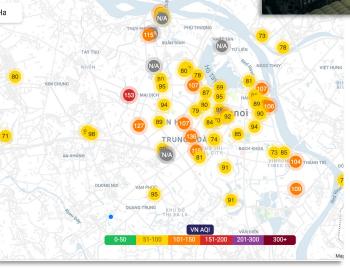


Agenda

- Background
- Problem statement and goals
- \circ Solution
- Preliminary results



Current air quality monitoring systems

Back-end

- Mostly based on static stations
 - $\,\circ\,$ In Hanoi: ~ 50 stations in total; concentration in the central area
- Using UAV: only at an early stage
- Front-end
 - Several apps: Air visual, PAM Air, etc.
 - Realtime indexes at **monitored locations**
 - One-week ahead forecast

GREENIEY BETA

PAM AIR

Problem statement

Limitation of monitored regions

The monitored regions are very limited compared to the total area.
In Hanoi: 50 stations vs. 3,329 km²

Lack of a fine-grained forecasting and analysis system

- Only short-term forecast is available.
 - E.g., within one week ahead
- Only temporal prediction is available.
 - No spatial prediction (no air quality information of unmonitored regions)

Lack of a public database

- No public database
- Researchers cannot access the raw data.

Goals

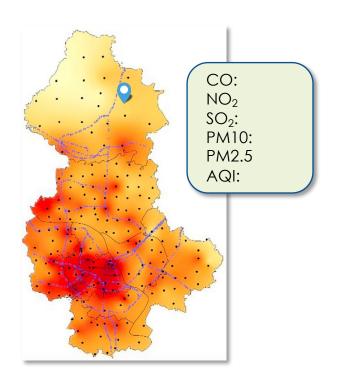
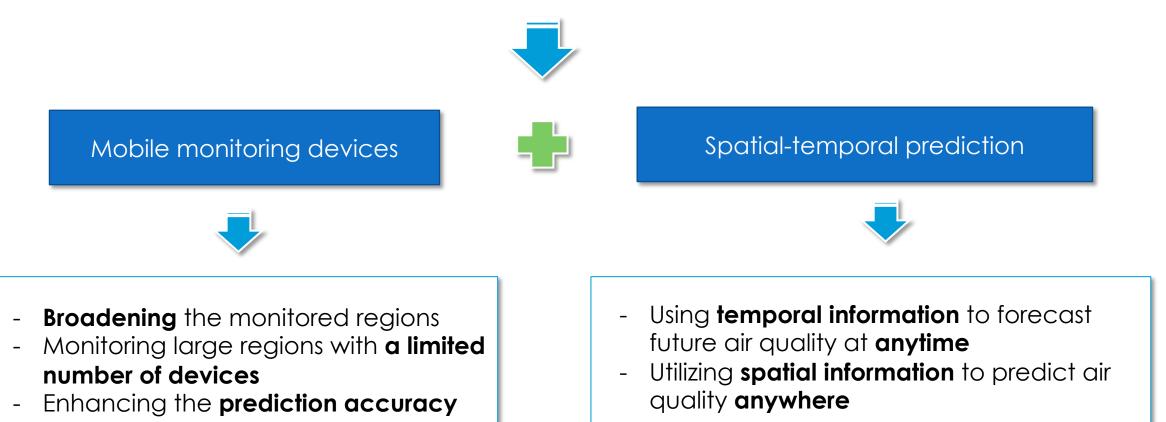
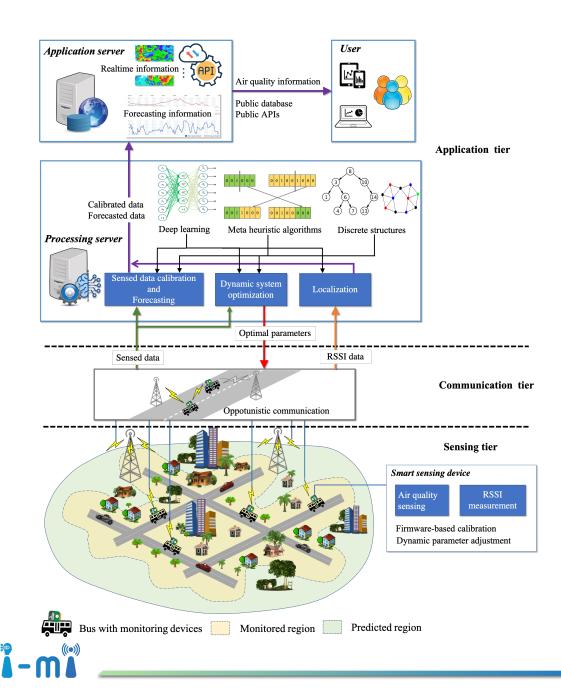


