Context-Aware Disaster Mitigation using Mobile Edge Computing and Wireless Mesh Network

Background:

Natural disasters occur frequently around the world. Internet of things (IoT) sensors can detect such cataclysmic events and initiate rescue actions. In existing IoT framework, data are transmitted to the remote cloud via wired connection for further analysis. Several issues remain to be addressed, including massive deployment effort, unavailability of vicinity communication infrastructure, data transfer over limited bandwidth, high latency in communication networks, and redundancy in disaster content.

Targets:

To develop a context-aware disaster mitigation system (CAMS) that utilizes mobile edge computing (MEC) and wireless mesh network powered by NerveNet.

Speaker: Ir. Dr. Tham Mau Luen @ Universiti Tunku Abdul Rahman, Malaysia

ASEAN IVO Forum 2020 2020.10.28 Online

Context-Aware Disaster Mitigation using Mobile Edge Computing and Wireless Mesh Network

Project Members:

Name	Institution	Name	Institution
Ir. Dr. Tham Mau Luen	UTAR, Malaysia	Dr. Yasunori Owada	NICT, Japan
Ir. Dr. Chang Yoong Choon	UTAR, Malaysia	Dr. Goshi Sato	NICT, Japan
Ts. Dr. Ezra Morris	UTAR, Malaysia	Mr. Hachihei Kurematsu	BHN Association/JTTA, Japan
Dr. Lee Ying Loong	UTAR, Malaysia	Mr. Nobuyuki Asai	Ready Affiliate Japan Co., Ltd, Japan
Mr. Lim Wei Sean	UTAR, Malaysia	Prof. Myint Myint Sein	UCSY, Myanmar
Mr. Teoh Han Wei	UTAR, Malaysia	Prof. Thin Lai Lai Thein	UCSY, Myanmar
Ir. Dr. Nordin Bin Ramli	MIMOS, Malaysia	Prof. Zin May Aye	UCSY, Myanmar
Dr. Tuan Ahmad Zahidi Tuan Abdul Rahman	MIMOS, Malaysia	Ms. Emmon Maw	UCSY, Myanmar
Mr. Sakda Sakorntanant	PIT, Thailand	Dr. Suvit Poomrittigul PIT, Thailand	

Project Duration:

1st April 2020 to 31st March 2022

Project Budget:

\$80,000

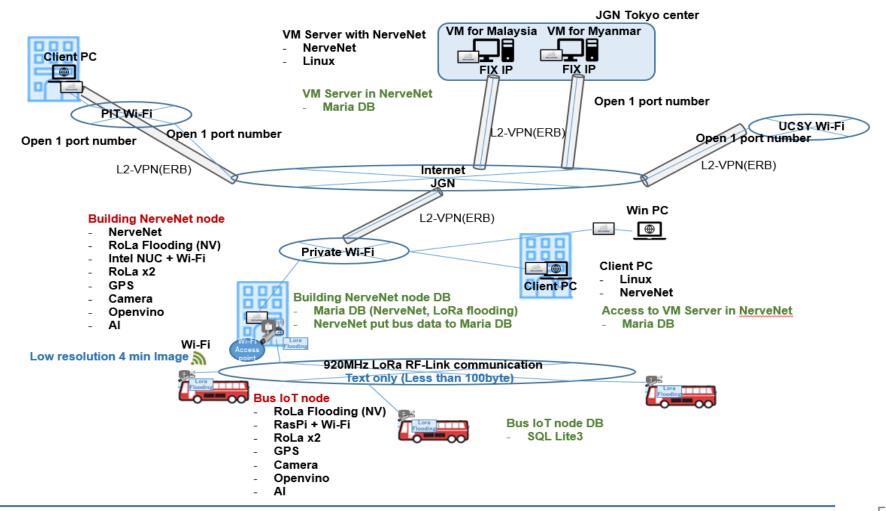
Project Activities: Group Meeting

Date	Description	Venue	Agenda
24 April 2020	Kickoff Meeting	WEB	Project Overall PlanCRDAExplanation of Personal Data
8 May 2020	2 nd project meeting	WEB	 Network architecture such as NerveNet LoRa, JGN Cloud Server and Web Server
12 May 2020	3 rd project meeting	WEB	 NerveNet config and JGN
19 May 2020	4 th project meeting	WEB	CRDA Finalization
24 June 2020	5 th project meeting	WEB	Budget PlanEquipment Procurement

Project Activities: Project Timeline

Party	Schedule	Task Description	Remark
UTAR/NICT/BHN		 Define testbed and equipment Study on NeverNet System Explore use case of NerveNet 	Done80%Pending for equipment
UTAR/MIMOS	July - Dec 2020	 Define testbed and equipment Study on disaster-aware video analytics Train detection model 	DoneDone80%
UCSY/UTAR		Define testbed and equipmentStudy on evacuation route strategy	DonePending for equipment
PIT/NICT		Define testbed and equipmentExplore the use of JGN	DonePending for equipment

