert the intended function of
the system.

 Phishing Attacks: In the interface layer, attackers may attempt to obtain sensitive infor-
mation such as usernames, passwords, and credit card details.

D. Security Threats and Vulnerabilities of CPS

E. Evolution of Cyber Attacks

Due to the widespread use of IoT based on computer networks, hackers have taken ad-
vantage of network-based services to gain personal benefit and reputation. Further, the cyber
landscape is constantly altering and evolving due to the speed of technological change, the
complexity of the attackers, the value of potential targets and the effects of attacks (Weber
and Studer 2016). As a result, over time, the nature of cyber-attacks has been complicated
and extremely sophisticated (Figure 6).

F. Security Challenges in Industries

The current application areas include smart manufacturing, smart homes, and smart cities,
transportation and warehousing, healthcare, retail and logistics, environmental monitoring,

Fig. 6: Security threats and vulnerabilities by level [].
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smart finance, and insurance. There are security challenges associated with all these appli-
cation areas. Some of them are very obvious, for example, misuse of personal information,
financial abuse. On the other hand, others are more specific depending on the structure of
the industry. The industry challenges facing cyber security experts are outlined in Table I
according to the industries

G. Most Frequently Targeted Industries

According to The IBM X-Force Threat Intelligence Index 2019 [6], 10 most frequently
targeted industries in 2018 are ranked in percentages in the bar chart (Fig. 8).

Finance and Insurance: 19% According to X-Force data analysis, the finance and insur-
ance sector has been the most-attacked industry for three years in a row, with 19 percent of
total attacks and incidents in 2018. The allure financial services presents to a cybercriminal
is clear: customer bank account information or payment card data can be monetized rapidly.
Access to bank networks and switches for shifting large sums of money into criminal-
controlled accounts, or robbing customer or employee Personally Identifiable Information
(PII) can all lead to direct financial profit or be sold on the dark web.

Transportation Services: 13% The second most targeted sector, transportation services,
includes airlines, bus, rail, and water transportation services, ranked second in 2018, and
experienced 13 percent of total attacks and incidents. This sector, part of any country’s
critical infrastructure, is an attractive target for malicious threat actors. From financially
motivated attackers seeking payment card information, PII, and loyalty-reward accounts to
state-sponsored, advanced persistent threat (APT) groups aiming to disrupt the economy or

Fig. 7: Evolution of cyber-attacks

C
O
N
F
ID
E
N
T
IA
L

In
te
rn
al
re
po
rt
s,
in
te
nd
ed

fo
r
IV
O
re
vi
ew

on
ly



TABLE I: Challenges according to the industry.

Finance

Protecting privacy and data security
Managing third-party risk: Outsourcing contracts, such as cloud service agreements, impose complex
data sharing regulations and generate a host of new cybersecurity challenges
Emerging and advanced cyber threats
Regulatory compliance

Energy

Protecting privacy and data security
Lack of skills and awareness
Information sharing: Many organizations do not share information about threats or cooperate externally
Integrity of components used in energy systems
Increased interdependence among market players
Alignment of cyber security activities: All activities be aligned and fully integrated with national
cybersecurity

Healthcare

Protecting privacy and data security: Healthcare organizations are required to comply with the
Health Insurance Portability and Accountability Act (HIPAA), which requires healthcare vendors
to ensure that the privacy of user data is not compromised in any case (Zhang and Liu 2010)
Medical equipment issues: Healthcare organizations have specialized medical equipment that could
pose particular security challenges (Korolov 2015)
Managing third-party risk: Healthcare organizations are hesitant to move to cloud data protection to
ensure that sensitive information is protected without leaving the company network (Zhang and Liu 2010)

Transportation
Protecting privacy and data security especially in the cargo industry (Xu et al. 2014)
Emerging and advanced cyber threats (DoS attacks, Spoofing attacks) (Warren and Hutchinson 2000)

Manufaturing The Industrial Control Systems (ICS) are isolated systems meaning that there is no interface with the
company’s network to protect it, and these systems are regulated against compliance standards.
The result is a lack of security features, such as authentication and encryption. Passwords might be
shared and can be easily stolen

target intellectual property data, attacks on the sector are on the rise. The transportation
industry’s extensive reliance on information technology to facilitate operations and its use of
third-party vendors, presents an extended attack surface for various types of threat actors that
either seek access to targeted data or aim to cause disruption.

Fig. 8: Most frequently targeted industries in 2018 [6]
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Professional Services: 12% The professional services sector made up of companies that
provide specialized consulting services, such as legal, accounting, and architecture firms have
come under increased risk for cyber-attack over the past several years. Malicious actors have
discovered the value of the information these companies’ process and house. Combined with
their smaller security budgets, limited security staff, and a relatively immature security posture
(in most cases), this sector is as vulnerable as it is lucrative.

Retail: 11% As the fourth-most targeted industry, retail experienced 11 percent of the
total attacks and incidents in 2018. Retail companies sell products to consumers and busi-
nesses—from automobiles and apparel, to electronics, food, and furniture. More importantly,
this sector works in hybrid mode: Services are extended to customers both onsite and over the
internet, making for a decentralized and heterogenous operational environment. Retailers are
attacked with Point-of-Sale (PoS) malware, skimming, and counterfeit card heists. They also
experience sophisticated attacks on their web applications and service portals by fraudsters
and organized cyber-criminals.

Manufacturing: 10% The fifth-most targeted industry is manufacturing, which includes
companies that make a wide variety of goods, from chemicals and machinery to transportation
equipment and electronics, and Internet-of-Things (IoT) devices. It experienced 10 percent
of the total attacks and incidents. As the majority of cyber incidents in the manufacturing
sector do not involve customer information that is subject to legal disclosure regulations, the
percentage of publicly disclosed events in this industry is low when compared with other
sectors. The numbers are therefore likely to be higher than those reported. Most attacks
on manufacturing companies appear to target intellectual property (IP) and trade secrets.
Confidential business communications, such as executives’ email correspondence or company
bank accounts are particularly lucrative targets for cybercriminals, nation-state groups, and
even paid hackers hired by a competitor. This sector also absorbs many BEC attacks since
manufacturers often wire substantial amounts of money to countries in Asia, Africa, and other
developing regions.

Media: 8% The media sector, the sixth-most targeted industry, includes companies that
produce, process, or distribute information and entertainment content. It also includes sub-
industries, such as computer software and telecommunications, among others. This industry
made up eight percent of the total attacks and incidents. The media sector also experienced the
most publicly disclosed incidents, at 40 percent in 2018. Half of these publicly disclosed media
incidents involved misconfiguration of systems or cloud servers, rather than premeditated
attacks.

Government 8% The seventh-most targeted industry is government, and it experienced
eight percent of the total attacks and incidents. X-Force researchers assess nation-state-backed
groups are those most likely to target this sector. Depending on the type of objective the attack
has, nation-state sponsored groups that breach government resources may use, sell, or deliver
compromised information to their respective governments, typically for economic or political
gain. Many times, these attacks are after top secret intellectual property. In other attacks,
stolen data is used in espionage for the establishment of surveillance operations.

Healthcare: 6% Cyber security in the eighth-most targeted industry, healthcare, guards
not only protected health information (PHI) and payment card data, but critical systems and
devices that for some patients can mean the difference between life and death. The 2018
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Ponemon Cost of a Data Breach study reveals the healthcare industry has the highest cost
per record breached in a cyber-incident, at $408. This cost is nearly twice the amount of the
next-highest industry financial services at $206 per record breached, and far above the grand
average of $148.

Education: 6% The education industry, the ninth-most targeted industry, is attractive to
attackers due to the sensitive—and lucrative—nature of some emerging research projects,
as well as the wealth of PII on students, faculty staff, and organizations associated with
universities and schools. Researchers assess nation-state sponsored threat actors are those most
likely to breach university networks, based on their motivation for attacking this sector, and
their capability for doing so. Moreover, educational institutions do not typically boast a large
in-house security team and may not have many security controls in place. They also control a
large network of users who can easily bring in malware from personal devices or email. Aside
from nation-states, educational institutions may be targeted by financial criminals looking
to take over bursary accounts and student identities. Another relevant threat are hacktivists
looking to champion a cause by holding an institute for ransom or threatening to release
stolen data.

Energy: 6% Organizations in the energy sector are a prime target for cyber-attacks. To
begin, they are the backbone of every country’s critical infrastructure. Energy is central to
the economic, national security, and day-to-day function of cities and industries.
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III. Vulnerabilities and Threats in Manufacturing and Case Stud-
ies

In previous sections we have introduced the architecture and the operating principle of
manufacturing systems in Industry 4.0. In this section, a number of Industry 4.0 cyber
vulnerabilities and threats in information technology (IT), operation technology (OT) networks
will be examined.

A. IT Network Threats

1) Threat Exposure of Manufacturing Networks Longer Equipment Life Cycles: This situ-
ation is most likely caused by a combination of a “Do not touch a working system” mentality
and the long replacement cycle in hardware and software equipment. The problem here is, the
software used to operate the hardware may no longer be supported, maintained, and updated,
thus forcing equipment operators to use old operating systems to be able to continue running
the equipment. For example: the Window XP still used in manufacturing, which its support
ended in 2014.

2) Pervasiveness of Network Worms: One of the side effects of having old and unsupported
operating systems in the manufacturing industry is the presence of a large number of un-
patched vulnerabilities that could be exploited by old variants of network malware. It is no
surprise that the detection of such malware families as Downad (aka Conficker), WannaCry
(WCry), and Gamarue (Andromeda) are relatively high on machines used in manufacturing
environments. Detections of worms in general and Downad in particular are significantly
prevalent in the manufacturing industry. The proportion of malware types and families are
illustrated in Figure 10 and 11.

3) Autorun: One of the common propagation methods of Downad and other USB worms is
autorun.inf abuse, by which they can automatically execute whenever an infected removable

Fig. 9: How threats can figure into the IT, OT, and IP convergence [].
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device is plugged in. Looking at the number of devices that detected autorun.inf, we observe
that the manufacturing industry has significantly higher detections than other industries. This
reflects the common practice in the industry of using USB drives to copy and transfer infor-
mation between computers and networks (the IT and the OT) in a manufacturing environment.
It is important to note that the famous Stuxnet malware [], which was designed to target a
nuclear facility, was propagated using removable USB media, although the malware itself
exploited a vulnerability in parsing shortcuts.

4) Targeted and Opportunistic Campaigns against the Manufacturing Industry: Manufac-
turing, like any other industry, suffers from both targeted campaigns and opportunistic hacking
incidents. One of the recent incidents involving the PlugX malware attracted our attention.

Case study: PlugX is an advanced remote access tool (RAT) that is commonly used in
targeted attacks for espionage or information exfiltrationSo when we identified a breach of a
Chinese manufacturing company with the PlugX malware family, it appeared to us as unusual.
There were several surprising facts about this series of incidents. For one thing, we rarely
observe PlugX campaigns inside China. The hacker groups that use PlugX commonly focus
on other countries and often infiltrate government and technology sectors.

Fig. 10: Top malware types in the manufacturing (left) and in other industries (right) [].

Fig. 11: Top malware families in the manufacturing industry (left) and in other industries
(right) [].
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B. OT Network Threats

1) ICS Vulnerabilities: The vulnerabilities come from modern manufacturing equipment,
which has human-machine interfaces (HMIs) that allow operators and engineers to monitor
and control the equipment, and programmable logic controllers (PLCs) are used to program
logic into several pieces of equipment. Further, there are some industrial grade routers, hubs
and gateways in the manufacturing networks.

According to the Industrial Control Systems Computer Emergency Response Team (ICS-
CERT) as of September 2018, the number of vulnerabilities affecting manufacturing-related
equipment jumped significantly in 2014 — a trend that continues to this day. Figure 10 and 11.
show that the ICS vendors Siemens, Rockwell Automation, and Schneider Electric top the
list, this is because these vendors have a wide range of products and the highest market shares
in this industry.

2) Publicly Exposed ICSs: In some cases, attackers do not need to exploit any vulnerability
in order to control or sabotage a critical manufacturing machine or production line. We have
seen several cases where an HMI is directly exposed to the internet, without authentication.
This basically allows anyone to tamper with values and issue commands on manufacturing
machinery if the HMI is not read-only. Some of these interfaces provide read-only access
and are used for monitoring purposes only, while others are not. Any unauthorized tampering
of such systems can result in production delays, product contamination, physical hazards, or
destruction of equipment.

Case: The risks to exposed critical infrastructures, specifically those in the energy and water
industries, were identified in a report published by Trend Micro in 2018. Cyber - attacks
against these industries could lead to supply disruption. For instance, operational disruption
in a water facility could mean manipulated temperatures and supply of drinking water in an
area. And power services to homes and businesses could be cut off by malicious actors.

3) Malware Targeting ICSs: The main goal of adversaries targeting the manufacturing in-
dustry is to gain access to ICSs for sabotage, control, or extortion. The increasing connectivity
between OT and IT networks enables adversaries to pivot from a breach originating in the
IT network to ICS devices in the OT network. Although uncommon, malware specifically
designed to target ICSs has been seen before.

Case: Maroochy Shire sewage spill in Australia (March 2000, Australia) - The attacker

Fig. 12: Vendor distribution of vulnerabilities reported to the ICS-CERT (left) and equipment
type distribution of 132 ICS/SCADA-related exploits on ExploitDB (right) [].

C
O
N
F
ID
E
N
T
IA
L

In
te
rn
al
re
po
rt
s,
in
te
nd
ed

fo
r
IV
O
re
vi
ew

on
ly



changed the electronic data using the stolen wireless radio, the SCADA controller, and the
control software, and all operations failed. It leaded to release up to one million litres of
sewage into the river and coastal waters of Maroochydore in Queensland, Australia (RISI
2015).

C. Intellectual Property (IP) Threats

One of the unique characteristic of the manufacturing industry is the presence of IP in
digital form. Digital IP content is extremely important in Industry 4.0. The content can be
a product design, a manufacturing process, or system information. There are some threats
would lead to the leakage of proprietary information.

1) Malicious computer-aided design (CAD) Files: In the manufacturing industry, IP can
take the form of a computer-aided design (CAD) file or a document file. CAD files serve
as the digital blueprint for physical products, while document files often contain technical
specifications, manufacturing processes, recipes, or inspection and quality assurance records.
Both of these file types can be infected by viruses or trojanized to aid attackers in gaining
access to critical machines.

Case: the CAD malware family called ACM SHENZ.A, which was discovered in 2013, is
known to weaken the security of infected computers for further attacks. The malware creates
a user with admin privileges (which can be used later by an attacker to issue commands),
creates writable network shares, and opens ports and services that have vulnerabilities.

2) Microsoft Word Macros: Unlike CAD files that contain product designs and information,
Word documents in a manufacturing industry setting typically contain manuals and technical
information such as parts lists, design specifications, or business-related matters such as order
details, terms of service, and warranty information.

Fig. 13: Main potential threats of manufacturing system
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Document sharing between departments, vendors, and third parties also poses security
risks in the form of information leakage and infected documents. Unauthorized sharing
of documents can lead to information leakage. Document sharing is properly done only
on corporate-approved channels for auditing and paper trail. This requirement is aimed at
maintaining the ability to track with which a particular IP is shared and whether the sharing
is authorized. If documents containing IP are shared through nonstandard channels, then the
audit trail is lost and access policies cannot be enforced.

3) Unintentional Leaks Due to Poor Configuration: Poor security configuration can expose
these proprietary design documents to the internet and lead to data leakage. Using simple
open-source intelligence (OSINT) techniques, we were able to find CAD files that we believe
were not supposed to be exposed to the public (Figure 14).

D. Black Market Related to the Industrial and Manufacturing Sectors

Although industrial cyberespionage has normally been the realm of advanced and persistent
attackers, we have seen increasing cybercriminal interest in targeting the industrial and manu-
facturing sectors. Figure 15 shows an example of someone posting in a popular underground
forum to solicit confidential information, including CAD and computer-aided manufacturing
(CAM) files, source code, and confidential documents, for industrial espionage. In addition,
ICS/SCADA-specific hacking tools being sold and advertised online. Figure 16 shows two
examples of tools that can be used to crack or brute-force the passwords of PLCs. Although
there are OT administrators or engineers who use these tools legitimately, the gray nature of
these crackers makes it possible for attackers to read and modify the logic of hacked PLCs.
Case: the National Police Agency of Japan issued in 2015 a notification regarding an observed
increase in scanning activity related to PLCs.

It can be predicted that in a few years, industrial espionage will not only be performed by
persistent attackers, but will also become commoditized with tools and services created and

Fig. 14: Using open-source intelligence to open CAD files [].
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offered by common cybercriminals.

Fig. 15: Posting in an underground forum by a user looking for IP assets and other confidential
information [].

Fig. 16: Two examples of PLC password crackers sold online [].

C
O
N
F
ID
E
N
T
IA
L

In
te
rn
al
re
po
rt
s,
in
te
nd
ed

fo
r
IV
O
re
vi
ew

on
ly



Fig. 17: Supply chain and cloud service [].

IV. Vulnerabilities and Threats from Third Parties

A. Who are Third Parties?

In general, third parties could be: Government (taxes, etc), Deliveries and Pick up ser-
vices, Stationary suppliers, Internet provider, Web site developer, Cloud services, Recruitment
agency, Marketing Agency, Customers, Accountant, Lawyer, Raw material, suppliers, Parts
suppliers, Parts designers, Insurance Agent, Consultants, Maintenance, Cleaning services. In
this report we will focus on supply chain and cloud service as described in Fig. 17 .

B. Vulnerabilities and Threats from Third Parties - Cases in Industry 4.0

When working in supply chain with third parties, we could face some threats

Threat 1- Shared Credentials. This is one of the most dangerous authentication practices
we encounter in large organizations.

Threat 2- Irregular Access. Companies granting insider credentials to partnering companies
must understand they are committing to a long and serious relationship. Managing and
monitoring trusted outsiders could result in ongoing difficulties when trying to resolve whether
an account has been compromised.

Threat 3-The Joint Cloud. Many companies are taking their first steps in deploying cloud-
driven security solutions. While cloud-app usage regulation has received most of the attention,
we are seeing more complex relations forming between our traditional environments and newly
erected clouds, forming another under-addressed space. Looking forward, we suggest adopting
cross-environment authentication protocols and measures that will enable more fine-grained
monitoring over these evolving attack surfaces.
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Threat 4- Public Internet Exposure. A device that is both connected to the Internet and
enables third party remote access is an external attacker’s prized desire

Threat 5- Proximity to Privileges. Privileged accounts provide both rogue insiders and
malicious outsiders the access-level they need to approach sensitive resources securely and/or
modify their own access-level.
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Fig. 18: Case studies in Vietnam

V. The situation in Asean and Vietnam

ASEAN is becoming one of the fastest growing region in the world with the population of
about 634 million (over 100 million more than the European Union). It is the third most
populous market in the world and with the combined GDP of more than 2.55 US dollars
trillion making ASEAN the world’s seventh largest economy (ASEANstats, 2018). A study
by ATKearney indicating that digital economy could add 1 trillion USD to the GDP of the
region which could boost the GDP of the region by 35. However, the “digital economy” which
heavily relies on technology for business transactions opens an avenue for new threats such
as online fraud, hacking and distribution of inappropriate materials. Deterring cybercrime is
therefore, necessary for national security and protection of the information infrastructure. It is
therefore a priority for legislators to adopt proper legislation to prevent the use of information
and communication technologies for criminal activities. The challenge is for governments to
make the use of the technology safer without minimizing the developmental opportunities.
The governments establish cybersecurity scheme based on three specific goals: Ensuring open
internet to promote Innovation; Combating Cybercrime; and Ensuring Privacy of their citizen.

In Vietnam, cybersecurity issues are in an alarming state. A series of targeted attacks on
the airport system, banks, websites are typical evidence. Cybersecurity threatsin Vietnam are
currently focusing on 4 types, including denial of service, phishing (information theft fraud),
deface and malware.

Recently, these threats target on organizations, individuals, banks to steal sensitive infor-
mation and also to extort. Besides, with the evolution of technology, information systems are
faced with new threat stemming from artificial intelligence platforms. Particularly in 2016,
7.000 websites/web portals were attacked in Vietnam. A lot of devices connected with the
Internet are exposed to security vulnerabilities that lead to the risk, allowing hackers to exploit
and escalate privilege. On 29 July 2016, a hacker group launched an attack on the website of
Vietnam Airlines with client information leaked and on-flight information screens at Vietnam’s
2 biggest airports [4], Tan Son Nhat International Airport and Noi Bai International Airport.
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Independent security expert Nguyen Hong Phuc said the hackers had shared three links leading
to files that contain personal data of over 400,000 members of Vietnam Airlines’ frequent
passengers club, Golden Lotus. According to Mr. Phuc, this information may have fallen
into the hands of the hackers four days before the attack. The hackers also targeted at the
financial sector. Typically, in August 2016, a customer of Vietcombank, one of the biggest
banks in Vietnam, lost more than 22.000 USD via Internet Banking transaction. On the next
day, Viecombank’s shares fell by VND 150,000 (6.7 USD) per share to VND 54,500 (2.45
USD) per share at the end of the session. The bank’s market capitalisation therefore fell
by VND 4 trillion (180 million USD). After that incident, the bank has made significant
changes to its online banking policies in order to prevent similar incidents. According to
the top online security firm BKAV, cyber-attacks including the rise of ransomware cost
Vietnamese users VND12.3 trillion or more than 542.8 million USD in 2017. This year
saw strong attacks from ransomware and malware containing cryptocurrency mining tools,
causing losses that were more than 18 percent up from 2016. More than 1,900 computers in
Vietnam were infected by the global WannaCry attack in May. WannaCry is a ransomware,
which targeted computers running the Microsoft Windows operating system by encrypting data
and demanding ransom payments in the Bitcoin cryptocurrency. Meanwhile, a cryptocurrency
mining malware which appeared on Facebook has infected more than 23,000 computers in
Vietnam. As cryptocurrencies became popular worldwide, hackers were prompted to launch
attacks on computers to turn them into mining tools. In 2018, the damage caused by computer
viruses to Vietnamese users reached a record of VND 14,900 billion, equivalent to US 642
US million dollar, 18 percent more than the damage of 2017. According to Bkav’s research,
more than 60 percent of agencies and enterprises in Vietnam are infected with malicious code.
The main reason is that agencies and enterprises have not yet equipped with comprehensive
antivirus solutions for all computers in the intranet. Therefore, as long as a computer on the
network is infected with malicious code, all the other computers on the same network will be
attacked and infected. In addition to slowing down the machine, the Cryptocurrency-Mining
Malware also has the ability to update and download other malicious codes to erase data,
steal personal information or even perform APT attacks.

The IoT devices deliver substantial benefits to end users, but also bring unprecedented
security challenges. IoT devices typically possess low processing capabilities, limited memory
and storage and minimal network protocol support. It is a significant challenge to design
complex and comprehensive security measures. Using these weaknesses, in 2016, the first
wave of IoT device attacks brought down the Internet. The Mirai Botnet hacked into some
Internet of Things devices - in this case mainly routers and Internet Protocol (IP) cameras -
and transformed the devices into botnets. The centrally-controlled IoT botnets flooded Dyn’s,
a Domain Name Services (DNS) provider [6], traffic causing a disruptive bottleneck that
blocked Internet access for millions of users worldwide. Overall, IP addresses of Mirai-
infected devices were spotted in 164 countries, such as Brazil, Vietnam, China.
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Abstract

The Industry 4.0 witnessed the era of technology developments with a sharply increase of Internet
of Things (IoT) devices. But their evolution is challenged by cybersecurity problems which is one
of the biggest obstacle of the technology developments. A number of different security systems have
been developed to deal with cybersecurity problems, motivated by which we study various kinds
of risk models to rank security systems. By reviewing two main risk analysis models – quantitative
and qualitative–, we analyze each model and propose their applicability to ranking security systems
in Industry 4.0.

Index Terms

Cyberattack detection, Industry 4.0, IoT, federated learning, deep learning, and cybersecurity.

This work is the output of the ASEAN IVO http://www.nict.go.jp/en/asean ivo/index.html project Cyber-Attack Detection
and Information Security for Industry 4.0 and financially supported by NICT http://www.nict.go.jp/en/index.html.
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I. Introduction

Industry 4.0 creates a huge transformation in the world’s manufacture, from manual labor
to automation. In Industry 4.0, smart factories, houses, offices are connected to each others
through the Internet to promote automation, improve productivity, reduce labor working time
and improve the quality of human life. The Internet of Things (IoT) devices (e.g., sensors,
cameras) play an important role for the automation of smart systems in Industry 4.0. According
to [1], [2], the number of smart devices increases dramatically and can reach up to 50 billion
devices in 2020, nearly 6 times as much as the number of people in the Earth. IoT devices
have limited computing and energy resources, and thus they are vulnerable by cyberattacks. In
Industry 4.0, with a large number of devices connected to the Internet, if they were attacked
and under-controlled by a botnet, the botnet would have more power than in conventional
systems and could launch large-scale attacks to any victims in the cyberworld.

Along with the tremendous growth of cyberattacks, on the other side of the front line,
various kinds of security systems have been developed to prevent attackers. Although there are
a number of modern security systems that can strongly protect themselves from cyberattacks,
many private databases and core servers were still shut down by normal attacks. This is
because the design and deployment of security systems is not uniform, with the lack of
security knowledge of designers or operators.

Motivated by this problem, we would like to analyze the risk models to find the best
approach, and then to create a novel model that can analyze and hence support the security
systems by ranking the threats from low to high. In this report, three kinds of analyses were
reviewed namely quantitative, qualitative and mixed quantitative-qualitative risks analysis.
Also, the applicability of each method to ranking security systems is discussed. This work
aims to create a risk model that leverages Industry 4.0 cyber-security threats with the input
coming from the cybersecurity threats of manufacturing in Industry 4.0.

II. Risk Analysis

The National Research Council [3] defines risk analysis with three core elements, namely:
risk assessment, risk management, and risk communication. The interaction and overlap of
three elements are described in Fig. 1 [4].

Risk assessment is the process that measures the frequency of a loss of a system and
the magnitude of the loss (consequence). Risk estimates, evaluates, controls and minimizes
the potential (likelihood or frequency) of magnitude risk. Risk communication provides the
information about the nature of risk (expected loss) and consequences. Risk communication
supports the exchange and discussion of risk assessment approach and risk management
options between the decision makers and other stakeholders.

Risk analysis is the way to estimate the potential and magnitude of loss to control and
minimize it. There are two approaches for risk analysis depending on data. If data (such as
losses ...) are sufficient, the risk can be directly estimated from the actual loss. In this case
the data could be the frequency and loss of DoS (Denial-of-Services), botnet attacks. If data
are insufficient, the loss is “modeled” to estimate the potential loss and the analysts have
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Risk 

assessment

Risk 

management
Risk 

communication

Fig. 1: Elements of risk analysis.

to model and predict the risks. Risk analysis attempts to measure the magnitude of a loss
(consequence) by complex systems, including evaluation, risk reduction, and control policies.
Generally, there are three types of risk analysis namely quantitative, qualitative, and a mix
quantitative-qualitative. All these methods are widely used with different purposes, strengths,
and weaknesses.

A. Quantitative Risk Analysis

Quantitative risk analysis contains the methods to estimate the risk through the probability
of a loss and make decision through the probability. When data are insufficient, the uncer-
tainties associated with the quantitative results play a decisive role in the use of the results.
Quantitative analysis is the better choice then others when the data or evidences are insufficient
to estimate the probability (or frequency) and magnitude of the losses. This method is widely
used in recent years, because availability of quantitative techniques and tools, and our ability
to make quantitative estimation from limited data. Nevertheless, this method is restricted to
use in a large scale because of the complexity, expensive and time-consuming properties.

B. Qualitative Risk Analysis

This type of risk analysis may be most widely in use because of the simple and quick
performance. In qualitative analysis, the potential loss is measured and estimated by a scale
such as high, low and medium. In this type, the result is a qualitative matrix which is
formed by the frequency, the magnitude of loss. Then, this matrix is used to make policy and
risk management decisions. This analysis is much easier and simpler to use and understand
because it does not require gathering precise data. The rank-ordered approximations in this
approach are sufficient and quickly estimated. Rank-ordered approximations of probability and
consequence can have useful approximations of risk. For example, one approximation scale
defines probability from high to low. Qualitative probability categories and their accompanying
definitions are frequent, probable, occasional, remote, improbable and incredible.

Similarly, consequence can be defined in descending order of magnitude. Table 2 describes
an example of the risk values associated with each frequency–consequence category. Quali-
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Fig. 2: Qualitative risk assessment matrix.

Threats 
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such as 

frequency, 

loss..

Quantitative 

analysis for 

each threat 
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Mixed Quantitative-Qualitative 

Analysis

Decision 

making

Fig. 3: Risk model for cyber attack detection.

tative risk analysis is the method for simple systems such as a single cyberattack detection,
simple physical security.

C. Mixed Quantitative-Qualitative Risk Analysis

Risk analysis can use a mix of quantitative and qualitative analyses. The mix can be
performed in two ways: measure the frequency or potential loss quantitatively and measure
the consequences quantitatively, or vice versa. Furthermore, it is possible to measure the
frequency and magnitude of the loss quantitatively, but using qualitative methods for decision
making. Also, the quantitative risk values may be increased by other quantitative or qualitative
risk information to make a decision. This is the method for the U.S. Nuclear Regulatory
Commission’s new regulatory paradigm called “risk-informed” regulation. In this case the risk
information from probabilistic risk assessment (PRA) are cooperated with other quantitative
and qualitative results obtained from deterministic analyses and engineering judgments to set
regulatory decisions and policies.

III. Risk model for the cyber-security of industry 4.0

The industry 4.0, which is much more different than other sectors, is distributed with a hug
number of Internet of Thing (IoT) devices directly connect to the Internet. So the security
system to protect them have to ensure to face with the highest threat. But how can we know

C
O
N
F
ID
E
N
T
IA
L

In
te
rn
al
re
po
rt
s,
in
te
nd
ed

fo
r
IV
O
re
vi
ew

on
ly



about the highest or lowest threat? Our applied model would analyze the threats and answer
this question.

After carefully analyzing the advantage and disadvantage of different risk analysis in
precious section, in this section we would like to discuss about the risk assessment model
which is the main element of risk assessment model could be applied to classify the threats
in cybersecurity of industry 4.0.

Although quantitative analysis can provide the accurate results after calculation, they need
a complex system with a lot of time-consuming to analyze the risks. This scenario seems
inappropriate for IoT systems which contain a large number of light-weight devices and
require real-time processing. Qualitative analysis seems to overcome the disadvantages of
quantitative model with fast and simple properties but they still need to improve substantially
in the accuracy of evaluation. In Industry 4.0, if the threats are misplaced in classification,
it would cause many serious problems such as increasing the risk for systems, wasting time
and money for system design and implementation. In this scheme, we choose the mixed
quantitative and qualitative analysis for the risk model of cybersecurity of Industry 4.0. The
mixed quantitative-qualitative analysis is described in Fig. 3.

Fig. 3 described our research model. The threats with frequency and loss properties of
manufacturing in Industry 4.0 are treated as inputs of the model. The quantitative analysis is
the first component in the model receiving the input information. This quantitative analysis
will calculate and predict the line of different threats as described in Fig. 4. After that, the
qualitative policy will mark and classify the area between two lines corresponding to its
properties as in Fig. 4 such as low, medium, high, ... Finally, the decision masking will
encourage appropriate actions for each policy to reduce the risk of systems.

Frequency

Loss

F1

F2

L1 L2

X

X

X

X
X

X

X

X
Low

Medium

High

Fig. 4: Risk model for cyber attack detection.
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IV. Conclusion and Future Plan

In this report, we have briefly looked the advantages and disadvantages of the different kinds
of risk analyses. We choose the mixed quantitative-qualitative risk analysis model as the most
appropriate model for cybersecurity of Industry 4.0. In future work, we intend to implement
the real model by analyzing the input threats of manufacturing of Industry 4.0 and compare
the evaluation results of the real model with theory to adjust them so as to have the most
applicable model for cybersecurity in Industry 4.0.
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Abstract

In Industry 4.0, the number of Internet-of-Thing (IoT) devices connecting to internet have been
increasing dramatically. However, their growth has to face security problems which directly challenge
their development. While various solutions were introduced to deal with cyberattack detection, their
performance and complexity still need to enhance. We are motivated by the challenges of enhancing
the accuracy while detecting cyberattacks in distributed environments such as IoT networks. In this
report, we first review the challenges of cyberattack detection and the different methods to solve
them. Then, our approach to deal with these challenges was proposed via the use of a transfer
learning model. Through experimental results, we demonstrate that this model could enhance the
system performance and complexity by increasing the accuracy in comparison with non-distributed
deep learning method.