Illustration of the air quality map




- A fine-grained real-time air quality map
 - High accurate information at **anywhere anytime**
- APIs for **analyzing** and **forecasting** air quality
- An optimal model for deploying air quality systems

Solutions

• Key points: How to provide air quality information everywhere, every time?

Fi-Mi's 3-tier Architecture

• Sensing tier

- Collects real-time air quality data
- Carried by air monitoring devices deployed on vehicular devices such as buses

• Communication tier

• Transfers data between the monitoring devices and the servers

• Application tier

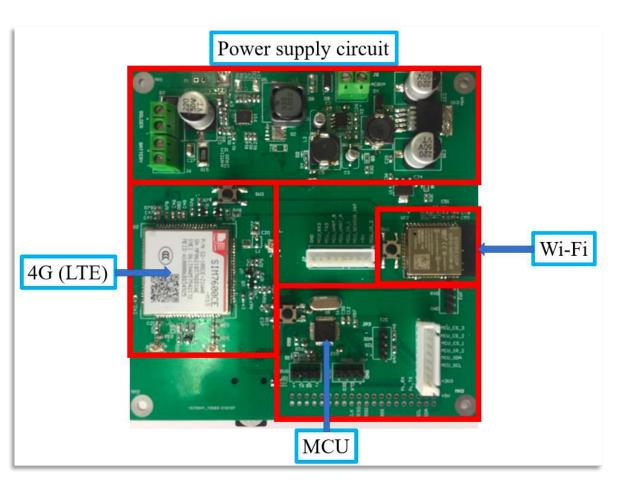
- Stores the sensory data
- Forecasts the future trend of the air quality
- Predicts air quality in un-monitored regions
- **Optimizes** the behaviors of the monitoring devices
- Provides information to users through smartphone applications and web portal

Device implementation

Implementing real devicesRuning field test

8

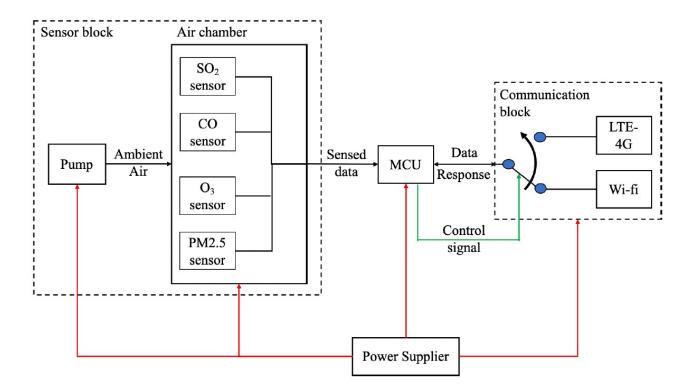
Device requirements


- GPS: longitude, latitude
- Battery usage
- Low cost

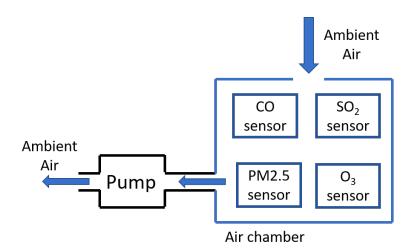
Metrics	Range	Resolution	Accuracy	Correlation
PM2.5	0 ÷ 500 ug/m3	0.1 ug/m3	15%	0.6
СО	0 ÷ 10000 ug/m3	0.1 ug/m3	10%	0.6
SO2	0 ÷ 1000 ug/m3	0.1 ug/m3	10%	0.6
NO	0 ÷ 1000 ug/m3	0.1 ug/m3	10%	0.6
Nhiệt độ	-20 ÷ 70 °C	0.1 °C	5%	0.6
Độ ẩm	10 ÷ 90 %RH	0.1 %RH	5%	0.6

