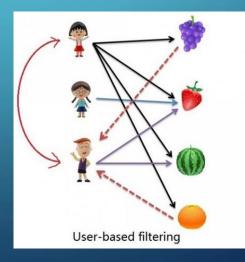
A STUDY ON APPLICABLE AN IMPROVED K-CLIQUE METHOD TO THE RECOMMENDATION SYSTEM

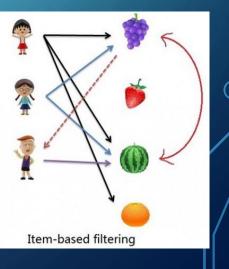
Dr. Phonexay VILAKONE, phonexay_v@fe-nuol.edu.la Dr. Somphone KANTHAVONG, somphonek@fe-nuol.edu.la Dr. Khanthanou LUANGXAYSANA, khanthanou@fe-nuol.edu.la

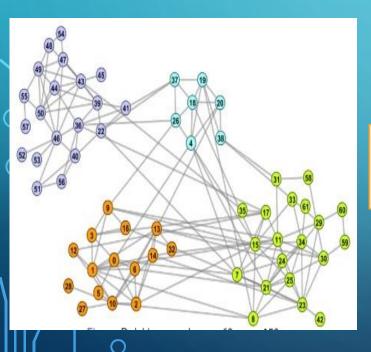
> Department of Computer Engineering and IT, National University of Laos, Laos

ASEAN IVO Forum 2021 ICT Virtual Organization of ASEAN Institutes and NICT

November 18, 2021, Japan


CONTENT:


- **1.** Introduction
- 2. Related Work
- **3.** Proposed Method
- 4. Evaluation
- 5. Conclusion & Future Study



- Today, the users in Online Social Media are increasing rapidly.
- Then, the size of the Social Network community is vast and very intricate.
- The relationship among the users in this Network might be beneficial.

- To classify users from this Network into various communities is a grand challenge from multiple researchers.
- So, we developed an **improved k-Clique method** for finding the sub-community from this Network.
- To prove that, this method is very efficient in community detection from various network graphs. It is a challenge for my research.

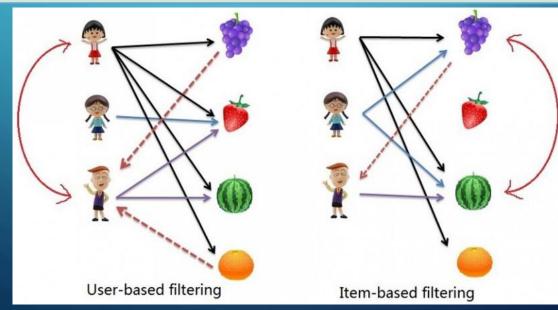
• As we know, the primary strategy of the business over the Internet is a recommendation system.

• And according to the number of items has increased to become more congested.

• So, to find items that users are looking for through the existing technologies of a recommendation system is quite a little bit hard.

The most current recommendation system

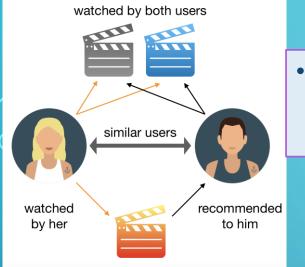
For example:



J

5

- Collaborative filtering methods. ullet
 - User-based filtering method
 - Item-based filtering method
 - User behavior method
 - **Problem: Cold-Start, Data Sparsity, Scalability**


INTRODUCTION: EXAMPLE

Used Method:

- Viewer ratings, Viewing history, etc.
- Information about the categories, year of release, title, genres, and more.
- Other viewers with similar watching preferences and tastes.
- Time duration of a viewer watching a show
- The device on which a viewer is watching.
- The time of the day a viewer watches.