Index Terms

Cyberattack detection, Industry 4.0, IoT, federated learning, deep learning, and cybersecurity.
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I. Introduction

In Industry 4.0, an enormous number of industrial devices connect to each others through
the internet to create smart factories, systems, as well as intelligent manufacturing and
management ecosystems [1]. The uncountable number of industrial internet of things (IoT)
devices (e.g., sensors, cameras, smart devices) play an important role for the automation
of smart systems in these ecosystems. However, with a numerous devices, having light-
weight properties, connected to the Internet by open IP addresses, these smart systems create
more avenues for attackers to perform cyberattacks. Not only manufacturing, according to
[2], government and financial services sectors are alse threatened by cyberattacks. In these
sensitive factors, the effect of cybercrimes does not stop at the border of the cyberworld, it
could widely affects to our daily life.

To prevent the damage of cyberattacks in the cyberworld, it is essential to develop methods
for analyzing data, in order to figure out as early as possible the attacks before they seriously
damage systems. Various solutions were proposed to deal with cyberattacks. The authors of
[3] proposed methods to identify and prevent DoS attacks. Furthermore, alternative techniques
based on game theory [4] and supervised learning [5] methods were proposed. Nevertheless,
these methods are not ready to apply in real-time mobile cloud environments and their
performance in terms of accuracy still needs to improve. To deal with this problem, the
authors of [6] introduced a framework based on the Deep Belief Network to enhance relatively
the accuracy in detecting various kinds of cyberattacks in mobile cloud environments. Deep
learning is a very promising solution to detect cyberattacks with high accuracy.

However, in Industry 4.0, the data are usually separated in various local places so each place
does not have enough data to train a deep learning model. This problem affects dramatically
the accuracy of cyberattack detection. In this case, we have to send all data to a central
server to be aggregated before training. This scheme has to face various issues such as
network congestion and privacy when the local data are sent throughout the network and
the complexity when a deep learning mechanism spends a great amount of time to train the
aggregated data. In [7], the authors introduced federated learning (FL) for distributed data
environments. FL is an algorithm that permits the models in use at different local places could
exchange their learning knowledge while it does not have to expose their data. In a recently
survey [8], the authors analyzed the techniques that apply FL to mobile edge networks. In the
recent paper about cybersecurity, the authors of [9] proposed to apply FL to detect cyberattacks
in fox-to-thing computing.

In [10], we proposed a collaborative learning model to detect cyberattacks in Industry 4.0
for classification and anomaly detection. This model could detect various kinds of cyberattacks
for Industry 4.0 systems in different environments such as mobile cloud computing and IoT
devices with more effective performance and low complexity than conventional machine
learning techniques. In this environment, each local system analyzed its data by its local
deep learning model and updated gradients to other local systems in order to create an
aggregated model. Through experimental results, we demonstrated that this model could
enhance accuracy, reduce complexity in comparison with conventional machine learning
techniques while avoiding network congestion and preserving data privacy for the whole
system.
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Although this collaborative learning model in [10] can improve the accuracy of cyberattacks
detecting by exchange their learning knowledge, it can work well only when their datasets
have the same properties. Can the local systems exchange their knowledge when their datasets
have different properties? In [11] the author proposed Federated Transfer Learning (FTL)
which combined FL with techniques of transfer learning to permit the models exchange their
learning knowledge while learning from datasets with different properties. Although FTL
permits the model to exchange the knowledge to improve the accuracy, while not having
to expose the local data across the network, the authors of [12], [13] demonstrated that the
information from local datasets could be leaked from exposing gradients. In [11] the authors
proposed an improvement of FTL which enhances the security while transferring parameters
across the network. Inspired by the secure FTL in [14], we proposed to apply this model to
cyberattack detection in Industry 4.0 in order to improve the accuracy through exchanging
knowledge while learning from various sources. Through simulation results, we show that
our proposed approach can improve the accuracy compared with those of other conventional
machine learning techniques.

II. System Model

A. Network Architecture

We introduce the network architecture in Fig. 1. Each Local Model (LM) has its own neural
network and runs the same deep learning algorithm. We denote L � t1, . . . , l, . . . , Lu to be
the number of LMs that cooperate in this model and T � tT1, . . . , Tl, . . . , TLu as the set of
training datasets of the LMs. Each LM is a deep learning machine which is trained and tested
with its local dataset.

The raw data containing both attack and normal behaviors is trained by the autoencoder
deep learning model. After completing the training process, each LM exports their update
parameters and sends them to the Center Point (CP). The CP plays an aggregation role,
accumulating all update gradients and update to other LMs. Therefore this model creates a
cooperative environment for all LMs to train and exchange their learning machines to increase
the accuracy of the whole system.

B. Cyberattack Detection System With Secure Federated Transfer Learning Model.

To improve the efficiency of cyberattack detection in IoT Industry 4.0, the secure federated
transfer learning model should be applied in this situation is described in Fig. 2. The raw
data from datasets A and B are first used to train the autoencoder learning models. After
training, the parameters such as weight, bias, loss, gradient are encrypted by the asynchronous
encryption key which was generated from third-party. Then, the encrypted parameters is sent
to the center point for aggregation and creating a global model. Finally, based on the trained
global model, each local model will be updated from the global model. In this way, a LM
can “learn the knowledge” from other LMs without the need of sharing raw datasets.
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Fig. 1: Cooperative model of cyberattack detection.

III. Federated Transfer Learning-based Cyberattack Detection
Model

In this section, we discuss the algorithm that we apply for cybersecurity in IoT Industry 4.0.
This method is applicable to predict and identify the behavior of incoming packets for the
cyberattack detection system. We assume that we have two parties A and B with datasets
DA � xAi , y

A
i and DB � xBi , y

B
i . Each party has it own neural network called NetA and

NetB. The outputs of two neural networks are uAi � NetApxAi q and uAi � NetApxAi q and
the prediction functions ϕpuBj q � ϕpuA1 , y

A
1 , . . . , u

A
NA
, yANA

, uBj q. The purpose of training is to
minimize the loss function using the labeled dataset:

arg min
ΘA,ΘB

L1 �
Nç

i

l1py
A
i , ϕpu

B
i qq, (1)

where ΘA,ΘB are the training parameters of NetA and NetB, Nc is the overlapping dataset
between A and B, and l1 represents the loss function. Besides, we also want to minimize the
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Fig. 2: Cyberattack detection system with secure federated transfer learning model.

alignment loss function between A and B:

arg min
ΘA,ΘB

L2 � �
NAB̧

i

l2pu
A
i , u

B
i q, (2)

where l2 represents the alignment loss function. The last function that needs to be minimized
is:

arg min
ΘA,ΘB

L � L1 � γL2 �
λ

2
pLA3 � LB3 q, (3)

where γ and λ are the weight parameters, LA3 and LB3 are the regularization terms. The
gradients for updating ΘA,ΘB are calculated by the following formula:

BL

Bθil
�

BL1

Bθil
� γ

BL2

Bθil
� λθil . (4)

The dataset of each party is equally divided into three parts for training, prediction and
testing. The algorithm in Algorithm 1 describes the training process of the algorithm to deal
with the previous objectives. Let us denote rr.ssA and rr.ssB the homomorphic encryption with
public keys A and B, respectively. After initializing NetA and NetB to get uAi and uBi , party A
computes and encrypts thAk pu

A
i , y

A
i quk�1,...,KA

and sends them to B to support the calculation
of the gradients of NetB. Similarly, party B computes and encrypts thBk pu

B
i , y

B
i quk�1,...,KB

and sends them to A to support the calculation of the gradients of NetA and the loss L. To
protect the gradients from exposing across the network, A and B add a mask to each gradient
with an encrypted random value. After that, A and B send the encrypted masked gradients and
losses to each other and received the encrypted values. A and B then unmasks the gradients
and losses and update their parameters on each iteration. The prediction process accompanies
with the training process on every iteration to optimize the parameters and minimize the loss.
Finally, testing is taken to check the accuracy and the performance of the whole algorithm.
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Algorithm 1 Secure Federated Transfer Learning
1: Input: learning rate η, weight parameter γλ, max iteration m, tolerance t;
2: Output: model parameter ΘA,ΘB

3: A, B initializes ΘA,ΘB and creates an encryption key pair, respectively and sends public
key to each other;

4: iter � 0

5: while iter ¤ m do
6: A do:
7: uAi Ð NetAtΘA, xAi u for i P DA;

8: computes and encrypts thAk pu
A
i , y

A
i quk�1,2...KA

and sends to B;
9: B do:

10: uAi Ð NetBtΘB, xBi u for i P DB;

11: computes and encrypts thBk pu
B
i , y

B
i quk�1,2...KB

and sends to A;
12: A do:
13: creates random mask mA;
14: computes rr BL

BθAi
�mAssB and rrLssB and sends to B;

15: B do:
16: creates random mask mB;
17: computes rr BL

BθBi
�mBssA and rrLssA and sends to A;

18: B do:
19: decrypts BL

BθAi
�mA, L and sends to A;

20: A do:
21: decrypts BL

BθBi
�mB, L and sends to B;

22: B do:
23: update θBl � θBl � η BL

BθBi
;

24: A do:
25: update θAl � θAl � η BL

BθAi
;

26: if Lprev � L ¤ t then
27: Send stop signal to B;
28: Break;
29: else
30: Lprev � L;
31: inter � iter � 1;
32: continue;

IV. Simulation results

A. Dataset

In this simulation, we use the NSL-KDD dataset [15] to evaluate the performance of the
proposed method and compare with another baseline method, i.e., the centralized learning
model for classification [6]. For the baseline method, the Central Server first needs to collect
datasets from all the parties and then performs the machine learning algorithms to detect
the normal and malicious packets. For the proposed method, we distribute the dataset into
different parties for the local training process.
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Fig. 3: Federated Transfer learning.

The NSL-KDD dataset [15] was built by the cybersecurity group at the University of New
Brunswick, Canada. This dataset, which collected from the network, includes 41 features
such as service, protocol types, duration, flag, source bytes, destination bytes, ... 24 types
of attacks in the training dataset and 38 types of attacks in the testing dataset. The types of
attacks are categorized into 4 groups including denial-of-service (DoS), attack from remote
to local machine (R2L), unauthorized access to local administrator user (U2R), and probing
attack. Although this dataset contains the same properties of the KDD dataset, it eliminates
many drawbacks of the KDD dataset including removing any duplicate samples in the dataset
such that all records in both training and testing datasets are unique and providing better
proportion of training and testing datasets. In this simulation, we aim to identify the attack
in the network, so we set the label for attack and normal behavior are 1, -1 respectively.

To ensure randomization of data, two FTL datasets A and B are extracted from random
samples from the NSL-KDD dataset. As can be seen from Fig. 3, two selected datasets have
the same number of samples but are different in features. As described in the secure federated
transfer learning algorithm, the datasets would be trained by their own neural network while
transferring and updating their parameters to the other under secure condition.

B. Evaluation Methods

As mentioned in [16], [17], the confusion matrix is typically used to evaluate the perfor-
mance of system, especially machine learning system. We denote TP, TN, FP, and FN to be
“True Positive”, “True Negative”, “False Positive”, and “False Negative”, respectively. Then,
to evaluate the performance of the algorithm by Area under the curve (AUC) of the Receiver
Operator Characteristic (ROC) curve is described in Fig. 4. The ROC curve is the graph that
is created with FP and TP as x and y axes while the AUC is the area under the curve that
demonstrates the probability of the positive is higher than the negative:

A �

» 1

x�0

TP pFP�1pxqq dx. (5)
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Fig. 4: ROC curve and AUC.

TABLE I: The performance comparison of FTL and Centralized deep learning method.

Samples 1500 3000 15000
Times Central FTL Central FTL Central FTL

1 91.92 98.67 93.44 96.25 95.48 98.34
2 94.73 98.58 95.14 97.08 95.57 97.95
3 94.55 98.8 95.19 96.85 95.44 98.29
4 92.89 98.84 93.64 97.03 95.83 98.23
5 91.48 99.16 93.66 96.71 94.93 98.49
6 93.27 98.8 93.72 96.54 95.27 98.54
7 93.07 98.84 93.41 96.8 95.27 97.56
8 91.31 99.07 92.76 96.87 95.33 97.99
9 92.11 99.2 92.54 96.81 95.22 98.31

10 93.33 99.2 93.72 96.86 95.41 98.28

C. Performance Evaluation

In this section, we compare the performance of FTL and the centralized deep learning
method in term of AUC score, privacy and communication overhead. To ensure the nature of
data, the dataset of the centralized deep learning method is randomly selected from nearly 150
thousand samples of the NSL-KDD dataset. This dataset is then divided into three parts for
training, optimization and testing. The sample procedure is taken to the dataset of FTL except
we need to selected two datasets for parties A and B. Table I and Fig. 5 show the detailed
calculation results of the two algorithms. As can be seen in Fig. 5, although the AUC of the
centralized deep learning algorithm slowly grows up when the number of samples increases,
the lines of FTL show the stable state and outperform than centralized deep learning in any
situation. Especially with 1500 samples, FTL can improve the accuracy up to 7%.

In addition to improving the accuracy of cyberattack detection, FTL can significantly reduce
the network traffic in the whole system. Instead of sending all the local data to a center point
then aggregating to a dataset as in the centralized deep learning method, FTL only transmits
network parameters such as gradients and loss throughout the network. In this situation,
FTL not only mitigates the network traffic but also preserves the privacy of the local data.
Furthermore, to prevent the leaked data from exposing gradients, the secure FTL method with
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homomorphic encryption with public and private keys is implemented. This can be considered
as the second guard to ensure the security of the system.

1 2 3 4 5 6 7 8 9 10

Times

90

92
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98

100

102

104
A

U
C

 (
%

)
Central 1500 samples

FTL 1500 samples

Central 3000 samples

FTL 3000 samples

Central 15000 samples

FTL 15000 samples

Fig. 5: Comparison of AUC between FTL and the centralized method.

V. Conclusion

In this report, we have summarized our latest results in applying federated transfer learning to
cyberattack detection. FTL not only enhances the AUC score, in comparison with centralized
deep learning, but also can perform the cooperative learning process with datasets that have
different features. Through simulation results, we have demonstrated that FTL outperforms
the baseline method in various situations. These results open the room for an extensive study
of the application of FTL in different scenarios in cybersecurity to improve the performance
of detection.
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[9] D. Andročec and N. Vrček, “Machine Learning for the Internet of Things Security: A Systematic Review,” in The
13th International Conference on Software Technologies, 2018.

[10] T. V. Khoa, Y. M. Saputra, D. T. Hoang, N. L. Trung, D. Nguyen, N. V. Ha, and E. Dutkiewicz, “Collaborative learning
model for cyberattack detection systems in iot industry 4.0,” in 2020 IEEE Wireless Communications and Networking
Conference (WCNC), 2020, pp. 1–6.

[11] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning: Concept and applications,” ACM Transactions
on Intelligent Systems and Technology (TIST), vol. 10, no. 2, pp. 1–19, 2019.

[12] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan, S. Patel, D. Ramage, A. Segal, and K. Seth,
“Practical secure aggregation for privacy-preserving machine learning,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, 2017, pp. 1175–1191.

[13] Y. Aono, T. Hayashi, L. Wang, S. Moriai et al., “Privacy-preserving deep learning via additively homomorphic
encryption,” IEEE Transactions on Information Forensics and Security, vol. 13, no. 5, pp. 1333–1345, 2017.

[14] Y. Liu, T. Chen, and Q. Yang, “Secure federated transfer learning,” arXiv preprint arXiv:1812.03337, 2018.
[15] “University of New Brunswick,” https://www.unb.ca/cic/datasets/nsl.html.
[16] T. Fawcett, “An introduction to ROC analysis,” Pattern recognition letters, vol. 27, no. 8, pp. 861–874, June 2006.
[17] D. M. Powers, “Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation,”

Journal of Machine Learning Technologies, pp. 37–63, 2011.

