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Background

 Many types of  biomedical 
signal produced, including 
video and audio

 The signals are monitored and 
recorded for hospital’s 
documentation

 The patient’s status is 
transmitted to the nurse’s 
center

 Storage needs with big 
capacity

 Patient’s prediction status 
according to the biomedical 
record



Type of Patient’s Biomedical Signal

 Electrocardiograph (ECG) signal

 Arterial Blood Pressure (ABP) signal

 Central Venous Pressure (CVP) 

signal

 Peripheral Oxygen Saturation (SpO2)

 Heart Rate signal

 Patient’s Conditions on Audio Signal 

 Patient’s Conditions on Video Signal 



Biomedical and multimedia signals to be recorded 
and analyzed

 1D Signal (16 bits per sample)

 Electrocardiograph (ECG) signal (0.5 kHz)

 Arterial Blood Pressure (ABP) signal (0.2 kHz)

 Central Venous Pressure (CVP) signal (0.4 kHz)

 Peripheral Oxygen Saturation (SpO2) (0.1 kHz)

 Heart Rate (HR) signal (1 kHz)

 Patient’s Conditions on Audio Signal (Single channel audio, 9.6 kHz)

 2D Signal (RGB, 8 bit per pixel)

 Patient’s Conditions on Video Signal (RGB, 600x400, 30 fps)



Compressive Sensing (CS)
𝑦𝑀×1 = 𝜙𝑀×𝑁𝑥𝑁×1, 𝑀 < 𝑁

 𝑥 = min 𝑥 0 subject to 𝑦 = 𝜙𝑥



CS Requirements

Restricted Isometric 
Property

Sparse Signal Input

1 − 𝛿𝑠 𝑥 2 ≤ 𝜙𝑥 2 ≤ 1 + 𝛿𝑠 𝑥 2

𝜙 is an M×N generated random matrix with 
certain distribution
𝛿𝑠 is a constant containing small positive value

Compressible



Sparsity
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CS complete stage, acquisition-reconstruction

Patient History Data Pre Processing Sparse Forward CS Acquisition

Transmit

CS Reconstruction Sparse Reverse Post Processing

Calculate Data 
Quality



CS Reconstruction

Reconstruction 
Algorithm

Convex 
Relaxation

(Basis Pursuit, 
BPDN, LASSO)

Non Convex 
Minimization 

(FOCUSS, IRLS, 
SBLA)

Greedy Iterative 
(MP, OMP, 

CoSaOMP, Reg. 
OMP)

Combinatorial 
(FSA, CP, HSS)

Iterative 
Thresholding

(IHT, IST)



CS and Machine Learning (Scheme 1)

Patient History Data Pre Processing Sparse Forward CS Acquisition

Transmit

CS Reconstruction

Model Learning

Patient Data Pre Processing Sparse Forward CS Acquisition

Transmit

CS Reconstruction
Model Testing
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CS and Machine Learning (Scheme 2)

Patient History Data Pre Processing Sparse Forward CS Acquisition

Transmit

Model Learning

Patient Data Pre Processing Sparse Forward CS Acquisition

Transmit

Model Testing

10

Prediction Result

Training

Testing

Toward be better

No change

Toward be worse

Compression 
Feature 



CS and Machine Learning Requirements

Smaller size 
compression

Good 
Accuracy

Good quality 
reconstruction



Conclusion

● We propose applying CS to the patients biomedical data in ICU 
before the data is transmitted to the server

● Applying CS will reduce the size of biomedical data, thus obtaining 
more efficient storage 

● Applying CS will also reduce the bandwidth needs
● Sparse features of the biomedical data are used for training by 

machine learning in the training phase
● In the testing process, the sparse features of the biomedical data 

will be classified/predicted  into patient category, to be better, no 
change, and to be worse.



CREDITS: This presentation template was created 
by Slidesgo, including icons by Flaticon and 

infographics & images by Freepik

Thank you!

AICOMS 

http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr