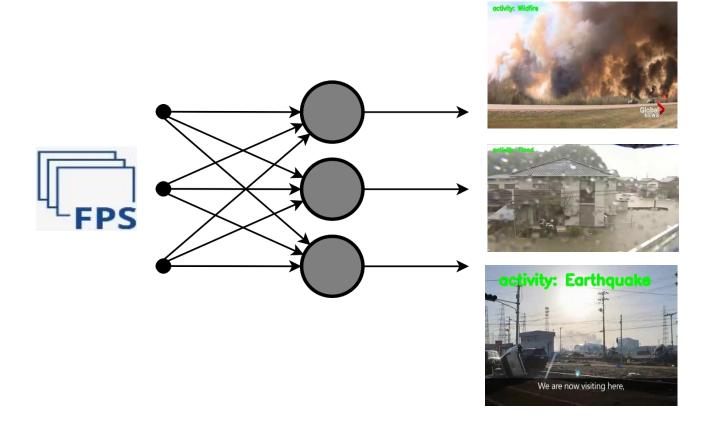
Project Activities: Budget Plan


Title	Equipment	Amount	Remark	
NICT 1 st purchase	¥ 494,450	¥ 494,450	Approved	
UTAR 1 st purchase	 Bus IoT Node Building NerveNet Node NerveNet Gateway Workstation 	\$28,051	Submitted to NICT for approval	
PIT 1 st purchase	Workstation for JGN	THB62,070	Remitted	
UCSY 1 st purchase	Workstation for JGN	\$2,150	Approved	

R&D Results: Defined Testbed

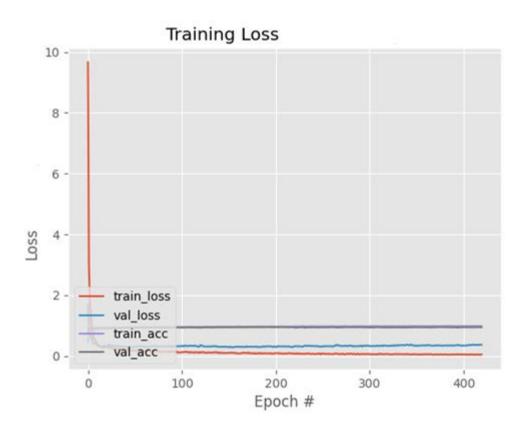
This project is divided into two parts:

- A. Disaster-Aware Mobile Edge Computing
- B. Disaster Content Analysis and Visualization



R&D Results: Disaster Detection

Generate a pre-trained model which detects three types of disasters:


(1) Wildfire, (2) Flood and (3) Earthquake

R&D Results: Disaster Detection

Specification	Parameter
Platform	Tensorflow
Tool	Keras
Neural Network	CNN
Device	CPU
Training Size	0.75
Testing Size	0.25
Validation Size	0.1
Batch Size	20
Step Size	8
Epoch	420
Min Learning Rate	1e-7
Max Learning Rate	1e-4

Disaster Recovery: In disaster scenarios, multiple affected areas may need the immediate help of emergency response unit. Based on the number of victims, activity of disasters and optimized evacuation routes, emergency response unit can dispatch manpower more efficiently, which could save more lives.

Network Scalability: NerveNet is a wireless capable node that can be a part of ad hoc network or mesh network that can be scaled for large coverage area or large number of devices easily by increasing number of nodes in mesh.

Monitoring Scalability: Mobile edge computing (MEC) enables camera to process the video and transmit only critical in formation to the cloud. NerveNet and MEC both complement each other to boost the disaster mitigation performance.

Collaboration: MEC is the core idea of 5G standard. Utilizing this concept in disaster mitigation aligns with the state-of-the-art technology. It encourages collaboration from academia, research institutes and industries from different ASEAN countries, based on a common MEC based IoT platform.

ASEAN IVO Forum 2020

- All meetings were held online due to pandemic situation.
- Project activities and scope of each party were outlined and discussed.
- More details on testbed implementation will be explored once equipments arrive.

Party	Schedule	Task Description
UTAR/NICT/BHN		 Setup of testbed for Wi-Fi/LoRa Nervenet Configure NerveNet to support the new use case
UTAR/MIMOS	Jan - June 2021	 Validate the real-time video detection Integrate into edge computing platform
UCSY/UTAR		 Study on rapid route or optimal route identification on a complex road network for fire vehicle
PIT/NICT		Setup of VM server with JGN