C
O
N
F
ID
E
N
T
IA
L

In
te
rn
al
re
po
rt
s,
in
te
nd
ed

fo
r
IV
O
re
vi
ew

on
ly



Vietnam National University, Hanoi
University of Engineering and Technology

Advanced Institute of Engineering and Technology

Technical Report

UET-AVITECH-2020005 November, 2020

Data security using
blockchain technology:
from Ethereum 1.0 to Ethereum 2.0

Do Hai Son, Tran Thi Thuy Quynh, Dinh Thai Hoang,
Nguyen Linh Trung, Dusit Niyato, Diep N. Nguyen,
Nguyen Viet Ha, Eryk Dutkiewicz

Hanoi, Vietnam

C
O
N
F
ID
E
N
T
IA
L

In
te
rn
al
re
po
rt
s,
in
te
nd
ed

fo
r
IV
O
re
vi
ew

on
ly



Contents

I Introduction 2

II Ethereum blockchain technology 4

II-A Nakamoto consensus mechanism . . . . . . . . . . . . . . . . . . . . . 6

II-B Ethereum 1.0: GHOST protocol . . . . . . . . . . . . . . . . . . . . . 8

II-C Ethereum 2.0 (Serenity): Gasper protocol . . . . . . . . . . . . . . . . 9

II-C1 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

II-C2 Gasper: Proof of Stake mechanism . . . . . . . . . . . . . . 10

III Testing Ethereum 2.0 at Phase 0 13

III-A Set up an Ethereum 2.0 network at Phase 0 . . . . . . . . . . . . . . . 13

III-B Power consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

IV Future work: RANDAO 15

V Conclusion 19

References 20C
O
N
F
ID
E
N
T
IA
L

In
te
rn
al
re
po
rt
s,
in
te
nd
ed

fo
r
IV
O
re
vi
ew

on
ly



Data security using blockchain technology:
from Ethereum 1.0 to Ethereum 2.0

Do Hai Son1, Tran Thi Thuy Quynh1, Dinh Thai Hoang2,
Nguyen Linh Trung1, Dusit Niyato3, Diep N. Nguyen2,

Nguyen Viet Ha1, and Eryk Dutkiewicz2
1 AVITECH, University of Engineering and Technology, Vietnam National

University, Hanoi, Vietnam
2 Electrical and Data Engineering, University of Technology Sydney, Australia

3 Computer Science and Engineering, Nanyang Technological University,
Singapore

November, 2020

Abstract

Ethereum is the second most valuable cryptocurrency in the world. Although Ethereum has
many benefits like global money and Distributed Application (DAPP), its consensus mechanism
makes difficult and expensive for the scaling of this network. To deal with this problem, the next
generation of Ethereum is developed with the huge change of mechanism from Proof-of-Work (PoW)
to Proof-of-Stake (PoS), and it is named Ethereum 2.0 or “Serenity”. In this report, we provide an
overview of Ethereum 1.0 and the migration to Ethereum 2.0. Then, we implement a private Ethereum
2.0 network and compare its power consumption versus the previous generation. Next, we review
of the Random Decentralised Autonomous Organisation Algorithm (RANDAO) and its weakness
which can be used for “last-revealer” attacks. Finally, a potential research direction about changing
RANDAO is considered and discussed.

Index Terms

Ethereum 2.0, Proof-of-Stake, beacon-chain, validator.

This work is the output of the ASEAN IVO http://www.nict.go.jp/en/asean ivo/index.html project Cyber-Attack Detection
and Information Security for Industry 4.0 and financially supported by NICT http://www.nict.go.jp/en/index.html.
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I. Introduction

Blockchain technology has a tremendous development in recent years with a famous project
named “Bitcoin” [1]. Through Bitcoin, blockchain technology demonstrates its valuable char-
acteristics such as decentralization, transparency, immutability, and security-and-privacy. Given
the aforementioned outstanding benefits, blockchain technology has many applications in a
number of areas. Some major applications of blockchain technology are as follows:

 Cryptocurrencies: Cryptocurrencies, e.g., Bitcoin, Ethereum [2], are the most famous
applications of blockchain technology. With high value and high daily trade volume,
cryptocurrencies can be utilized for various financial applications, such as digital assets
and online retail.

 Internet-of-Things (IoT) network: Its security-and-privacy and anonymity make blockchains
applicable to many IoT networks, e.g., smart home [3], energy trading [4]–[6], Internet-
of-vehicles [7], [8].

 Service: Blockchain networks have been employed by many service providers. Blockchain
technology can support automatic payments, contents distribution, and services deliv-
ery [9].

 Military: Blockchains have the potential to be applied in various military operations,
such as enhancing data integrity in supply chain management, ensuring transparency
in equipment management, and providing a distributed and decentralized database for
military intelligence [10].

With high applicability, some cryptocurrencies are extremely valuable and widely used.
As of October 21 2020, the top three largest market capitalization cryptocurrencies [11] are
Bitcoin (BTC): $12,217.04 per coin, Ethereum (ETH): $379.76 per coin and Tether (USDT):
$1 per coin. These cryptocurrencies all inherited the consensus mechanism of the blockchain
technology’s first version which is Proof-of-Work (PoW). This mechanism likes the backbone
of e.g., Bitcoin, Ethereum. But over time, PoW has not been suitable for scaling blockchain
networks. The reason is the PoW’s mechanism of choosing the leader, who received a reward
for firstly confirms a new block. The probability of a miner becoming the block winner
(leader) is illustrated by the hash rate (computational power) of itself. This has caused a
rat race to increase more efficient mining hardware when everyone wants to be the leader.
Thus, the energy for maintaining the blockchain network becomes huge. According to [12],
Bitcoin miners spend about 74 terawatt-hours power consumption per year - the same energy-
consumption as Austria. Fig. 1 shows the percentage of Bitcoin’s energy consumption in
several countries.

Various solutions have been proposed to solve PoW’s drawback, for instance: Proof-of-
Stake (PoS), Proof-of-Concepts (PoC), Proof-of-Achievement (PoAch) [13]. One of the most
famous algorithms is Proof-of-Stake (PoS), which was first proposed by Peercoin [14] in
2012. Nowadays, many coins have developed their PoS-based protocol, they are separated
into two groups: firstly, the new coins use PoS, for example, Dashcoin [15], Peercoin [14].
Secondly, the old coins migrate from PoW come to PoS, for example Ethereum (Eth).

Eth is the most popular coin which has a plan to migrate from PoW to PoS. The most
complex in this migration is that it has to keep all data from Eth1.0 (PoW) to Eth2.0 (PoS).
Vitalik Buterin – Founder of Ethereum – have researched and planned about the upgrade
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Fig. 1: Energy Consumption of Bitcoin Network in Several Countries [12].

to Eth2.0 since 2015 [16]. In 2017, the work in [17] introduced Casper, which is a PoS
based finality system that overlays an existing proof of work blockchain. Recently, in [18],
the consensus mechanism of Eth2.0 was almost completed. Besides these works, another
document is published on the Internet, which is named eth2.0-specs [19]. From there, the
migration has been segregated into three phases toward the final Eth2.0 network, as illustrated
in Fig. 2:

Fig. 2: Upgrade Ethereum 2.0 Timeline.

In Phase 0, Beacon Chain (heart) has been deployed since 2020. At this stage, the beacon
chain network exists independently and Eth2.0 has not have any transactions yet. Firstly,
the beacon chain will be responsible for building the function, which allows users at Eth1.0
stake their ETHs to regist “validators” (virtual miners) at Eth2.0. And the core of PoS-based
consensus mechanism will be built in this phase.
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In Phase 1, Shards (limbs) are expected from 2021. This phase is splited into 2 sub-phases.
The main chain will be fragmented into 64 sub-chains, each of them is referred by a “shard”.
These shards are referenced with the beacon chain by “crosslinks”. The shards are delegated
a portion of Ethereum’s transactions and account data. In phase 1.5, Eth1.0 mainnet will
officially become a shard and transit to PoS.

In Phase 2, Execution (brain) is planned to launch in 2022. This is the last phase, in there,
shards should be fully functional chains. Shards will now be compatible with smart contracts
and they will be able to communicate with each other more freely. Phase 2 is still a research
phase.

From eth2.0-specs, many teams are building their own Ethereum 2.0’s implementation, such
as Prysm (Prysmatic Labs) [20], Lighthouse [21]. Both have the same purpose, but Prysm is
written in Golang and Lighthouse uses Rust language. Because Prysm’s team was donated by
Vitalik Buterin and Golang is used in mainnet Eth1.0 [22], so we joined their community to
do research together. This is a very new and large project, and thus requires many participants
from the community for testing, reporting, and improvement.

Currently, Prysm has been in beta 1 and almost successfully performed Phase 0 of Eth2.0.
From energy-consumption perspective, in this report, we set up a private Eth2.0 network and
checked the power consumption of this new generation. This is one of the first reports to test
the actual performance of the Eth2.0 network. From our experiment, we found out weaknesses
in the Gasper mechanism and proposed potential solutions.

In the rest of the report, Section II reviews Eth1.0 and Eth2.0 technologies and the improve-
ment of Eth2.0. Then, Section III describes our implementation of Eth2.0’s private testnet.
Section IV shows the future works of this report. Finally, Section V summarizes the report.

II. Ethereum blockchain technology

In the summer of 2015, Vitalik Buterin launched a new blockchain network called Ethereum.
Retaining core benefits from Bitcoin such as PoW, Peer-to-Peer (P2P), he added a key feature
called “smart contract”. This makes Ethereum applicable for many purposes depending on
the user’s programming. Typically, the Ethereum network is divided into seven protocol lay-
ers [23]: Storage, Data, Network, Protocol, Consensus, Contract, Application. These protocol
layers are described by the structure given in Fig. 3.

The term “blockchain” is defined as a chain of blocks which are organized in chronological
order. In the lowest level named Storage, all of this chain includes the history of blocks,
transactions, hash, logs, these all stored in a database file (.db). This database is synchronized
in any node of the Ethereum network using P2P connection.

The Data layer is the data structure of the blockchain network, which includes numerous
cryptographic techniques, such as hashing functions and asymmetric encryption techniques.
This data structure includes two primary components [24]: pointers and a linked list. The
pointers are the variables, which refer to the location of another variable, and the linked list
is a list of chained blocks, where each block has data and pointers to the previous block.
A Merkle tree is a binary tree of hashes. Each block contains a hash of the Merkle root
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Fig. 3: Ethereum network layer classification [23].

with information such as the hash of the previous block, timestamp, nonce, and the current
difficulty target as shown Fig. 4. A Merkle tree offers security, integrity, and irrefutability for
the blockchain technology. Merkle trees, along with cryptography and consensus algorithms,
are the basis of the blockchain technology. For example, an Ethereum blockchain uses a Alice
tree database to store information. Alice tree is a Merkle tree, which is like a key-value store.
Just like Merkle tree, a Alice tree has a root hash. This root hash can be used to refer to
the entire tree. Hence, you can not modify the content of the tree without modifying the root
hash. Each block contains a list of transactions that happened since the last block, and after
applying those transactions, the root hash of the Alice tree represents the new state (state tree).

At the Network layer, the protocol in P2P network is used so all the data is encrypted and
transmitted over P2P links. The chain of blocks includes all the history of transactions which
is broadcast and stored in all nodes of the network. By this way, blockchain technologies can
protect the privacy and data integrity of the network. Accounts in the same node interact with
each other by Remote Procedure Calls (RPC) in the Protocol layer. The two main protocols
used in Eth1.0 are Http and Websocket [26].

On top of Network and Protocol layer is the Consensus layer, which maintains the consis-
tency, originality of data across blockchain network. In Eth, two main mechanisms are used,
that is PoW in Eth1.0 and PoS in Eth2.0. Both of them will be clearly presented in the next
sub-section.

Smart contract in the Contract layer is the highlight of Ethereum that is simply a piece
of code, which is running on Ethereum. It is called a “contract” because code that runs on
Ethereum can control valuable things like ETH or other digital assets. A smart contract can be
built with Solidity language as shown in Fig. 5. The Solidity Compiler will compile the smart
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Fig. 4: A chain of blocks and the presentation of transaction in Merkle tree [25].

contract into Bytecode and Application Binary Interface (ABI). Both of them are packaged
into a transaction and deployed into the Ethereum network. Where Bytecode is an executable
code on Ethereum Virtual Machine (EVM) and Contract ABI is an interface to interact with
EVM Bytecode. Web3 [27] is a tool provided for users to interact with smart contracts. With
the address of smart contract and its ABI, Web3 allows the user to call functions and extract
data from the smart contract for their intentions.

At the top of OSI scheme, the Application layer provides the user interface for each appli-
cation to the system. People can work with blockchain technologies by their visible distributed
applications such as web browsers, cryptocurrencies, Distributed Application (DAPP).

A. Nakamoto consensus mechanism

In [1], Nakamoto proposed a consensus protocol called “Proof-of-Work” to solve the
problem of pseudonymity, synchronization, scalability, and security of blockchain. In a single
node, the Nakamoto consensus protocol defines three procedures [28]: check each block in
the chain and ensure that there is no conflict between any existing transaction; sync with the
longest chain in the network; the last one is PoW solution and searching for propose new
block, this procedure is the main point of the protocol. Typically, the nodes in a PoW-based
blockchain network reach consensus by participating in a solution searching process, where
each node must find a nonce for its proposed new block. To find the nonce, the previous
blocks hash, and the transactions in the new block are used as the input of the hash function,
e.g., SHA-256, the hash function output must be in a target range so that the block can be
accepted. Due to the property of the hash function, the nonce can only be found by repeatedly
trying different nonce values until the output is within the target range. When a participant
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Fig. 5: Smart contract of Ethereum.

finds the nonce, it will broadcast the block along with the transactions to other nodes. Then,
if the new block is verified and determined to be the first block mined after the last block in
the chain, it will be integrated into the current chain and become the latest block in the chain.
All this work is employed by “miner” which is the term for a computer in the network.

This solution searching procedure can be considered to be a weighted random coin-tossing
process where a participant with a higher hash rate (computational power) might have higher
chances to be the block winner (leader) who can receive the reward. The probability pi that
participant i is selected to be the leader in a network of N participants is:

pi �
ci

°N
j�1 cj

, (1)

where ci is hash rate of participant i. Thus, if anyone wants to increase their chance to be
the leader and receive rewards, they have to upgrade their computational power – Graphics
Processing Unit (GPU) hardware. This results in the growth of power consumption by miners.
Moreover, miners with low hash rates have very low chance to win this game and become
leaders. Hence, they usually join mining pool to have more opportunities to get revenue. A
mining pool consists of participants who want to collaborate by contributing their computing
resources to the pool. In a pool, mining tasks will be distributed to the miners, due to the
large number of miners, the computational power of the pools is superior to that of single
miners. Rewards earned are divided among miners according to their hash rate contribution.
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In fact, mining pools have been dominating processes making new blocks in most of current
blockchain networks. To illustrate, the top five mining pools control up to 55.9% total hash
rate of the Bitcoin network [29]. This is a serious problem of PoW mechanism, because it
is against the decentralized spirit of blockchain technology. Another issue of PoW is delay,
when a new block is added to chain, there is still a possibility that this block will not be
included in the main chain for several reasons, e.g., network delay causing several versions
of the chain or two participants finding two blocks simultaneously. This possibility decreases
exponentially as the block is deeper in the chain. Therefore, a block is considered to be
“finalized” only when it is a certain k blocks deep in the chain, such as k � 6 in Bitcoin.

B. Ethereum 1.0: GHOST protocol

Ethereum has many similarities with the aforementioned Nakamoto consensus mechanism.
However, in Bitcoin, confirming time of a new block is about 98 minutes [30], and as
mentioned above it will take 98 � 6 � 588 minutes to finalized a block. That was too long,
so Ethereum has solved this by the Greedy Heaviest Observed Subtree (GHOST) protocol.
The motivation behind GHOST is that blockchains with fast confirmation times currently
suffer from reduced security due to a high stale rate - because blocks take a certain time to
propagate through the network, if miner A mines a block and then miner B happens to mine
another block before miner A’s block propagates to B, miner B’s block will end up wasted
and will not contribute to network security. Furthermore, there is a centralization issue: if
miner A is a mining pool with 30% hashpower and B has 10% hashpower, A will have a risk
of producing a stale block 70% of the time (since the other 30% of the time A produced the
last block and so will get mining data immediately) whereas B will have a risk of producing
a stale block 90% of the time. Thus, if the block interval is short enough for the stale rate
to be high, A will be substantially more efficient simply by virtue of its size. With these two
effects combined, blockchains which produce blocks quickly are very likely to lead to one
mining pool having a large enough percentage of the network hashpower to have the fact
control over the mining process.

As described by Sompolinsky and Zohar [31], GHOST solves the first issue of network
security loss by including stale blocks in the calculation of which chain is the “longest”; that
is to say, not just the parent and further ancestors of a block, but also the stale descendants of
the block’s ancestor (in Ethereum, it is called “uncles”) are added to the calculation of which
block has the largest total proof of work backing it. Figure 6 illustrates a scenario in which
a highly forked block tree was created by the honest network. The attacker secretly creates
a chain of 6 blocks (denoted 1A, 2A,. . . , 6A) which is clearly longer than the network’s
longest chain (ending in block 5B). If block propagation was faster (in relation to the creation
rate), all blocks in the honest network’s tree would form a single long chain and would not
be overtaken by the attacker.

