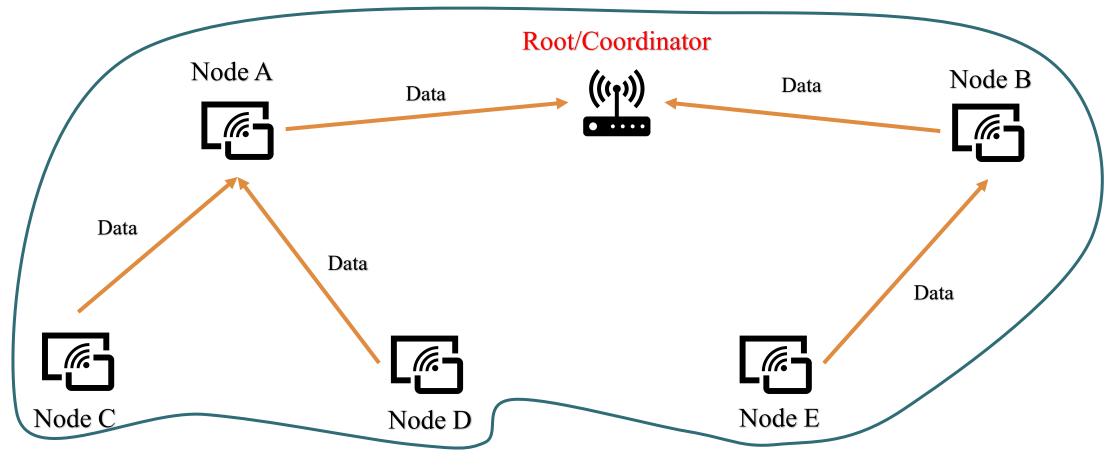


Institut de Recherche en Informatique de Toulouse CNRS - INP - UT3 - UT1 - UT2J

Design and Development of a Certifiable Real-Time IoT Solution


ASEAN



- I. PROBLEM
- **II. OBJECTIVE**
- **III. TECHNOLOGY**
- **IV. DEVELOPED FUNCTION**
- **V. DEPLOYMENT SETTING**
- VI. DEPLOYMENT RESULT VII. CONCLUSION

PROBLEM Current Solution with 6TiSCH protocol stack does not allow **direct communication** within the network and it is **not deterministic** with 6-top protocol thus getting **real time response is not possible**. (TSCH, 6-top, RPL)

ASEAN IVO Forum 2021

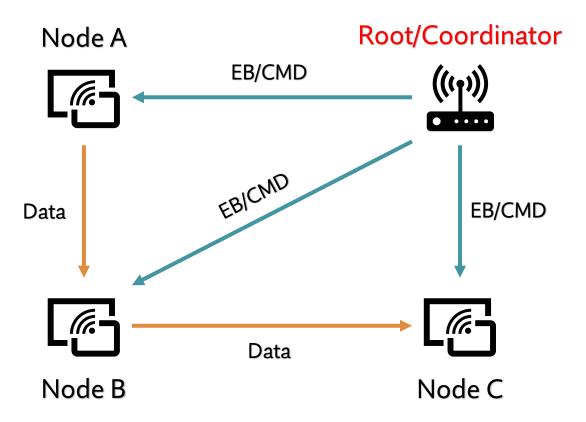
18/11/2021

6-TiSCH Protocol Stack

Node scanning for Enhanced Beacon

Communication in the network begin

6-Top protocol to conduct the communication link


Node parse the message and join the network

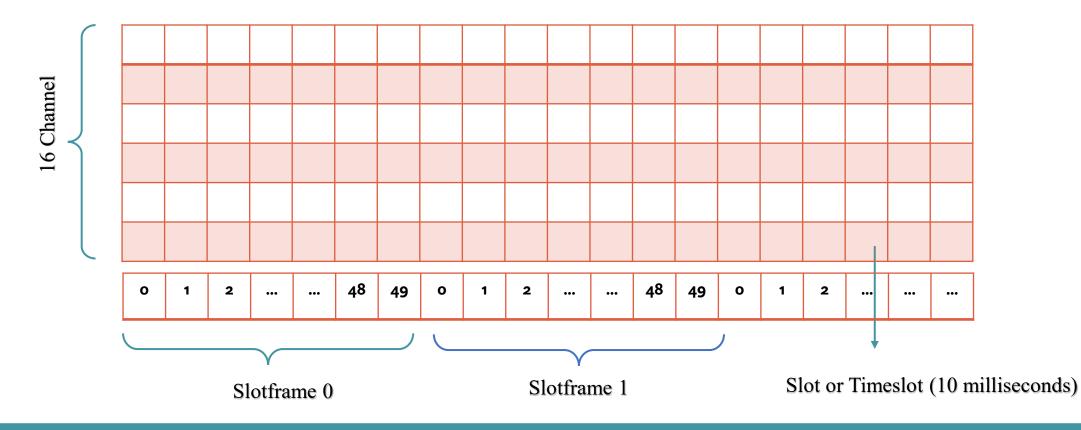
Contiki-FullMesh

Freely configured to send to any node in the network including the root node in a timely manner

