The Seamless Localization System Based on Indoor-Outdoor Environments Using Received Signal Strength for Android Platform System

> Somphone Kanthavong Khamla NonAlinsavath* Tha Bounthanh Senlathsamy Chanthamenavong

ຄະນະວິສະວະກຳສາດ Faculty of Engineering

National University of Laos (NUOL), Vientiane Capital, Lao PDR

ASEAN IVO ICT Virtual Organization of ASEAN Institutes and NICT

November 18, 2021

Presentation Outline

- Introduction
- Seamless Location works
 - Implementation and Performance the

seamless localization based RSSI

The experiment results

Conclusion

Introduction

- Mobility tracking has currently been an important need for many people in order to integrate different environments
- Location awareness is an example of localization technique
- The systems able to sense position in physical and computational environments such as the current location of a user, the relative location of people, hosts, accessible devices, network connectivity

The systems able to sense position in physical and computational environments such as the current location of a user, the relative location of people, hosts, accessible devices, network connectivity

Seamless Location works

- A seamless indoor-outdoor navigation system based on GNSS (global navigation satellite system), INS (inertial navigation system)
- The federated Kalman filtering (FKF)
- Light sensor signal, the magnetic sensor signal and GNSS signal were integrated into navigation algorithm

A real time Google map and Arduino- based vehicle tracking system with global positioning system (GPS) and global system for mobile communication (GSM) technology

for the users by integrating the environment conditions seamlessly.

Signal strength indication when movement of the user is detected

ASEAN IVO (ICT Virtual Organization of ASEAN Institutes and NICT) | November 18, 2021

7

Seamless or Integrated Location Tracking

Set	Degree of membership	
Signal = GPS	xx	Implementation &
Signal = GSM	xx	
Signal = Wi-Fi	xx	Performance
Available = few	уу	
Available = some	уу	
Available = several	уу	
Strength = low	ZZ	
Strength = moderate	ZZ	
Strength = high	ZZ	$RSSI = \frac{\sum_{i=1}^{n} f(x_i) x_i}{\sum_{i=1}^{n} f(x_i)} $ (2)
Distance Calculation	We also have: $RSSI(d) = RSS$	$SI(d_0) - 10 \times n \times \log\left(\frac{d}{d_0}\right)$ (3)
Distance Calculation $d_1^2 = (x_1 - x)^2 + (y_1 - y)^2 + (z_1 - z)^2$ $d_2^2 = (x_2 - x)^2 + (y_2 - y)^2 + (z_2 - z)^2$	<i>d</i>	$l = 10 \frac{RSSI(d_0) - RSSI(d)}{10 \times n} $ (4)
$d_3^2 = (x_3 - x)^2 + (y_3 - y)^2 + (z_3 - z)^2$		$n = \frac{RSSI(d_0) - RSSI(d)}{10 \times \log(\frac{d}{d_0})} $ (5)

RESULT OF THE EXPERIMENTAL AND DISCUSSION

Location detecting based on outdoor (above) and indoor (below) conditions

- Received signal strength indication technique such as the fingerprinting method was utilized for the seamlessness of the localization together with Wi-Fi fingerprinting, GPS, and GSM networks
- The proposed system was programmed as an Android application running on Samsung Galaxy S7
 Edge and integrated between outdoor and indoor environments to combine both technologies and
 scenarios
- The blue dot represented current positioning point of the user, while an indoor map location served as regions when the user hit the recorded path positions

RESULT OF THE EXPERIMENTAL AND DISCUSSION

• Signals strength based on GPS and Wi-Fi are detected in term of the user's movement. The blue dot is the available signal for Wi-Fi when the user moves from an outdoor to indoor region at the current positioning. • The blue dot (Wi-Fi indication) will move forward and appear to users whenever they change position and time in terms of seconds. The graph increases or decreases depending on the signal strength detection at that moment.

RESULT OF THE EXPERIMENTAL AND DISCUSSION

At the coomless point CDS	GPS WIFI	GPS WIFI
Wi-Fi values in Figure 5	Seamless outdoor 98.4	DANIEL 18:de:d7:f2:b4:7c
are detected from the	Seamless outdoor 32.0	Redmi 20:34:fb:d6:01:4c
current location in real-	Latitude: -7.770332592218219 , Longitude: 110.35393662325916	channel: 12 -91 dBm TOM
time responding to the	Seamless outdoor 48.0	18:de:d7:f2:ac:ac channel: 3 -93 dBm
arrived at his or her	Latitude: -7.77027436581175 , Longitude: 110.35387913084152	DANIEL 18:de:d7:f2:b4:7c
destination or stopped	outdoor 32.0 Latitude: -7.770289842533307 . Lonaitude:	channel: 1 -86 dBm TOM
somewhere to check the	110.3538846444048 Seamless	18:de:d7:f2:ac:ac channel: 3 -89 dBm
available signals	outdoor 32.0 Latitude: -7.770310553661683 , Longitude: 110.35388002363867	Redmi 20:34:fb:d6:01:4c channel: 12 -93 dBm

CONCLUSION

- The proposed system is based on the Android application platform using the received signal strength indicator to prove the seamless scenario.
 Accordingly, the result indicated that the system is able to handle different situations and different locations that maintain the challenges introduced in this thesis.
- •Moreover, the proposed system has indicated the certainty value of an accuracy in seamlessness terms that is 98.4% accuracy for outdoor to indoor movement and 97.7% accuracy for the opposite movement.
- •This additional result ensures that the proposed system works together with the seamless scheme. This observation is made from outdoor conditions to overlapped and indoor regions which operate smoothly under the proposed system.