To solve the second issue of centralization bias, Ethereum go beyond the protocol described
by Sompolinsky and Zohar, and also provide block rewards to stales: a stale block receives
87.5% of its base reward, and the nephew that includes the stale block receives the remaining
12.5%. Transaction fees, however, are not awarded to uncles. Ethereum implements a sim-
plified version of GHOST which only goes down seven levels. Specifically, it is defined as
follows [2]:
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Fig. 6: A block tree in which the longest chain and the chain selected by GHOST differ. An
attacker’s chain is able to switch the longest chain, but not the one selected by GHOST [31].

 A block must specify a parent, and it must specify 0 or more uncles.
 An uncle included in block B must have the following properties:

– It must be a direct child of the k-th generation ancestor of B, where 2  = k  = 7.
– It can not be an ancestor of B.
– An uncle must be a valid block header, but does not need to be a previously verified

or even valid block.
– An uncle must be different from all uncles included in previous blocks and all other

uncles included in the same block (non-double-inclusion).
 For every uncle U in block B, the miner of B gets an additional 3.125% added to its

coinbase reward and the miner of U gets 93.75% of a standard coinbase reward.

Generally, GHOST protocol has reduced resource waste, time to confirm block, increased
security and profitability for miners. In fact, confirming time of a new block is about 15
seconds [32], and as mentioned above it will take 15 � 7 � 105 seconds to finalized a
block. This is much faster than Bitcoin, however GHOST protocol is still based on aggregate
computational power, so the high energy consumption and the risk of a 51% attack [33] are
always there. In order to solve these two issues as well as enhance the network scalability,
two main groups of methods have been employed: firstly, improvement from core of Eth1.0,
that is Eth2.0 project; secondly, technologies are built based on Eth1.0, they only change the
protocol at the Contract and Application layer to reduce the number of transactions required.
The first solution is the long-term development direction, it is still being researched and
deployed, but promised to be the core technology of blockchain in the future. Therefore, in
the next sub-section, we will review about Eth2.0 and their key concepts, for example: shards,
staking validators, attestations, committees, checkpoints, and finality.

C. Ethereum 2.0 (Serenity): Gasper protocol

1) Scalability: As mentioned above, the main problem in scalability that blockchains, in-
cluding Ethereum, currently face is that every node has to verify and execute every transaction.
In computer science, there are two main approaches to scaling:

1) Scaling vertically: basically, make nodes more and more powerful.
2) Scaling horizontally: basically, add more nodes.
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For decentralization, blockchains need to scale horizontally as shown in Fig.2. A goal of
Ethereum 2.0 is for nodes to run on consumer hardware. “Sharding” is the term for horizontally
partitioning a database. Generally, a shard chain has a subset of nodes processing it. Virtual
miners - “validators” are assigned to shards, and only process and validate transactions in that
shard (chain). Ethereum’s shards have a dynamic subset of nodes processing it block-by-block.

The main challenge with sharding a blockchain is the security of shards. Since validators
are spread out across shards, malicious validators could takeover a single shard. This issue is
solved by random shuffling of validators. Where every shard block has a (pseudo) randomly
chosen “committee” of validators, ensures that it is mathematically improbable that an attacker
controlling less than 1/3 of all validators can attack a single shard. That is a big picture of
Ethereum 2.0’s sharding, which has three phases to be completed as mentioned above.

2) Gasper: Proof of Stake mechanism: In 2019, Vitalik Buterin et al. proposed the Gasper
mechanism which combined the GHOST and Casper protocol together. This is the new
consensus mechanism in Eth2.0, and because it is a big upgrade, so many terms have been
defined, as follows:

Fig. 7: An Epoch in Eth2.0 [34].

 Validator: Validators are actively participating in the consensus of the Eth2.0 protocol,
they are virtual and are activated by stakers. In PoW, users employ powerful computers
to become miners. In Eth2.0, users stake 32 ETH to activate and control validators.

 Slot: Slot is a chance for a block to be added to the Beacon Chain and shards. Every 12
seconds, one beacon (chain) block and 64 shard blocks are added when the system is
running optimally. Validators need to be roughly synchronized with time. A slot is like
the block time, but slots can be empty. Genesis blocks for the Beacon Chain and shards
are at Slot 0. Shards will start at a future epoch than the Beacon Chain’s Epoch 0, but
will have their own Epoch 0 that includes their genesis blocks.

 Epoch: An Epoch is 32 slots, this takes place 6m24s, as shown in Fig 7.
 Proposer: A validator is chosen to propose a new block.
 Committee: A group of validators. A committee is responsible for its block’s validation.
 Attestation: Validators in a committee will vote for that chain’s head. A vote weighted

by the validator’s balance, that voting is called by an attestation.

Fig 8 shows the mechanism of choosing proposers and committees for each slot in Eth2.0.
When new transactions are added, they have chance to take a slot for validation. Then, a
proposer and a committee that have been pseudorandomly selected to propose and attest
this block. The Beacon Chain enforces consensus on a pseudorandom process called RAN-
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DAO [35] (Section IV). At every epoch, a pseudorandom process RANDAO selects proposers
for each slot and shuffles validators to committees, respectively. For security, each slot (in
the Beacon Chain and each shard) has committees of at least 128 validators. An attacker has
less than a one in a trillion probability of controlling 2/3 of a committee [36]. All of the
validators from that slot attest to the Beacon Chain head. A shuffling algorithm scales up or
down the number of committees per slot to get at least 128 validators per committee.

Fig. 8: RANDAO: choice proposers and committee [34].

Penalties and rewards for validators are designed to “slashing” stalker and incentive honest
users. First, validators get rewards for making attestations that the majority of other validators
agree with. On the flip side, validators get penalties for not attesting or if they attest to blocks
that are not finalized. Firstly, proposers of blocks that get finalized, also obtain a sizable
reward. Validators that are consistently online doing a good job accrue �1/8 boost to their
total rewards for proposing blocks with new attestations. Slashings are penalties ranging from
over 0.5 ETH up to a validator’s entire stake. For committing a slashable offense a validator
loses at least 1/32 of their balance and is deactivated (“forced exit”). The validator is penalized
as if it was offline for 8192 epochs. The protocol also imposes an additional penalty based on
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how many others have been slashed near the same time. The basic equation for the additional
penalty is:

additional penalty � validator balance� 3� fraction of validators slashed. (2)

An effect is that if 1/3 of all validators commit a slashable offense in a similar period of
time, they lose their entire balance. When a slashing happens, proposers also get a small reward
for including the slashing evidence in a block. In Eth2 Phase 0, all of the whistleblower’s
reward actually goes to the proposer.

A checkpoint is a block in the first slot of an epoch. If there is no such block, then the
checkpoint is the preceding most recent block. There is always one checkpoint block per
epoch. A block can be the checkpoint for multiple epochs. For example, in Fig 9, Slot 65 to
Slot 128 are empty. The Epoch 2 checkpoint would have been the block at Slot 128. Since
the slot is missing, the Epoch 2 checkpoint is the previous block at Slot 64. Epoch 3 is
similar: Slot 192 is empty, thus the previous block at Slot 180 is the Epoch 3 checkpoint.
These checkpoints are the reference points for finalized blocks.

To finalize a slot, this slot will take two states. That is justified and finality [18] as named
Gasper protocol. For the sake of simplicity, it requires at least two valid epochs to finality
validate a slot. Gasper is proven to be secure as long as 2/3 of voting power is controlled by
honest validators. In addition, withdrawing also takes time to execute (at least 27 hours [19]),
which reduces the chance of the network being attacked.

Fig. 9: Checkpoint in Eth2.0 [18].

Phases 1 and 2 of Ethereum 2.0 have been developing, and details of them are expected
from 2021.

In summary, through the new Gasper mechanism, Eth2.0 will solve the energy problem
because it does not require complicated calculations. All based on a pseudorandom with a
weighting on the validator’s balance. Table I shows the great specification of Eth2.0.

Table I: Consensus mechanisms comparisons.

Bitcoin Ethereum 1.0 Ethereum 2.0
Type PoW PoW PoS
Proposer selection Base on hash rate Base on hash rate Base on stake
Hardware requirement High High Medium to none
Average transaction
mining time

Avg around: 98 minutes [30] Avg around: 15 seconds [32] Fixed 12 seconds

Finality time
After 6 new blocks are added
Avg around: 10 hours

After 7 new blocks are added
Avg around: 2 minutes

After at least 2 Epochs are added
12.8 minutes
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III. Testing Ethereum 2.0 at Phase 0

In this section a private Ethereum 2.0 testnet is built and the network is tested under the
power-consumption context.

A. Set up an Ethereum 2.0 network at Phase 0

Fig. 10: Private Ethereum 2.0 network.

Prysm Labs [20] is a team of individuals with a deep understanding of blockchain tech-
nology. From Eth2.0 specs, they build a project named Prysm on Github. It is one of the first
Ethereum 2.0 projects, that was deployed on the Internet for everyone testing. At the time of
writing this report, Prysm has gradually completed Eth2.0 Phase 0 and provided two different
testnets: Medalla [37] and Zinken [38]. Prysm is written by GoLang and built by Bazel for
fast coding and fast compiling.

In order to create a private Ethereum 2.0 testnet, Prysm is used. Firstly, initialization
parameters for a node must be defined. The work is completed by creating a “genesis.ssz”
file. This file includes several parameters such as the number of validators, network-config.
For example, the network, shown in Fig. 10, will be initialized by this command below:

$ bazel run //tools/genesis-state-gen –num-validators=4 –output-ssz=/tmp/genesis.ssz –mainnet-
config

when completed, a ”genesis.ssz” file has been saved on output-ssz location. While running
beacon chain node by ssz file, on another termial window, run the following command:

$ bazel run //beacon-chain –define ssz=mainnet – –bootstrap-node= –datadir /tmp/chaindata
–force-clear-db –interop-genesis-state /tmp/genesis.ssz –interop-eth1data-votes –min-sync-
peers=0

where –datadir is location of Beacon chain node database, –interop is a option for running
private node. The last, a validator client will be run:
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$ bazel run //validator – –beacon-rpc-provider localhost:4000 –interop-num-validators=4 –
interop-start-index=0 –clear-db

where –beacon-rpc-provider is rpc address of beacon chain node. In addition, to add a new
beacon chain node with the created network, simply add this flag: “–peer=enr” when run
second node. where enode is a parameter that defines a specific node and can be got by
“http://localhost:8080/p2p”.

In Fig. 11, the power consumption of the Ethereum 2.0 and Ethereum 1.0 testnet are shown.

Fig. 11: Ethereum 2.0 network: Beacon chain nodes, validators.

B. Power consumption

Difficulty and power consumption are mainly limitations of Ethereum 1.0. In order to
analyze them, firstly, a private network as mentioned above has been deployed on a laptop
that uses CPU core i7-4810MQ, RAM 16GB. Blocks are sequentially added and validated,
while the information about CPU consumed (difficulty) and active power of CPU (power
consumption) are collected in a sample per second.

Similarly, Go Ethereum (Geth) [22] has been created the same network with Ethereum 2.0.
The network includes two nodes and four miners in each node. The initialization difficulty of
this network is 1/10 of mainnet Ethereum 1.0 [39], about 4.5 Tera Hash per second. Blocks
are also added and mined.
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The obtained results show that a new block of Ethereum 2.0 takes place 12s to confirm
and Ethereum 1.0 needs 5m49s to be mined a block, this time will be increased whenever a
new block is added. CPU consuming in process of mining and validating is shown Fig. 12.
The PoS mechanism of Ethereum 2.0 solved the difficulty of Ethereum 1.0.

Fig. 12: CPU consumption comparisons.

Fig. 13 presents power consumption by CPU. The above results show only very little CPU
is used, so that power consumption is also minimal.

IV. Future work: RANDAO

RANDAO is one of the most essential mechanisms in Eth2.0. It is in charge of creating a new
“seed” to generate random proposers and committees. Thus, this mechanism directly affects
to Stake of validators. In this section, we present the RANDAO mechanism on Eth2.0 and the
last-revealer attack to RANDAO. In the end, Shamir’s Secret Sharing algorithm is considered
to deal with this problem.

Firstly, RANDAO [35] is a commitment scheme [40], this is a well-known example pre-
senting the fundamental ideas of this scheme [41], suppose Alice and Bob want to resolve
some dispute via coin-flipping. If they are physically in the same place, a typical procedure
might be:

1) Alice “calls” the coin flip.
2) Bob flips the coin.
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Fig. 13: Power consumption comparisons.

3) If Alice’s call is correct, she wins, otherwise Bob wins.

If Alice and Bob are not in the same place a problem arises. Once Alice has “called” the coin
flip, Bob can stipulate the flip “results” to be whatever is most desirable for him. Similarly, if
Alice does not announce her “call” to Bob, after Bob flips the coin and announces the result,
Alice can report that she called whatever result is most desirable for her. Alice and Bob can
use commitments in a procedure that will allow both to trust the outcome:

1) Alice “calls” the coin flip but only tells Bob a commitment to her call.
2) Bob flips the coin and reports the result.
3) Alice reveals what she committed to.
4) Bob verifies that Alice’s call matches her commitment.
5) If Alice’s revelation matches the coin result Bob reported, Alice wins.

For Bob to be able to skew the results to his favor, he must be able to understand the
call hidden in Alice’s commitment. If the commitment scheme is a good one, Bob can not
skew the results. Similarly, Alice can not affect the result if she can not change the value she
commits to.

The commitment scheme is applied to RANDAO where Alice and Bob are replaced by
validators. Typically in an Epoch, we have 32 proposers. These proposers are now responsible
for choosing “seed” which is used to randomly select proposers and committees of the next
Epoch. The “seed” is a 32 bytes number and it is mixed by secret numbers of proposers. Each
proposer includes the commit by a hash in their block. After all 32 slots, the reveal-period is

16
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started, proposers subsequently reveal their 32 bytes secret number (r1, ..., rn) which can be
verified by their committed hash. Secrets which were not revealed or skipped are considered
0x00000000... And the output of RANDAO is “XOR” (r � `iri) of all proposers’ secret
numbers.

RANDAO is great for pseudorandomness but it suffers from last-revealer attacks in cryp-
tography. Because during the reveal-period, each member publicly commits to a secret con-
tribution to the final output as Fig. 14, specifically, a malicious actor can observe the network
once others start to reveal their numbers and choose to reveal or not to reveal their number
based on XOR of the numbers observed so far. This allows a single malicious actor to have
one bit of influence on the output, and a malicious actor controlling multiple participants have
as many bits of influence as the number of participants they are controlling [42].

Fig. 14: An illustrate: Last-reveal attack on RANDAO.

A solution was proposed to replace RANDAO on Eth2.0, that is Verifiable Delay Function
(VDF) [43]. This method is to add a delay function after mixed, making it slow to compute
the beacon outcome from an input of RANDAO mix-period. VDF reduces the probability of
a last-revealer attack to at least 1 honest validator in an Epoch. However, we need a new
period that named “Eval”, and this is also has to “Verify” by ASIC hardware [44]. To keep
the time per epoch, VDF is employed with the pipeline technique. The benefits of VDF is not
only Eth2.0 but also Proof of replication, Resource-efficient blockchain, and computational
timestamping [43]. But, ASIC hardware research is still very much in the research phase.

In this report, we considered using Shamir’s secret sharing (SSS) [45] to deal with last-
revealer attacks. SSS is an algorithm that divides a secret into “shares”. The secret can be
recovered by combining certain numbers of shares. We defined some terms used in SSS, as
follows:
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Definition 1. Secret (S) is a secret message that you want to share with others securely.

Definition 2. Share is a piece of secret. Secret is divided into pieces (S1,S2, ...,SN) and
each piece is called share. It is computed from given secret.

Definition 3. Threshold (N) is the minimum number of shares we need in order to recover
your secret.

Fig. 15: An illustrate: Shamir’s Secret Sharing algorithm in an Epoch.

In Fig. 15, SSS algorithm is applied to Eth2.0. The secret message (S) is 32 bytes secret
number. Assuming that a secret message is divided into 31 Shares. In any slot, the proposer
will send one Share (Si) to each other proposer. Similarly until the last slot, at the moment,
the last proposer stored 31 Shares of 31 proposers (S131, ..., S3131). And with a single Share
of a secret, this one can not recover any secret number. So the last proposer can not predict
output of the mix-period, so it can not bias the result of random “seed”. At the end of Epoch,
all proposers public their Shares and combine them to secret numbers then XOR them to
calculate the output.