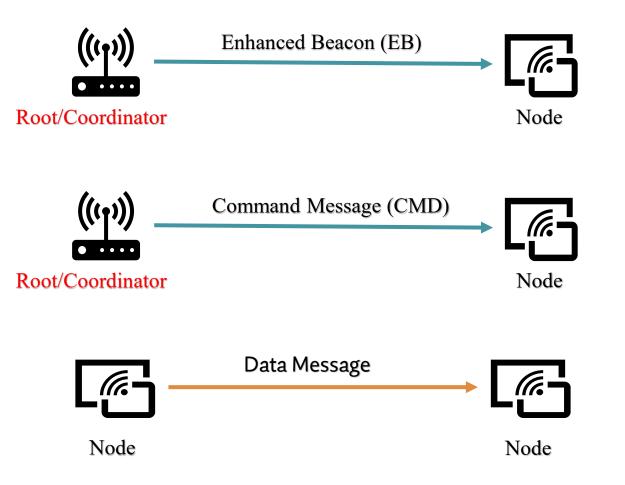
Contiki-NG

- Embedded operating system that is built to concentrate to be secure and reliable,
- Built-in with **wireless communication** protocols such as **TSCH** and more.

So we justifies TSCH in Contiki-NG.



18/11/2021


TSCH Communication Protocol

- TSCH is part of **6TiSCH** protocol stack
- Time is divided into small slots of normally 10 milliseconds

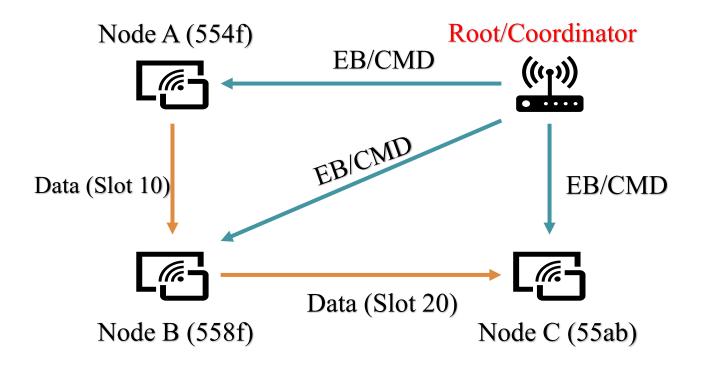
- Eliminate using 6-Top and RPL protocol
- Create Command Message
- Nodes listen and handle command message
- Nodes handle data message

Root	EB	CMD	CMD							
А		Rec	Rec			Send				
В		Rec	Rec			Rec			Send	
С		Rec	Rec						Rec	
	0	1	2	••••	••••	10	••••	••••	20	••••

The four node that is used in this experiment is mentioned below:

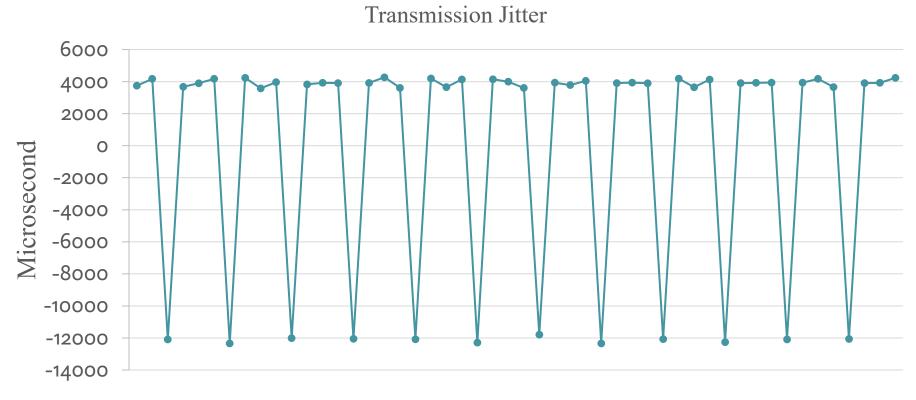
- Node A address is 00:12:4b:00:19:35:55:4f
- Node B address is 00:12:4b:00:19:35:55:8f
- Node C address is 00:12:4b:00:19:35:55:ab
- Root node address is 00:12:4b:00:19:35:56:40