Circuit layout

Function	Device
MCU	STM32F103C6T8
Wi-Fi	ESP32
LTE	SIM7600CE
Power	LTC4162



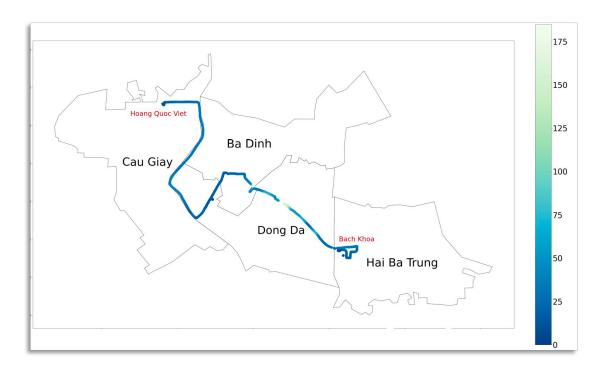
Device and Functional Blocks



Sensor modules

	ZE-03B	ZE-12A	ZE-15	ZE-25	SHT21
Metrics	PM2.5	SO2	СО	03	Temp., Humidity
Interface	UART	UART	UART	UART	I2C
Range	0 ÷ 1000 ug/m3	0 ÷ 1 ppm	0 ÷ 500 ppm	0 ÷ 10 ppm	-40 ÷ 120 ℃ 0 ÷ 100 %RH
Resolution	1 ug/m3	10 ppb	0.1 ppm	0.01 ppm	0.01°C 0.04%RH

Operation flowchart


On-device SD card

Trials

	Sen. (Pkts)	Rec. (Pcks)	Del. Ratio
Wi-Fi	1200	1198	99.8%
LTE	1200	1200	100

PM 2.5 monitoring in Hanoi

Mounting on a vehicle

Data calibration

• Method to calibrate data:

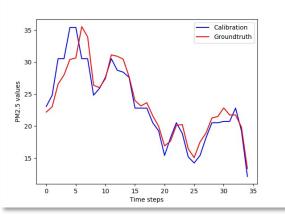
- Put data in a machine learning model: XGBoost
- Input data: PM2.5 (and temperature) of Zho3b
 - Ground-truth data: PM2.5 of Grim03 and Grim07
- The model will learn to make input data identical the ground-truth data

Experiments

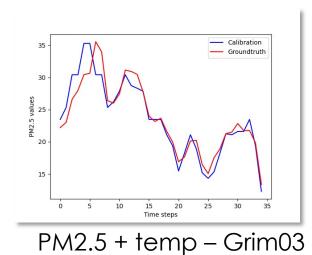
- Train/valid/test data: 60/20/20.
 134 observations are used in testing process.
- Experiment scenario

 Table 2: Experiment scenario

Scenario	Input	Ground-truth
1	PM2.5	PM2.5
2	PM2.5 + temperature	PM2.5

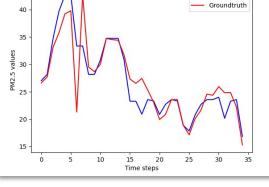

• Evaluation metrics:

• R-squared (R2) score:
$$R^2 = 1 - \frac{\sum_i (y_i - \hat{y}_i)^2}{\sum_i (y_i - \mu)^2}$$


Where: y_i – prediction value \hat{y}_i – ground-truth μ – mean value

• Mean absolute error (MAE):
$$MAE = \frac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}|$$

Experiments Results



PM2.5 – Grim03

((•))

C

- Calibration

PM2.5 – Grim07

 u_{0}

PM2.5 + temp – Grim07

Scenario using	Devices	MAE	R2 score
PM2.5	Grim03	2.148	0.856
	Grim07	3.751	0.662
PM2.5 +	Grim03	2.330	0.836
temperature	Grim07	3.434	0.726

Experiment results using XGBoost

Conclusion

Proposed a mobile air quality monitoring system

- Air quality monitoring devices are mounted on vehicles
- Finished prototyping
- Collecting and calibrating data at the server side