But we have some conditions to make SSS work, first, k ¡� N where k is the number of
proposers which propose their block. If k is less than N , we can not recover the secret key so
the mixed output is not controlled. Then, k1 ¡ 32�N where k1 is the number of the honest
validators in an Epoch, if a malicious actor controls more than N proposers in an Epoch,
they have many bits of influence. In the future, we will analyze how many stakes a malicious
actor needs to control the output “seed”. And a complex algorithm is not mentioned above,
that is how to send Shares to each other proposers but no one could decrypt Shares which
send to other proposers.
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V. Conclusion

In this report, we provides an overview of Ethereum networks: from 1.0 to 2.0.

A private Ethereum 2.0 testnet was implemented to show performance’s superiority of
Ethereum 2.0 versus Ethereum 1.0.

RANDAO mechanism using Shamir’s Secret Sharing algorithm to deal with last-revealer
attacks was analyzed. For future work, we will further calculate, analyze the results of the
SSS algorithm in Eth2.0, and hope that a better algorithm will be proposed.
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Abstract

Using deep learning in communication security has been a topic of interest recently. In this
report, we proposed a method called learning based friendly jamming (FJ) to guarantee secrecy in
MIMO wiretap channels, which is applicable for IoT security due to its low computational complexity
at the receivers. Unlike the previous works that require full channel state information (CSI) of
legitimate channel at the transmitter, we show that it is possible to rely on this characteristic to
construct a robust FJ method with imperfect CSI. We leverage MINE based FJ to demonstrate that
it is possible to achieve a security performance comparable with conventional FJ method without
CSI. We modify the model to consider the practical challenge in real world systems of the bandwidth
constrained feedback channel for providing CSI. Finally, the proposed security scheme can combine
MIMO security and detection tasks into a single end-to-end estimation, feedback, encoding, and
decoding process, which can be jointly optimized to maximize throughput and minimize block error
rate for specific channel conditions.

Index Terms

Physical layer security, autoencoder, friendly jamming, wiretap channel, mutual information
neural estimation.
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I. Introduction

The development of Internet-of-Things (IoT) in Industry 4.0 has brought breakthrough achieve-
ments in many areas, e.g., manufacturing, healthcare, and agriculture. Since the data exchange
via IoT networks increases dramatically, it also raises many cybersecurity issues. Various
approaches have been proposed to mitigate the damage caused by cyberattacks, such as deep
learning based cybersecurity threats detection, blockchain based data integrity protection, and
physical layer security (PLS) based communication security. In this paper, we consider PLS
as an efficient solution for IoT security.

Conventional encryption based security requires infrastructure for distribution of keys and
irreversibility of the underlying encrypted function. Recently, PLS has been well developed
to also provide secure communication [1]. Confidential communication between legitimate
users (e.g. between Alice as the transmitter and Bob as the receiver) is wiretapped by
illegitimate users (e.g. Eve as the eavesdropper). Security is provided thanks to inherit random
characteristics of the wireless medium. Compared to conventional encryption based security,
PLS is considered as a lightweight solution for secure communication.

Main PLS approaches based on signal-to-noise ratio (SNR), instead of using keys, as
reviewed in [2], include: channel coding, channel-based adaptation, artificial noise. Among
of them, the use of artificial noise, also called friendly jamming (FJ), to degrade the wiretap
channel is more practical thanks to its low computational complexity at the receiver. This
approach can be applied to IoT wherein communication devices (sensors, actuators) are desired
to be lightweight and low-cost.

In one of the first methods on FJ based security, proposed by Goel and Nagi [3], [4],
Alice creates a jamming signal (TxFJ) via precoding, assuming that Alice has the channel
state information (CSI), i.e. the Alice-Bob channel. Such a precoded FJ signal lies in the
null space of Alice-Bob channel, and hence does not affect Bob’s reception while degrading
Alice-Eve channel. Receiver based friendly jamming (RxFJ) was proposed in a multi-user
broadcast channel [5], where Bob is equipped with in-band full-duplex (FD) capabilities. In
this work, a non-zero average rate of secrecy can be guaranteed, regardless of the eavesdropper
position. Also, the power constraints for the information signal, the TxFJ, and RxFJ signals
were investigated in [6]. Further, in scenarios that have interference multiple wiretap channels
(MIMO/ multiple links) with distributed computation and limited co-ordinations, a non-
cooperative game for modeling the power control problem was proposed in [7].

All the aforementioned methods require that full CSI at the transmitter of their legitimate
channel is available at the transmitter to construct FJ signals. Regarding imperfect CSI
approach, such as a beam-forming based FJ approach was proposed in [8], requires a high
computational capability at Bob to achieve a non-zero average rate of secrecy along with
desired BER performance.

In this work, we focus on dealing with the problem related to imperfect CSI, whether being
imperfect or unknown, by incorporating a well-known neural network (NN) architecture called
variational autoencoder (AE), in the FJ approach for PLS. AE aims to learn a representation
(i.e. encoding) for a set of data and, from the encoding, reconstructs a representation at the
output as close as possible to its original input, by simultaneously optimizing the encoding
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and decoding functions.

When applied to for PLS, an AE-based method over the Gaussian wiretap channel was
proposed in [9]. In this method, Eve is assumed to be equipped with a NN that can cluster
the constellation points with high probability. A coding scheme was proposed to make Eve
suffer a high block error rate (BLER). However, this method will be undermined when the
noise level at Bob is higher than that at Eve. In [10], using AEs to design finite block length
wiretap codes was proposed. Also, a multi-objective programming function was proposed
to simultaneously minimize the leakage of information to Eve and the BER at Bob. This
method has high complexity because the number of needed parameters grows with the code
parameters. Using AE for the MIMO Gaussian wiretap channel was demonstrated in [11].
However, the channel matrices at Bob and Eve, and the number of antennas at Eve must be
known as well. Besides, the learning in the above AE-based methods for security must take
into account all the communication blocks (encoder, channel, decoder, etc.) from the input to
the output (i.e. end-to-end learning). If there is a way to apply the AE for some but not all
blocks, the training time can be shortened and, especially, the design of the method can be
more flexible when the end-to-end learning is difficult.

Secrecy capacity is defined as the difference of mutual information (MI) between the
legitimate and illegitimate channels [1]. Hence, estimating and optimizing MI can enhance
security performance. Recently, mutual information neural estimation (MINE) was proposed
by Belghazi et al. in [12] and proved to very efficiently optimize MI. From this seminal
work, MINE was applied to channel coding on the autoencoder channel [13] by creating a
feedback from the output of the channel back to the input of the encoder. The performance
of this method is comparable with that of end-to-end learning.

Inspired by the work in [8], we propose a new FJ method for PLS using AE in case of
imperfect CSI. However, unlike the approaches based on CSI or channel estimation’s error to
cancel out FJ at receiver, ours allows the intended transmitter (Tx) and receiver (Rx) learning
to null out the FJ signals while only degrade the eavesdropper channel. Further, we leverage
MINE to secure the AE based communications when the channel’s distribution is unknown.
This method can provide comparable secrecy performance to that in [4]. Our work has three
main contributions as follows:

 We exploit the generalization capability of neural networks to develop the robust MIMO
FJ scheme with imperfect channel knowledge due to the practical issues such as the
time-varying nature of channels and limited number of reference signals [14]. Since DL
based communications frameworks have powerful generalization ability with respect to
the input data sets. We show that it is possible to rely on this characteristic to construct
a robust FJ method with imperfect CSI. In other word, our proposed method show the
better secrecy capacity compared to the conventional ones when the channel varies or
with CSI errors. The great benefits here is we can still maintain secrecy but do not need
to sacrifice the capacity and power for channel estimation (for transmitting pilots).

 We develop a new security scheme in which the secrecy optimization can be embedded
into the learning process in cases of imperfect CSI. In the first case, only channel
distribution is required for the training process. Second, we modify the model to consider
the practical challenge in real world systems of the bandwidth constrained feedback
channel for providing CSI. This is the case where a compact q-bit representation of the

C
O
N
F
ID
E
N
T
IA
L

In
te
rn
al
re
po
rt
s,
in
te
nd
ed

fo
r
IV
O
re
vi
ew

on
ly



CSI is available at the transmitter instead of the perfect CSI. The results show that the
quantization providing the comparable performance of our system for certain values of
q.

 We leverage MINE based FJ to demonstrate that it is possible to achieve a security
performance comparable with conventional FJ method without CSI. The training process
is performed at the transmitter side to maximize the secrecy capacity between the sampled
Tx and Rx signals. Compared to end-to-end learning like AE-based FJ, this security
solution not only saves computation resource but also saves energy consumption at the
receiver as well. This will be applicable for IoT devices which facing resource constrains.

 Finally, the proposed security scheme can combine MIMO security and detection tasks
into a single end-to-end estimation, feedback, encoding, and decoding process, which
can be jointly optimized to maximize throughput and minimize block/symbol error rate
for specific channel conditions.

The remaining of this paper is organized as follows. In Section II, we briefly introduce
the conventional FJ-based PLS method, as the benchmark for our proposed method. In
Section III-A1, we propose the AE-based FJ method to achieve secrecy capacity without full
CSI. In Section IV, we propose the model which based on MINE for securing communications.
The simulation results of secrecy and BLER rate are given and discussed in Section V.

Notation: Vectors and matrices are denoted by bold lowercase and uppercase letters. The
absolute value of a real number, the magnitude of a complex number and the complex
conjugate transpose are, respectively, denoted by }�}, |�| and p�q:. A complex Gaussian random
variable with mean µ and variance σ2 is denoted by CN pµ, σ2q. The expectation of a random
variable X is denoted by ErXs.

II. Friendly jamming with full CSI

We first introduce the background of FJ which is a base line in this work. Further, in this
section, the MIMO communication is included as fundamental part for our proposed method.

A. Multiple-input-One-output (MISO) FJ Scheme

The conventional FJ model shows a system with NT and NR antennas at the Tx (Alice,
A) and Rx (Bob, B), respectively. The eavesdropper (Eve, E) with NE antennas is also
considered. A MISO communication scheme is considered in the IoT scenario where Alice
is a controller or gateway and Bob is an IoT device with resource constraints described in
Figure 1.

1) System Model: In this model, NT � 2, NR � 1 and NE � 1, the Tx uses a part of
the available power to transmit artificial noise, called a FJ signal. Since it is generated by
the Tx, it can be designed in such a way that it only degrades the eavesdropper channel.
The conventional works [3], [4] assume that the CSI of the Alice-Bob channel is available
at Alice but not that of Eve. The block fading is assumed which means that channel gains
are constants in a block and independent distributed in different blocks. At the time k, the
channel gain vectors from Alice to Bob and Eve are given by hk and gk respectively. Due
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Fig. 1: FJ security model.

to the assumption of block fading, hk and gk are constant over a block of a large number
of symbols and independent in different blocks. The transmitted signal xk and the received
signals at Bob and Eve are respectively given by

yk � h:
kxk � nb, (1)

zk � g:kxk � ne.

To secure the communication, the Tx chooses the precoding scheme such that the trans-
mitted signal is given by

xk � sk �wk � pkuk �wk,

where the uk denotes the Gaussian distributed information bearing signal, wk is i.i.d. Gaussian
FJ. To guarantee secrecy, wk is chosen such that h:

kwk � 0 and h:
kpk � 0. Hence, wk lies

in the null space of h:
k and thus is canceled out at Bob. The received signals at Bob and Eve

are given by

yk � h:
kpkuk � nb,

zk � g:kpkuk � g:kwk � ne,

where uk � CN p0, σ2
uq, nb � CN p0, σ2

b q, and ne � CN p0, σ2
eq.

2) Security Performance: The performance of this security model is evaluated via the
secrecy rate Cs, which is the mutual information difference between the Alice-Bob and Alice-
Eve [15], presented as:

Cs 9� IpA,Bq � IpA,Eq

� logp1 � SNRBq � logp1 � SNREq

� log

�
1 �

|h:
kpk|

2

σ2
b

�
� log

�
1 �

|g:kpk|
2

Er|g:kwk|s
2
� σ2

e

�
, (2)

where IpA,Bq and IpA,Eq are the mutual information between Alice and Bob and Alice and
Eve, respectively. Since Cs is a random variable, the average secrecy rate will be examined
and our objective function will be

Cs 9� max
Erxkxk:s¤P

ErCss, (3)

where P is the power constraint of the communication system. To solve (3), the authors
in [4] chooses pk such that pk � hk{ }hk}. The nonzero secrecy rate is achieved with the
assumption of the additive white Gaussian noise (AWGN) on both channel with σ2

b � σ2
e .
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The simulation results in [4] proves that the average secrecy rate increases with NT . This
security scheme is established based on the perfect knowledge of CSI and statistics of Eve
channel, e.g. σ2

e . In Section III-A1, we propose an FJ method based on the AE that will relax
the requirement of full CSI.

B. Multiple-input-Multiple-output (MIMO) FJ Scheme

In this scenario we examine the the generalized model where both the receiver and eaves-
dropper equipped with multiple antennas. The assumption of NT ¡ NR, NE can be seen in
IoT scenario similar to MISO case.

1) System Model: In the MIMO FJ scennario the number of antennas at Bob and Eve are
NT and NE respectively are greater than 1. The channel matrices at time k on Alice-Bob and
Alice-Eve channel are Hk and Gk respectively. The elements of Hk and Gk are assumed
to be i.i.d. and independent of each other and unchanged over a block of large number of
symbols. The received signals at Bob and Eve are presented as

yk � Hkxk � nb (4)

� Hksk �Hkwk � nb,

zk � Gksk �G:
kwk � ne. (5)

Conventional method assumes Hk is perfectly known at the Tx so the FJ signal is chosen as
H:
kwk � 0 then wk � Zkvk. Further, if wk was chosen fixed, the artificial noise seen by the

eavesdropper would be small if Gk is small. To avoid this possibility, the sequence of wk is
chosen to be complex Gaussian random vectors in the null space of Hk. In particular, the Tx
chooses elements of vk to be i.i.d. complex Gaussian random variables with variance σ2

v , and
independent in time as well. It follows that the elements of wk are also Gaussian distributed.

2) Security Performance: The covariance of noise at Eve is calculated as

K � pGkZkZ
:
kGkqσ

2
v � Iσ2

e . (6)

Then the secrecy capacity Cs is presented as

Cs 9� IpA,Bq � IpA,Eq

� logp1 � SNRBq � logp1 � SNREq

� log
�
detpI�HkQsH

:
k

	
� log

�
detpK�GkQsG

:
kq

detpKq

�
, (7)

where Qs � Ersks
:
ks. Since the the Tx has no information about Alice-Eve’s channel so it

first chooses Qs to maximize the capacity of the link to the receiver by using eigenvector
transmission. To maximize the secrecy rate, the first term in (7) or the capcity on the legitimate
channel is maximized by SVD based method. Hk is composited as

Hk � UkΓkV
:
k.

The Tx chooses Sk � Vkrk and the Rx processes the received signal (yk) by multiplying it
by U:

k. Then, the equivalent channel to the Rx becomes

ỹk � Γ:
krk � ñb.
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then the transmitter chooses Qr as

Qr � Errkr
:
ks � diagpσ2

r,1, σ
2
r,2, ..., σ

2
r,NT

q.

The σ2
r,i is founded by the water filling solution with power constraint Pinfo ¤ P corre-

sponding to the largest singular values of Hk. Then, the minimum guaranteed secrecy capacity
is given by

Cs � log
�
detpI� ΓkQrΓ

:
kq
	
� log

�
detpK� Fq

detpKq



, (8)

where F � GkVkQrV
:
kG

:
k. Since Cs is a random variable, the average secrecy capacity Csav

and the outage probability can be computed, using Monte Carlo simulations. The objective
function is

Cs 9� max
Erxkx

:
ks¤P

Erlog
�
detpI� ΓkQrΓ

:
kq
	
�

log

�
detpK� Fq

detpKq



s, (9)

where the power constraint Erxkx
:
ks ¤ P can be rewrite as tracepVkQrV

:
k � NFJσ

2
vq ¤ P ,

and NFJ denotes the number of antennas used for FJ transmitting. From Equation (6), it
can be seen that to guarantee detpGkZkZ

:
kGkqσ

2
v � 0, the transmitter must use at least NE

antennas for FJ signals while the remaining ones can be used for transmitting information
signals.