Proof of developed functions


<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>G</u> o <u>C</u> apture <u>A</u> nalyze <u>S</u> tatistics Telephon <u>y</u> <u>W</u> ireless <u>T</u> ools <u>H</u> elp								
<u>/ / </u>								
🔳 Ар	Apply a display filter <ctrl-></ctrl->							
No.	Time	Source	Destination	Protocol	Length Info			
	24 50.093467	00:12:4b:00:19:35:55:4f	00:12:4b:00:19:35:55:8f	IEEE 802.15.4	28 Data, Dst: TexasIns_00:19:35:55:8f, Src: TexasIns_00:19:35:55:4f, Bad FCS			
	25 50.093841	00:12:4b:00:19:35:55:8f	00:12:4b:00:19:35:55:4f	IEEE 802.15.4	27 Ack, Dst: TexasIns_00:19:35:55:4f, Src: TexasIns_00:19:35:55:8f, Bad FCS			
	26 50.189648	00:12:4b:00:19:35:55:8f	00:12:4b:00:19:35:55:ab	IEEE 802.15.4	28 Data, Dst: TexasIns_00:19:35:55:ab, Src: TexasIns_00:19:35:55:8f, Bad FCS			
	27 50.589618	00:12:4b:00:19:35:55:4f	00:12:4b:00:19:35:55:8f	IEEE 802.15.4	28 Data, Dst: TexasIns_00:19:35:55:8f, Src: TexasIns_00:19:35:55:4f, Bad FCS			
	28 50.590000	00:12:4b:00:19:35:55:8f	00:12:4b:00:19:35:55:4f	IEEE 802.15.4	27 Ack, Dst: TexasIns_00:19:35:55:4f, Src: TexasIns_00:19:35:55:8f, Bad FCS			
	29 50.685376	00:12:4b:00:19:35:55:8f	00:12:4b:00:19:35:55:ab	IEEE 802.15.4	28 Data, Dst: TexasIns_00:19:35:55:ab, Src: TexasIns_00:19:35:55:8f, Bad FCS			
	30 50.685718	00:12:4b:00:19:35:55:ab	00:12:4b:00:19:35:55:8f	IEEE 802.15.4	27 Ack, Dst: TexasIns_00:19:35:55:8f, Src: TexasIns_00:19:35:55:ab, Bad FCS			
	31 51.085341	00:12:4b:00:19:35:55:4f	00:12:4b:00:19:35:55:8f	IEEE 802.15.4	28 Data, Dst: TexasIns_00:19:35:55:8f, Src: TexasIns_00:19:35:55:4f, Bad FCS			
	32 51.085670	00:12:4b:00:19:35:55:8f	00:12:4b:00:19:35:55:4f	IEEE 802.15.4	27 Ack, Dst: TexasIns_00:19:35:55:4f, Src: TexasIns_00:19:35:55:8f, Bad FCS			
	33 51.197316	00:12:4b:00:19:35:55:8f	00:12:4b:00:19:35:55:ab	IEEE 802.15.4	28 Data, Dst: TexasIns_00:19:35:55:ab, Src: TexasIns_00:19:35:55:8f, Bad FCS			
	34 51.197640	00:12:4b:00:19:35:55:ab	00:12:4b:00:19:35:55:8f	IEEE 802.15.4	27 Ack, Dst: TexasIns_00:19:35:55:8f, Src: TexasIns_00:19:35:55:ab, Bad FCS			
	35 51.597330	00:12:4b:00:19:35:55:4f	00:12:4b:00:19:35:55:8f	IEEE 802.15.4	28 Data, Dst: TexasIns_00:19:35:55:8f, Src: TexasIns_00:19:35:55:4f, Bad FCS			
	36 51.597663	00:12:4b:00:19:35:55:8f	00:12:4b:00:19:35:55:4f	IEEE 802.15.4	27 Ack, Dst: TexasIns_00:19:35:55:4f, Src: TexasIns_00:19:35:55:8f, Bad FCS			
	37 51.693373	00:12:4b:00:19:35:55:8f	00:12:4b:00:19:35:55:ab	IEEE 802.15.4	28 Data, Dst: TexasIns_00:19:35:55:ab, Src: TexasIns_00:19:35:55:8f, Bad FCS			
	38 51.693710	00:12:4b:00:19:35:55:ab	00:12:4b:00:19:35:55:8f	IEEE 802.15.4	27 Ack, Dst: TexasIns_00:19:35:55:8f, Src: TexasIns_00:19:35:55:ab, Bad FCS			

50_1.pcapng

Study of Determinism


Jitter = Average transmission delay – Max Transmission delay. The solution is deterministic only if Deadline >= Jitter + Average transmission delay

 Slotframe Length equal to 50 slots equal to 500 millisecond that have 2 transmissions

First 50 Transmissions/Super frames (Node A -> Node B)

Duration between two consecutive transmissions

Minimum	Average	Maximum		
495 ms	499 ms	512 ms		

18/11/2021

First 50 Transmissions /Super frames (Node B -> Node C)

6000 4000 2000 -2000 -2000 -4000 -4000 -4000 -4000 -10000 -12000 -14000

Transmission Jitter

Duration between two consecutive transmissions

Minimum	Average	Maximum		
495 ms	500 ms	512 ms		

18/11/2021

After deployments of the experiment, it can be seen that there are some patterns emerge which is the fluctuation of the transmission jitter. With that pattern, it is possible to conclude that the **transmission jitter is being tempered with on the fourth transmission because the network time is updated every 2 seconds by the root node**. Because each Slotframe consists of 500 milliseconds and at the fourth transmission network time is being updated which can be seen by the pattern of the first experiment.

ASEAN IVO Forum 2021

Thank you for your attention!

18,11,2021