REFERENCES

- [1] K. N. Alinsavath, L. E. Nugroho, Widyawan, and K. Hamamoto, "The Seamlessness of Outdoor and Indoor Localization Approaches Based on a Ubiquitous Computing Environment: A Survey," in *Proceedings of the 2019 2Nd International Conference on Information Science and Systems*, New York, NY, USA, 2019, pp. 316–324. doi: 10.1145/3322645.3322690.
- [2] Y. J. Lee and K. W. Lien, "Location Based Enabled Context Awareness Information Service," in 2009 International Conference on New Trends in Information and Service Science, Jun. 2009, pp. 944–947. doi: 10.1109/NISS.2009.160.
- [3] Y. Raja Vara Prasad and P. Rajalakshmi, "Context aware building energy management system with heterogeneous wireless network architecture," in *Wireless and Mobile Networking Conference (WMNC)*, 2013 6th Joint IFIP, Apr. 2013, pp. 1–8. doi: 10.1109/WMNC.2013.6548976.
- [4] W. Liu, X. Li, and D. Huang, "A survey on context awareness," in Computer Science and Service System (CSSS), 2011 International Conference on, Jun. 2011, pp. 144–147. doi: 10.1109/CSSS.2011.5972040.
- [5] M. Jia, Y. Yang, L. Kuang, W. Xu, T. Chu, and H. Song, "An Indoor and Outdoor Seamless Positioning System Based on Android Platform," in 2016 IEEE Trustcom/BigDataSE/ISPA, Aug. 2016, pp. 1114–1120. doi: 10.1109/TrustCom.2016.0183.
- [6] W. Jiang, Y. Li, C. Rizos, B. Cai, and W. Shangguan, "Seamless Indoor-Outdoor Navigation based on GNSS, INS and Terrestrial Ranging Techniques," J. Navig., vol. 70, no. 6, pp. 1183–1204, 2017, doi: 10.1017/S037346331700042X.
- [7] S. Rezaei and R. Sengupta, "Kalman filter-based integration of DGPS and vehicle sensors for localization," *IEEE Trans. Control Syst. Technol.*, vol. 15, no. 6, pp. 1080–1088, 2007.
- [8] Q. Zeng, J. Wang, Q. Meng, X. Zhang, and S. Zeng, "Seamless Pedestrian Navigation Methodology Optimized for Indoor/Outdoor Detection," *IEEE Sens. J.*, vol. 18, no. 1, pp. 363–374, Jan. 2018, doi: 10.1109/JSEN.2017.2764509.
- [9] M. M. Rahman, J. R. Mou, K. Tara, and M. I. Sarkar, "Real time Google map and Arduino based vehicle tracking system," in 2016 2nd International Conference on Electrical, Computer Telecommunication Engineering (ICECTE), Dec. 2016, pp. 1–4. doi: 10.1109/ICECTE.2016.7879577.

Publications (2017 - 2021) | International Conferences Papers

No	Title of Scientific Works	Name of the Conference / Organizer	Indexing Board	Status / Year
1	The Seamlessness of Outdoor and Indoor Localization Approaches based on a Ubiquitous Computing Environment: A Survey	2019 2nd International Conference on Information Science and Systems (ICISS2019) / Tokyo, Japan	ACM Digital Library	Published 2019
2	Location Context Ontology Model Based On Ubiquitous Computing Environment	2019 the 9th International Workshop on Computer Science and Engineering (WCSE2019), Hong Kong.	Ei Compendex. SCOPUS	Published 2020
3	Indoor Localization Implementation Based on Wi-Fi Fingerprinting for Android Platform System	The 12 Regional Conference on Computer Information and Engineering 2019 (RCCIE2019) / National University of Laos, Vientiane, Lao PDR.	Conference Proceeding	Published 2019

Publications

International Conferences Journals

No	Title of Scientific Works	Name of the Conference / Organizer	Indexing Board	Status / Year
1	Integration of multilayered context-aware	Journal of Physics: Conference	SCOPUS Q4	Published
	control system for ubiquitous computing	Series / IOP Science (IOP	Journal of Physics:	
	environment	Publishing Ltd)	Conference Series	2019
2	Indoor Location Tracking System Based on	Journal of Communications /	SCOPUS Q4	Published
	Android Application using Bluetooth Low	Engineering and Technology	DBLP; CrossRef,	
	Energy Beacons for Ubiquitous Computing	Publishing	EBSCO, Google	2020
	Environment	-	Scholar; etc.	
3	Integration of Indoor Localization System using	International Journal of Intelligent	SCOPUS (Q2)	Published
	Wi-Fi Fingerprint, Bluetooth Low Energy	Engineering and Systems /	Scimago, Crossref,	
	Beacon and Pedometer Based on Android	Intelligent Networks and Systems	EBSCOhost,	2020
	Application Platform	Society (INASS)	Ulrich's, OAJI	
4	An Integrated System for the Seamless	International Journal of Intelligent	SCOPUS (Q2)	Published
	Localization and Specification of a Position	Engineering and Systems /	Scimago, Crossref,	
	Based on an Indoor-Outdoor Conditions in	Intelligent Networks and Systems	EBSCOhost,	2020
	Ubiquitous Computing Environments	Society (INASS)	Ulrich's, OAJI	