III. MIMO Autoencoder Based Friendly Jamming

We use AE based communications for the goal that is learning to guarantee secrecy. For the
communication purpose, the learning process actually is optimization process in which the
reconstruction error of the inputs is minimized. In this section, we will examine the secrecy
capacity in the practical scenarios as follows:

1) Unknown static CSI, Hk, with the block channel fading assumption.
2) The channel changes and the varies of channel ∆Hk modeled through independent

identical distributed complex Gaussian distribution with zero mean and scaled identity
covariance matrix

3) Learning process with a limited feedback

A. Autoencoder based MIMO Communications scheme

1) Re-parameter conversion: The use of complex valued signals is not available in NN net-
works. Thus, we re-parameterize the problem using real valued vectors and one-hot mappings
as follows:

x̂k �

�
Repxkq

Impxkq

�
, x̂k �

�
Repykq

Impykq

�

n̂b�

�
Repnbq

Impnbq

�
, Ĥk �

�
RepHkq �ImpHkq

ImpHkq RepHkq

�
, (10)
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where x̂ P R2NT , ŷ P R2NR and Ĥ P R2NR�2NT are the transmitted received vectors, and the

Fig. 2: AE communication scheme for PLS.

channel matrix respectively with the real elements. The relationship between input and out
put in (4) becomes [16]:

ŷk � Ĥ:
kx̂k � n̂b. (11)

2) Autoencoder based MIMO communication: The conventional MIMO and MIMO based
on AE communication models are presented in Figure 2. To simulate the MIMO channel, we
will set up the channel layer in the network illustrated in Figure 2b as the MIMO channel Hk in
Figure 2a. The flat Rayleigh fading as the channel distribution is used in our implementation.
At time k, the message mk P M � t1, 2, . . . ,Mu is encoded into the transmitted vector
sk. The power constraint is guaranteed by the normalization layer. The receiver blocks at
Bob are based on the model in [10] with the last layer using the softmax function. This
function gives a probability distribution 1̂m P p0, 1qcardpMq over all of messages (card denotes
cardinality), which is fed into the cross-entropy loss function. Then the maximum likelihood
is used for estimation of the sent signal [17]. To do it, the cross-entropy loss function is
chosen to optimize signals reconstruction error [18]. Hence, the index of the element of 1̂m
with the highest probability will be the decoded symbol.

B. Proposed Security scheme

The objective of PLS is to guarantee that no information leakage to Eve while Bob can
recover the message without errors [15]. Our model aims to not only guarantee secrecy data
capability but also achieve desired BLER.

The proposed AE-based FJ communication and security scheme is illustrated in Figure 3
based on the work in [10], which aims to copy the input message m of the network to
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Fig. 3: Autoencoder based Friendly jamming with an example of error decoding at Eve.

its output. The messages are embedded into one-hot vectors 1m, then encoded to practical
modulated information signal, e.g. BPSK, by dense layers. The FJ signal is injected into the
information signal via the FJ generator layer making the final transmitted signals xk.

The principle of security by FJ discussed in Section II is using a precoding technique to
make the FJ signal orthogonal with the perfectly known channel Hk. However, since Hk is
unknown in our case, we leverage the idea in [8] such that the FJ signal is designed to be
orthogonal to the information bearing signal sk. Once the transmitter and receiver learn to
maximize the secrecy capacity it will also minimize BLER. Note that the parameters in the
fading layers of Alice-Bob and Alice-Eve, are respectively i.i.d. Alice and Bob communicate
and learn the injected FJ signals while Eve tries to decode the message at the same time.
Next, we will consider secrecy rate optimization, and security loss function to secure the
communication.

C. Problem Formulation

1) Unknown static CSI: In this scenario, the channel coefficients of both Bob’s and Eve’s
channels are unknown remain constant for a coherence interval of transmit symbol periods.
The conversion in (10) is used for the case of the received signals zk and the channel matrix
Gk at Eve. Similar to conventional FJ method, the transmitted signals x̂k � ŝk � ŵk, where
ŵk, and ŝk are FJ and information bearing signals individually. From (11), the received signals
received at Bob and Eve respectively are

ŷk � Ĥ:
ksk � Ĥ:

kŵk � n̂b,

ẑk � Ĝ:
ksk � Ĝ:

kŵk � n̂e. (12)
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The transmitted signal, x̂k, satisfies the following power constraint:

Erx̂:kx̂ks � Erŝ:kŝks � Erŵ:
kŵks ¤ P.

FJ generation: We implement FJ scheme by setting parameters in the FJ generator layer,
which is a shown in Figure 3. As proposed above, the FJ signal ŵk is orthogonal with the
information bearing signals ŝk. That design of the FJ generator layer in the autoencoder
network is demonstrated in Figure 4. We choose ŝk � q̂kûk, and ŵk � v̂kd̂k, where ûk
denotes the information signals. The parameter q̂k and v̂k are the non-trainable weight and
bias in the layer and orthogonal with each other. The elements of d̂k is chosen as i.i.d.
Gaussian random variable.

Fig. 4: FJ generator scheme

Secrecy capacity optimization based on AE: A straight-forward approach to optimize
the secrecy capacity is computed via the difference of mutual information between Bob’s
and Eve’s channel, as given in (9). However this would be a non-trivial task due to the
unknown underlying channel distribution. In this method, we use the multiple cross-entropy
loss function, proposed in [9], as given by

L � p1 � αqHppApskq, pBpskqq � αHppApskq, pEpskqq

� pα � 1q
M̧

i�1

sik log ŝik � α
M̧

i�1

sik log s̃ik, (13)

where pA is the probability mass function of the data at Alice, pB and pE are the resulting
probability mass functions from the softmax function output in the decoders at Bob and
Eve, H denotes cross-entropy, and α is a parameter that controls the trade-off between the
classification errors at Eve and the communication rate over Bob channel. In other words,
minimizing HppApskq, pBpskq trains the encoder to maximize the output probability of symbol
sik, and thereby reducing the output probability of all other symbols at Bob. In contrast,
maximizing HppApskq, pEpskqq forces the system to reduce the output probability of the
symbol sik and therefore randomly forces a higher probability on other symbols si�j . Hence,
we can gain optimal secrecy capacity by the neural optimization. More specifically, after the
training process the secrecy capacity is evaluated by both equation below

Cs � IpXn, Ynq � IpXn, Znq, (14)

Cs � Ipm, m̂q � Ipm, m̃q, (15)
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where Xn, Yn, and Zn is the signals samples at transmitter, receiver and eavesdropper, and
m, m̂, and m̃ are transmitted message at Alice, predicted message at Bob and Eve with the
trained model respectively. The secrecy capacity will based on MINE, which is described in
detail in Section IV.

2) CSI changes: Next, we consider the estimated channel state information (CSI) at the
transmitter side can not be perfect in general. For purposes of our analysis, we denote Hk to
be the imperfect CSI at Tx and the mathematical expression is given by

H̃k�Hk � ∆Hk, (16)

where ∆Hk is an i.i.d. complex Gaussian distribution with zero mean and scaled identity co-
variance matrix given as ∆Hk � CN p0, ρ2

eINRq, and ρ2
e �

NT
NPEP

with Np and Eprepresenting
the number and the power of pilot symbols respectively [19]. Unlike conventional optimization
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Fig. 5: Learning based FJ with statistical CSI

method mentioned in Equation (9) based on the SVD of channel, our assumption is that only
statistical information of the channel and CSI errors is available at Alice as seen in Figure 5.
Comparing to the cases of random static channel and perfect CSI, there are two factors that
contribute to the degradation of SNR at Bob leading to the decrease of secrecy capacity as

i) The information bearing signal will leakage to the Eve’s channel.
ii) The friendly jamming signals will interfere to the Bob’s channel
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The impacts of the imperfect CSI on secrecy capacities in the traditional method can be seen
in the equation (7) where the error is taken into account as

Cs 9� max
Erxkx

:
ks¤P

log
�
detpI� pHk � ∆HkqQspHk � ∆Hkq

:
�
� log

�
detpK�GkQsG

:
kq

detpKq

�
,

(17)

Secrecy capacity optimization based on AE: The optimization in (17) can be resolved by
partitioning the SVD of Hk and second order perturbation analysis [8]. However, solution
requires exponential complexity when the number of antennas increase. Thus, we leverage
the non-convex optimization capability provided by NNs, we can directly solve problem with
sufficient training data. The architectures of our NN wil be as

- Input Layer: Concatenation of xk and H̃k which have been converted to real domain
from complex domain

- Hidden Layers: Simulate the Alice-Bob channel that estimate the mapping function:
hpxk, H̃kq

- Output Layer: x̂k, and the activation function is soft-max for a reconstruction problem
- Optimizer: adam is chosen as the optimizer
- Loss Function: the Equation (13)

By consider the CSI error as an input for training our network will be train to maximize
secrecy capacity and reconstruct the signals as well.

IV. MINE Based Friendly Jamming

1) MINE Preliminary: We first study how MINE [12] to estimate the mutual information
between the legitimate users. The mutual information between the two random variable X
and Y is given as

IpX, Y q � DKLpP pX, Y q ‖ P pXq b P pY qq, (18)

which is equivalent to the Kullback-Leibler (KL)divergence, DKL, between the joint proba-
bility P pX, Y q and the product of the marginals P pXq b P pY q. In [12], Donsker-Varadhan
representation was applied to represent the KL divergence as follows:

DKLpP ‖ Qq � sup
f :ΩÑR

EP rT s � logpEQre
T sq, (19)

where the supremum is taken over all classes of the function f such that the expectation
is finite. By choosing the function class, the term on the right hand side of (19) yields an
optimal lower bound on the KL-divergence. In MINE, a deep neural network, called statistics
network, is chosen as the function family Tθ : X � Y Ñ R with parameters θ P Θ. We then
have the following lower bound on KL-divergence:

DKLpP ‖ Qq ¥ sup
TPF

EP rT s � logpEQre
T sq. (20)

By using the inequality IpX, Y q ¥ IΘpX, Y q [12], where IΘpX, Y q denotes the mutual
information measure defined as

IΘpX, Y q � sup
θPΘ

EPXY rT s � logpEPXbPY re
T sq, (21)
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Fig. 6: MI estimator.

we can estimate the mutual information by maximizing IΘpX, Y q in (21). The MI neural
estimator Tθ includes two fully connected hidden layers each has 10 nodes, and a linear
output node as shown in Figure 6. Where the inputs are the samples from the joint distribution
of P pXn, Ynq or P pXn, Ynq, and marginal distributions P pXq, P pY q or P pZq respectively.
We take the samples of these distributions and approximate the expectations by the sample
average. The marginal distribution of the input can be derived by shuffling the joint distri-
bution along with the batch axis [12]. Hence, the MI estimation for N samples is given as
follows [13]:

IΘpXn, Ynq �
1

N

Ņ

i�1

rTθpx
n
i ,y

n
i qs � log

1

N

Ņ

i�1

reTθpx
n
i ,ȳ

n
i qs.

Similarly, the MI between Alice and Eve or the leakage information to Eve is estimated as

IΘpXn, Znq �
1

N

Ņ

i�1

rTθpx
n
i , z

n
i qs � log

1

N

Ņ

i�1

reTθx
n
i ,z̄

n
i qs.

Then the secrecy rate is then given by

CMINE
s � IΘpXn, Ynq � IΘpXn, Znq. (22)

2) MINE-based FJ: In this section, we leverage MINE to optimize channel capacity and
secrecy capacity simultaneously. The structures of encoder and MI estimator, IΘ network,
remain unchanged as described in Section III and IV. Regarding security purpose, we will
shown that MINE can be used to train the channel with the FJ set up proposed above
in Section II, by alternating the maximization of the estimated mutual information over
the estimator weights and the encoder weights. The main advantage of that is the training
works without explicit knowledge of the channel density function and rather approximates
a function/distribution of the channel as AE based FJ. Our security model is presented in
Figure 7. To achieve the security requirement and reliable transmission, we use a new security
loss function based on MI with the control coefficient β as follows:

LMINE � βIΘpXn, Ynq � p1 � βqIΘpXn, Znq, (23)
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Fig. 7: MI based FJ

From the equation (22) the loss function can be presented as

LMINE �
β

N

Ņ

i�1

rTθpx
n
i ,y

n
i qs � β log

1

N

Ņ

i�1

reTθpx
n
i ,ȳ

n
i qs

�
p1 � βq

N

Ņ

i�1

rTθpx
n
i , z̄

n
i qs � p1 � βq log

1

N

Ņ

i�1

reTθpx
n
i ,z̄

n
i qs (24)

where the coefficient β represents the trade-off between the communication rate and secrecy
rate.

As mentioned above, to avoid approximating the channel probability distribution itself,
we will approximate the mutual information between the samples of the channel input and
output and optimize the encoder weights, by maximizing the mutual information between
them, see Figure 8. For that, we utilize a recent NN estimator of the mutual information [8]
and integrate it in our security framework. We are, therefore, independent of the decoder and
can reliably train our encoding function using only channel samples.

V. PERFORMANCE EVALUATION

A. Simulation and Neural network architecture

MISO-AEFJ: We use the state-of-the-art deep learning library Tensor Flow with Adam
optimizer as tools for the training process. To yield the BLER and expected secrecy capacity
C, we use Monte-Carlo simulation with the flat Rayleigh fading channel [20], [21] by
including a fading layer right after the normalization layer. The components of hk and gk
are assumed to be i.i.d. flat Rayleigh with Ep|hi|

2q � Ep|gi|
2q � 1. Further, we assume

that the power constraint P has been normalized by the power of AWGN noise variables
nb and ne. For this simulation, we have taken a direct SNR of 7 dB in both links during
the training phase. For the AEFJ training process, we construct the AE on the Alice-Bob
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Fig. 8: Optimization at the encoder

link with the layers as in the Figure 3 while Eve has the same neural decoder as that of
Bob. The input and output layer has 16 neurons, which represent a symbol when transmit a
block of 4 bit. The channel layer includes NT neurons width representing the time instants
on the channel. In the fading layer, the two channel layers are concatenated. The AE at
Alice-Bob channel and NN at Eve are trained at the same time as a one-input-two-output
NN network with the security loss function (13). Regarding MINE based security approach,
the structure of our model is unchanged with the difference in the MINE security function
(9). Figure 9 demonstrates the secrecy rate with two different values of α in (13), given
the number of transmit antennas NT � 2, each is with 300 iterations and the batch size of
20, 000. We observe that the higher the value of α, the higher the secrecy rate. This means
that there is a trade-off between the communication rate and the secrecy rate due to the
influence of the FJ signal. Figure 10 shows BLER at Bob and Eve, before and after a secure
communication by AEFJ, for some SNR values. We observed a significant increase in BLER
of Eve by using AEFJ compared to the one without AEFJ. Meanwhile, Bob’s BLER change
before and after applying AEFJ is negligible. This means the proposed method shows high
performance against the physical-layer security thread by eavesdropping. Figure 11 compares
the mutual information at Bob and Eve using the security model in Figure 7. We can see
that the information leakage to Eve decreases significantly when using FJ, and a non-zero
average secrecy rate can be achieved. Figure 12 demonstrates the performance of the MINE
model to deal with the eavesdropping thread in wireless communications. We observe that
the BLER performance using MINE is competitive with that in AEFJ with the cross-entropy
loss function. Also, regarding the relationship between the average secrecy rate and BLER
of the receiver at Bob, Figure 13 shows a decrease in the average secrecy rate when BLER
increases. MIMO-AEFJ: In this part we compare the secrecy capacity achieved in case of
using AEFJ and conventional methods in MIMO channels.
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VI. Conclusion

In this paper, we have presented a new deep learning based friendly jamming approach to deal
with the eavesdropping issues in wireless communication. By using the autoencoder at both
transmitter and receiver, we have shown that the communication secrecy and the reliability
can be achieved simultaneously compared to the conventional model. Further, we leverage the
mutual information neural estimator to optimize the security scheme. This modification shows
comparable security performance as compared to the autoencoder with the cross-entropy
security loss function. In addition, using the mutual information neural estimator, we can
optimize the autoencoder independently at the transmitter and the receiver, which is a shortage
of the conventional autoencoder model. This method is promising for applications that require
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fast deployment and lightweight security, such as IoT networks.
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Abstract

Blockchain technology has a huge impact on important areas, such as healthcare, finance, vehi-
cles, agriculture, and Internet of Things networks. It ensures the security, integrity and performance
of the network. In this project, a smart grid testbed is built to model a blockchain based application.
The work includes two phases. In phase 1, we implement the system based on Ethereum network
1.0, using the Proof-of-Work (PoW) consensus mechanism. The network is tested to resist common
cyber-attacks such as DDoS and 51% (Double-spending). The experiment is shown in detail. Phase
2 is expected to develop the core network of the system in Ethereum 2.0, using the Proof-of-State
consensus mechanism.

Index Terms

Cybersecurity, blockchain, smart grid.

