November 2021

Machine Learning and Compressive Sensing for Intensive Care Unit Biomedical Recording Activities

Gelar Budiman, Khairul Anwar AICOMS Telkom University

OUTLINE

- Background
- Type of Patient's Biomedical Signal
- Biomedical and multimedia signals to be recorded and analyzed
- Compressed Sensing (CS)
- CS Requirements
- Sparsity
- CS Reconstruction
- CS and Machine Learning
- CS and Machine Learning Requirements

Background

- Many types of biomedical signal produced, including video and audio
- The signals are monitored and recorded for hospital's documentation
- The patient's status is transmitted to the nurse's center
- Storage needs with big capacity
- Patient's prediction status according to the biomedical record

Type of Patient's Biomedical Signal

- Electrocardiograph (ECG) signal
- Arterial Blood Pressure (ABP) signal
- Central Venous Pressure (CVP)
 signal
- Peripheral Oxygen Saturation (Sp02)
- Heart Rate signal
- Patient's Conditions on Audio Signal
- Patient's Conditions on Video Signal

Biomedical and multimedia signals to be recorded and analyzed

- ID Signal (16 bits per sample)
 - Electrocardiograph(ECG) signal (0.5 kHz)
 - Arterial Blood Pressure (ABP) signal (0.2 kHz)
 - Central Venous Pressure (CVP) signal (0.4 kHz)
 - Peripheral Oxygen Saturation (SpO2) (0.1 kHz)
 - Heart Rate (HR) signal (1 kHz)
 - Patient's Conditions on Audio Signal (Single channel audio, 9.6 kHz)
- 2D Signal (RGB, 8 bit per pixel)
 - Patient's Conditions on Video Signal (RGB, 600x400, 30 fps)

Compressive Sensing (CS) M < N $y_{M\times 1} = \phi_{M\times N} x_{N\times 1},$ Compression Compressed and Electrocardiogram transmitted same time by sensors $\hat{x} = \min \|x\|_0$ subject to $y = \phi x$ **Compressive Sensing** J CS Recovery Reconstructed Electrocardiogram by CS R $\min |x|$ Compression Received Medical DATA X signal 1 - norm minimization Compressed and transmitted same time by sensors **Compressive sensing** CS recovery x Reconstruct medical data \mathcal{R}^{N} $\min |x|$ Received signal L1-norm minimization

CS Requirements

Sparse Signal Input

Restricted Isometric Property

Compressible

 $(1 - \delta_s) \|x\|_2 \le \|\phi x\|_2 \le (1 + \delta_s) \|x\|_2$

 ϕ is an M×N generated random matrix with certain distribution

 δ_s is a constant containing small positive value

Sparsity

	194	184	183	181	161	184	190	169	179	175	150	182	
I	189	174	182	177	166	187	174	155	180	191	189	186	
I	178	168	185	185	173	174	176	168	179	191	192	170	
	184	180	180	180	146	156	159	149	151	166	181	195	
	170	124	170	174	181	181	171	171	166	182	182	207	
I	164	139	164	182	178	174	175	181	162	182	180	173	
	121	158	172	172	156	153	190	161	179	182	176	176	
	160	121	169	181	130	147	176	149	180	179	162	187	
	178	102	166	192	181	141	149	186	191	170	179	183	
	184	124	171	154	164	167	175	164	169	183	164	180	
	174	111	165	150	153	182	173	142	150	181	178	179	
	162	139	171	172	181	177	163	147	167	174	178	177	
		2D to 1D											
						-							

DCT 2D

CS complete stage, acquisition-reconstruction

CS and Machine Learning (Scheme 1)

CS and Machine Learning (Scheme 2)

Conclusion

- We propose applying CS to the patients biomedical data in ICU before the data is transmitted to the server
- Applying CS will reduce the size of biomedical data, thus obtaining more efficient storage
- Applying CS will also reduce the bandwidth needs
- Sparse features of the biomedical data are used for training by machine learning in the training phase
- In the testing process, the sparse features of the biomedical data will be classified/predicted into patient category, to be better, no change, and to be worse.

Thank you!

AICOMS

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon and infographics & images by Freepik **Telkom** University