ASEAN IVO FORUM 2021

An IoT-based Public Transport Data Collection Framework using Bluetooth Proximity Beacons

Sye Loong Keoh, University of Glasgow

- Improving Urban Mobility for developing countries
- IoT-based bus tracking: deployment experience and insights
- Making an impact and future work

in developing countries

Bukit Bintang Kuala Lumpur (Malaysia)

can we improve the public transport using IoT?

Tampoi, Johor (Malaysia)

Countries Grouped by United Nations

Canada

United States

UN Groups by basic economic country conditions

Least Developed Countries
Developing countries
Economies in Transition
Developed Countries

Source: http://www.howmuch.net/articles/countries-groups-by-united-nations

Brazil

urban mobility challenges

- Purchase new bus fleet, less consideration on the software infrastructure.
- Bus frequency is considered low, this is worse in rural areas.
- Reliability is affected due to traffic congestion, no bus lane.
- Lack of bus drivers, due to regulatory policy that the driver must be a citizen.

- Most of the time, there is no adherence to the service schedule.
- Typically the drivers wait until the bus is 80% filled before departing.
- If the driver calls in sick, the bus service is disrupted especially those serving the rural areas.
- Long waiting time for the passengers.

TAM

improving our public bus service!

- Collaborated with a bus operator, operating Kulai – Johor Bahru Sentral route in Malaysia.
- A very competitive route with 2 to 3 bus operators.
- Aimed to provide bus fleet tracking and bus arrival information to passengers.

Raspberry Pi 3

BLE Beacon - Estimote

Heroku Cloud Platform

S. Gunady and S. L. Keoh, "A Non-GPS based Location Tracking of Public Buses using Bluetooth Proximity Beacons," IEEE 5th World Forum on Internet of Things (WF-IoT), Limerick, Ireland, 2019

revamped mobile app (android & ios)

mobile app with google advertisements

field trial & deployment

Bus Stop Opposite Kulai Hospital

• Accuracy up to ± 3 minutes in non-congested time, as the system does not take into account traffic information yet.

Internet Connectivity

reliability & transmission range

●— < 5m —■— Between 5-10m —●— 30m

TX Power (dBm)	Max Range (m)
-20	3.5
-12	5.5
-4	14.2
4	20.5
10	33.7

- Detection of BLE beacons is very accurate, i.e. approximately 90% and above when the distance is < 10 metres.
- For detection of bus that is 30 m away, the accuracy is between 80% 90%.
- Bus id 2 had a less detection accuracy due to
 - Non-stopping at the bus stop
 - Fast speed
- Our tests reveal that when setting the beacon's "broadcasting power level" to the highest level, detection at the range of > 30m can be achieved.

challenges in deploying iot applications

- myBusz 1.0: QR code went gone within days.
- Beacon on the bus were missing.
- Power source to Raspberry Pi unplugged.
- Internet connectivity was unreliable.
- Human behaviour.
- Coordination with the bus operator, regulatory bodies, bus drivers.
- Small install base of myBusz mobile app.
- Cyber security issues.

Thank you

SyeLoong.Keoh@glasgow.ac.uk www.facebook.com/myBusz

Image Source: Singapore Institute of Technology