This work is the output of the ASEAN IVO http://www.nict.go.jp/en/asean ivo/index.html project Cyber-Attack Detection
and Information Security for Industry 4.0 and financially supported by NICT http://www.nict.go.jp/en/index.html.
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I. Introduction

In Industry 4.0, a growing number of cyber-attack incidents occurred at central servers with
serious effects. Hence, data security and integrity have always been attracting great attention.
A potential solution is blockchain technology [1] that stores data on a number of network
nodes and a consensus mechanism among the nodes to avoid the stored data being manipulated
maliciously.

In 2009, Satoshi Nakamoto’s development of Bitcoin, which hailed as a radical development
in money and currency, being the first example of a digital asset. After Bitcoin, blockchain
technologies are blooming with a famous project named “Ethereum”. This technology has
Bitcoin’s valuable characteristics such as decentralization, transparency, immutability, and
security-and-privacy. Moreover, it has some great improvements like smart contract and
GHOST (Greedy Heaviest Observed Subtree) protocol [2]. It takes only 15 seconds to confirm
a new block (0.25% of Bitcoin) [3], [4].

The Ethereum network is applied in many important applications, such as:

 Smart agriculture: the Ethereum network is used in large farms [5]; it guarantees the
safety and transparency of data, e.g. fertilizer, irrigation [6].

 Internet of vehicles: The decentralized properties of th Ethereum technology has been
brought safety, privacy, and security to information of the driver [7].

 Healthcare: Blockchain technologies have been adopted by many healthcare systems to
enhance the privacy of patient data [8], improve interoperability across devices [9], and
maintain an immutable decentralized database of medical records.

In a smart city, the sensor networks are connected together and data is collected based these
networks in real-time. A smart grid [10] in Fig. 1 is necessary for controlling the electric

Fig. 1: Model of a smart grid in a smart city.
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system of the city. The smart grid can exploit, store, and display the amount of electricity
consumption and production. After that, the money is calculated to pay the bill.

Zhuang et al. [11] exploited the blockchain technology and showed the architecture and
development platforms of a blockchain-based smart grid for cybersecurity. Huang et al. [12]
presented mechanisms of a smart grid in theory and the implementation of the communication
system using Sigfox devices but has not applied blockchain into a complete system yet. Gao
et al. [13] even finished building a smart contract for their smart grid, but the experimental
results have been incomplete.

As shown in Fig. 1, the smart grid is separated into threes layers: Home Area Node (HAN
home electrical of the customer), Neighborhood Area Network (NAN - electrical network of
several HANs), Wire Area Network (WAN - Connects NANs together). In this report, we
implemented a test-bed at HAN level because this layer is easily attacked, hence affecting
the customers directly. After that, the DDoS and 51% attacks were verified on the proposed
system.

The rest of the report is organized as follows. Section II provides an overview of the
Ethereum blockchain technology. Section III describes information about how to implement
a smart grid on the Ethereum network. Section IV verifies the ability of the cyber-attack
resistance of the test-bed. Finally, Section V summarizes the report.

II. Overview of the Ethereum network

In 2009, Bitcoin is the first example of a digital asset with none of backing, centralized issuer
and controller. The underlying blockchain technology attracted a huge attention. In 2013,
Ethereum was proposed by Vitalik Buterin, a cryptocurrency researcher and programmer.
It provides a blockchain network with a built-in fully fledged Turing-complete programming
language, used to create “contracts”. The contracts are used to encode arbitrary state transition
functions, allowing users to create any of the systems described above, as well as many others,
simply by writing up the logic in a few lines of code [14].

The Ethereum network is divided into seven protocol layers [15]: Storage, Data, Network,
Protocol, Consensus, Contract, Application. These protocol layers are described by the struc-
ture given in Fig. 2 [15].

Among them, the contract layer and the GHOST protocol will be introduced primarily,
because they make up the preeminence between Ethereum over Bitcoin and make Ethereum
chosen for the experimental purposes of this report.

Smart contract in the Contract layer is the first highlight of Ethereum, that is simply a
piece of code that is running on Ethereum. It is called a “contract” because code that runs on
Ethereum can control valuable things like ETH or other digital assets. A smart contract can be
built with Solidity language as shown in Fig. 3. The Solidity Compiler will compile the smart
contract into Bytecode and Application Binary Interface (ABI). Both of them are packaged
into a transaction and deployed into the Ethereum network. Bytecode is an executable code
on Ethereum Virtual Machine (EVM) and Contract ABI is an interface to interact with EVM
Bytecode. Web3 [16] is a tool provided for users to interact with smart contracts. With the
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Fig. 2: Ethereum network layer classification [15].

address of smart contract and its ABI, Web3 allows the user to call functions and collect data
from the smart contract for their intentions.

GHOST [2] is a Proof-of-Work (PoW) blockchain protocol much like Bitcoin’s, except
in how it resolves the correct blockchain. As the name entails, instead of the longest chain
consensus rule, GHOST follows the path of the subtree with the combined hardest proof
of work/difficulty. This can be succinctly visualized as the path of the largest subtree by
cardinality and refer to that for simplicity, however, the consensus rule, similar to Bitcoin, is
based on aggregate computational power/hashes but of subtrees instead of single links. This
protocol makes Ethereum significantly faster than Bitcoin’s block confirmation times [14]. In
fact, through GHOST, Ethereum’s block confirmation time has been significantly improved,
as compared to Bitcoin, as shown in Table I.

Table I: Block confirmation time comparisons.

Bitcoin Ethereum
Type PoW PoW
Proposer selection Base on hash rate Base on hash rate
Hardware requirement High High
Average transaction
mining time

Avg around: 98 minutes [4] Avg around: 15 seconds [3]

Finality time
After 6 new blocks are added
Avg around: 10 hours

After 7 new blocks are added
Avg around: 2 minutes
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Fig. 3: Smart contract of the Ethereum network.

III. Development of a blockchain-based smart grid

This section presents how to build a smart grid based on both the public Ethereum network
and the private Ethereum network.

A. System model

A simple system model of the test-bed is shown in Fig. 4. It includes an electrical load, a
smart meter, a BeagleBone Black, a laptop and the Ethereum network.

Smart meter is the next generation of electricity meter. It measures how much electricity
has been used, as well as displays this one on a handy in-home display. Furthermore, data
collected from the smart meter can be exploited by other IoT devices which use Modbus-RTU
protocol. In detail, a smart meter model XTM35sc is used, the parameters displayed on its
screen are: voltage, current, active power, consumed power, power factor, frequency. Some
specifications are: operating voltage from 161 V to 300 V AC, operating temperature between
–10�C and 50�C, operational current range from 0.25A to 50A, operational frequency range
is 50/60 Hz. In this proposal, data collected from the smart meter will be exploited, decoded,
and transmitted through BeagleBone Black. For the sake of simplicity, only consumed energy
data will be collected.

BeagleBone Black (BBB) is a low-cost, community-supported development platform for
developers and hobbyists. It is also known as a mini PC suitable for IoT applications. It
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Fig. 4: System model.

also brings back many advantages such as runs on Linux, integrates both USB and Ethernet
ports, and has a lot of expansion pins available to plug the sensors,... In our testbed, BBB
will be used to extract data from a smart meter. The extracted data will be packed according
to the ABI of the smart contract into a transaction. And then that transaction will be sent
to the Ethereum network. In detail, BBB reads the value of the registers in the smart meter,
determines what is the consumed energy register, and decodes it into a float32 value following
the “big endian” standard. Having obtained the value of consumed energy, Web3.js is used
to pack this one to a transaction. Lastly, Ethereumjs-tx [17] is used to sign that transaction by
“private key” and send it to the network. Fig. 5 shows a screenshot when BBB was sending
transactions to the Ethereum network.

A laptop is used to track the amount of electricity comsumption. It is connected to the
Ethereum network to take and show data via a dashboard interface.

The Ethereum network is the core of the testbed and is presented next.

B. Ethereum network

Ether is a digital currency with a huge price. At the time of writing this report 1 Ether is
approximately $350, so if the testbed is deployed in the main Ethereum network, it will be
expensive even though the transactions do not include Ether, but the transaction fee will still
be charged, and as mentioned above 10 seconds per transaction will be a big problem. Thus,
two ways to deploy the system and send transactions for free in the Ethereum network are
as follows.
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Fig. 5: BBB collects data from smart meter and sent to Ethereum network.

1) Public Ethereum testnet: The first way is to use the Ethereum testnet, which is quite
popular. It still has the same protocol as the main network, but on the testnet, all Ethers are
valueless and users can get them in some faucets [18] on the Internet. Nowadays, there are
many Ethereum testnets that have already been deployed, such as Rinkeby [19], Kovan [20],
Goerli [21]. In this report, the Rinkeby testnet is used. The easiest way to interact with the
Rinkeby network is to use a third-party application, Infura [22], which provides APIs for
Web3 and connects to Rinkeby.

Using Infura and testnet are extremely simple and handy. All of the functions are almost
the same as those in the main network. However, this is also the reason why they are not
suitable for special purposes like the testbed. The functions such as miners, nodes, and other
users cannot be controlled. Moreover, Infura also limits the number of API calls per day, so
if the smart grid is large, it is necessary to create a private network.

2) Private Ethereum testnet: In order to create a private network, Ethereum’s developer
team provides an open-source software named Go-ethereum [23] (Geth). Geth is a powerful
software, with a lot of functions, for examples: create private nodes, create new accounts, run
miner inside nodes, p2p connections, control client for nodes, ...

First of all, initialization parameters for a node must be defined. The work is completed by
creating a “genesis.json”, this file includes several parameters, for instance: “chainid”, “dif-
ficulty”, “gas limit”, “homesteadBlock”. Then, the following two commands are for creating
and running a private Ethereum node.

/ / To c r e a t e a new node by g e n e s i s f i l e :
$ geth –datadir ./node1 init ./genesis.json
/ / Run t h i s node wi th o p t i o n s :
$ geth –datadir ./ –rpc –rpcaddr 172.17.0.2 –rpcport ”8545”–rpccorsdomain ”*” –allow-
insecure-unlock console

where –datadir points to where the local node located; –rpc is JSON-RPC [24], that is an
address which use to connect with other nodes; –allow-insecure-unlock will unlock permission
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of accounts that allows them to send transactions. And the rest of the options can be found
in [25].

C. Smart contract

After the Ethereum network has been running, a simple smart contract will be deployed.
This contract only collects energy and time-stamps this energy, marks them in sequence,
and creates events for other devices that can read data. The smart contract is shown in the
following table.

Smart Contract: Smart Meter
1: contract Smartmeter {
2: uint public taskCount = 0
3: struct Meter {
4: uint id;
5: string time;
6: string energy;
7: }
8: mapping(uint =¡ Meter) public meter;
9: event taskCreated(

10: uint id,
11: string time,
12: string energy
13: );
14: constructor() public{
15: createMeter(“0” , “0.0”);
16: };
17: function createMeter(string memory time, string memory energy) public {
18: ++taskCount;
19: meter[taskCount] = Meter(taskCount, time, energy);
20: emit taskCreated(taskCount, time, energy);
21: }
22: }

D. Data Monitoring

In our testbed, data monitoring is presented in a dashboard, created by ReactJS [26] and
linked to the Ethereum network by json-rpc (default: 127.0.0.1:8545). Web3 collects data from
the blockchain network and transfer them to the front-end website. Parameters are selected
to display, such as total blocks in the blockchain, number of smart meters, the hash rate of
miners, number of tokens in a small table, and a chart of consumed energy by time. All of
them are updated manually every 10 seconds. The obtained results are shown in Fig. 6.
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Fig. 6: Dashboard of the testbed using private testnet.

IV. Cyber-attacks on the developed blockchain testbed

Assuming a hacker would attack the blockchain network, this section will check the perfor-
mance of the designed Ethereum network against two types of attacks: Distributed Denial-
of-Service (DDoS) attack to disrupt the network service, and 51% (Double-spending) attack
to steal cryptocurrency.

A. Distributed Denial-of-Service (DDoS) attack

DDoS is a common cyber-attack that causes a machine or a network resource unavailable
to its intended users by temporarily or indefinitely disrupting the connection between a host
and network. Denial-of-service typically takes place when the targeted machine or resource
is flooded with a huge number of IP packet requests in an attempt to overload the network
and prevent some or all legitimate requests from being fulfilled.

To implement this attack on the testbed, 4 nodes have been created by the method create
private node as mentioned in Section III-B2, and each node resides in a virtual machine
created by using Docker [27]. After they were all running, in console of Geth, run the
following command to connect them:

¡ admin.addPeer(enode)

where enode is a parameter that defines a specific node and can be obtained by the command:
“admin.nodeInfo.enode”.
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Fig. 7: DDoS attack to the Ethereum network.

Fig. 7 illustrates a DDoS attack to Ethereum network.

Because each node runs in a virtual machine, turning off a node by its IP address has the
same result as a DDoS attack at the node. To do that, a short script is written, and results,
tested in the testbed, are shown in Fig. 8. The attacked node in the first terminal stoped
working, but the other nodes was still working fine without interruption. In conclusion, due
to the decentralization of the blockchain network, the system on the testbed was not affected
by the DDoS attack.

B. 51% attack

Page 3 of Satoshi Nakamoto’s whitepaper [1] (on “Bitcoin: A Peer-to-Peer Electronic Cash
System”) states the following: “If a majority of CPU power is controlled by honest nodes,
the honest chain will grow the fastest and outpace any competing chains.”. However, in small
to medium Ethereum networks, there is a risk that an attacker can control majority of CPU
power, that can be a 51% attack (Double-spend). To illustrate, in early 2009, there was the
theft of 219500 ETC ($1.1 M) at Coinbase [28].

In our study, to implement the attack, a new Token is created in ERC 20 Token standard
(EIP-20) [29], that could present for money in the main network. This work divides these
Tokens into meters A and B. Fig. 9 shows the attack, where Pools A and B are two nodes
including miner. Thus, meter A sends 50 Tokens to meter B but Pool A fakes this transaction
from 50 to 100 Tokens. Because Pools A and B do not connect to each other, they will
confirm new blocks by their own chains. And according to the assumption, Pool A has 51%
total hashrate of the network. So, Pool A will confirm new blocks faster, and in Fig. 10
assume that the chain in Pool A longer than Pool B is five blocks. The longest chain is
always considered the “true” chain, therefore when Pools A and B connect to each other, the
chain of Pool B with honest transaction will be rejected.

10

C
O
N
F
ID
E
N
T
IA
L

In
te
rn
al
re
po
rt
s,
in
te
nd
ed

fo
r
IV
O
re
vi
ew

on
ly



Fig. 8: DDoS attack result.

Fig. 9: 51% attack (double spend).

As a result, this is really a risk and exists alongside PoW. For example, the top five mining
pools control up to 55.9% [30] total hashrate of the Bitcoin network. This is the most serious
issue of PoW-based blockchain networks because it is against the decentralized spirit of
blockchain technology.

There are two ways to solve this issue. Firstly, the organizations that run large pools need
to be certificated. Secondly, change the core of Ethereum from Proof-of-Work to Proof-of-
Stake [31].
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Fig. 10: Result of 51% attack.

V. Conclusion

In this report, we have developed a simple testbed to provide experiences of blockchain
technology which built in smart grid application. The test-bed shown the storage and display
data of the smart grid from end to end. Two cyber-attacks (DDoS and 51%) were also verified
on the testbed.

For future work, the system model will be expanded by using several IoT gateways. The
core of Euthereum 2.0 is considered implementing in phase 2.

Above, we have designed a simple blockchain network for the purpose of enhancing security
of a practical IoT application (smart grid) using an existing blockchain method. The focus is
on the implementation of the blockchain technology.

We would like to extend it to a more complex and practical scenario of a smart factory.
Such a complex scenario is to experiment different types of security attacks on different IoT
devices in practice. In addition, security methods developed in this project, such as federated
transfer learning for cyberattack detection can be implemented in this configuration. This
scenario is depicted in Figure 11.

12

C
O
N
F
ID
E
N
T
IA
L

In
te
rn
al
re
po
rt
s,
in
te
nd
ed

fo
r
IV
O
re
vi
ew

on
ly



Smart 
Meter/

Industry 
Devices

BBB

BLOCKCHAIN Network

WiFi

Laptop

CONFIGURATION 2

Electrical Load

Modbus RS485/
Industry Standards

Electrical Load

IIot 
Gateway

WiFi

Modbus RS485

WiFi

ZigBee ZigBee
Modbus 

TCP

Iot 
Gateway 

Starter Kit

Ethernet

WiFi

ZigBee ZigBee
Modbus 

TCP

Iot 
Gateway 

Starter Kit

Electrical Load

Ethernet

Fig. 11: Complex system model (for future work).
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