NETFLIX

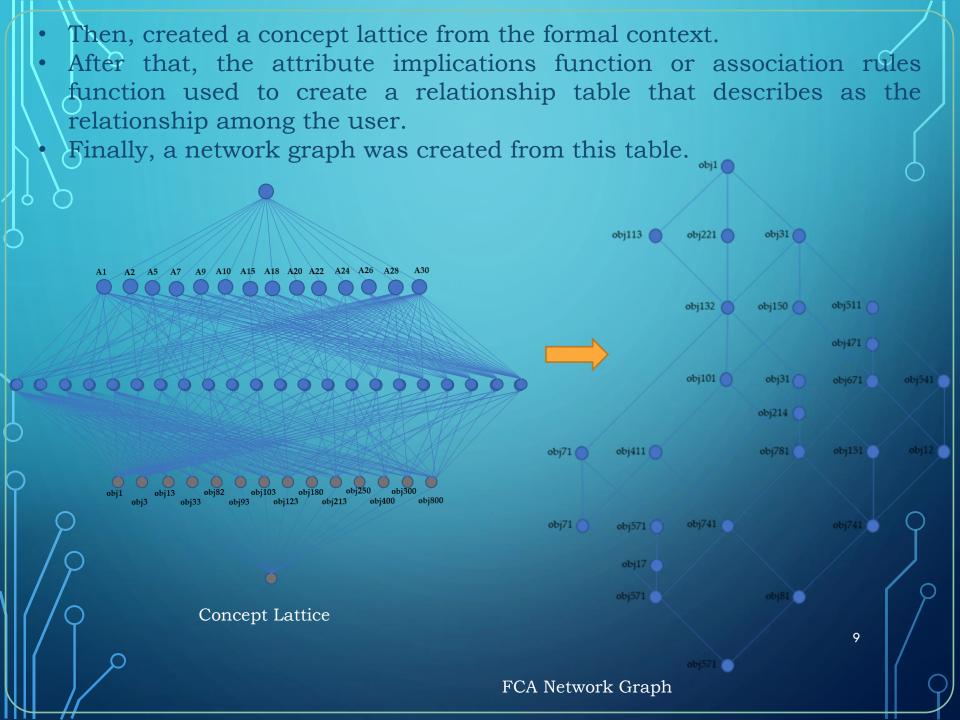
• Base on the fundamental knowledge about users who have similar feature information, they might like the same items.

Therefore, the main motivation underlying:

- Create an efficiency network graph from the similarity among user personalized information.
- Find an efficiency method on community detection in various network graph (**improved k-Clique method**).
- Prove the knowledge of users who has similar personalized information might like the same item in the recommendation system.
- Find an algorithm on increasing accuracy in the recommendation system.

RELATED WORK: FORMAL CONCEPT ANALYSIS (FCA) METHOD & FCA NETWORK GRAPH

FCA is a technique of the data analysis that describes the relationship between a particular set of attributes and a specific set of objects.


- There are two types of output.
 - Concept Lattice, which is a collection of formal concepts in data.
 - Attribute implications, which is describing dependencies between attributes of objects.

How to create a FCA Network Graph:

• First, created a Formal Context from user's personalized information training dataset.

	A: < 20	B: < 30	C: < 40	F: > 80	G: female	H: maile	I: admin	J: artist	H: doctor	DD: other
1	Х				Х				Х	
2		х				Х	Х			
3			Х		Х					х
4		х				Х		х		
5			х			Х			х	
			х		Х		Х			
800				Х		Х		Х		

Formal context of a Fundamentals of User's personalized characteristic

k-Clique:

- It is a technique in the social network analysis
- Used for analyzing data in the complicated community.
- Picks up the communities from network graphs that have a value of *k* cliques.

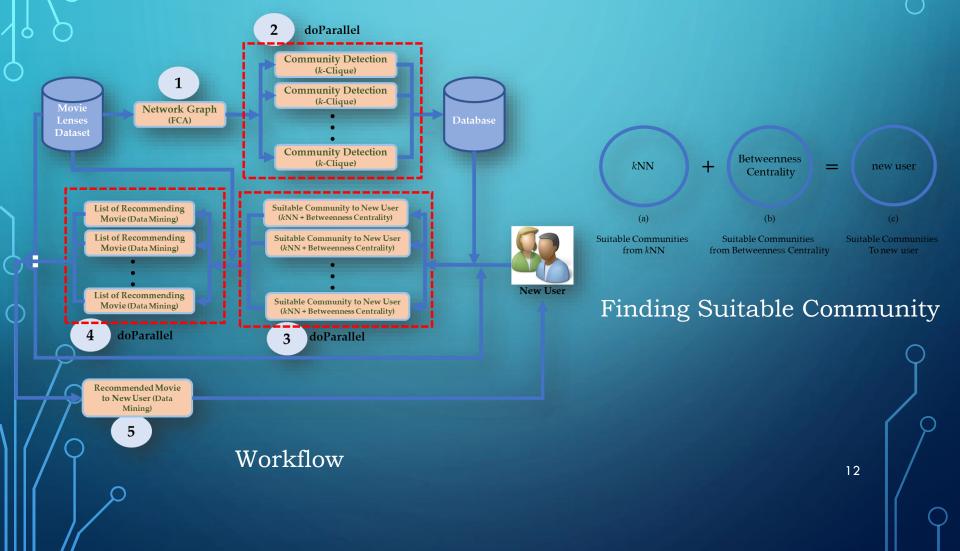
Improved k-Clique:

- To develop an improved k-clique method:
 - First, a training dataset is created from a Movie Lens Dataset. Second, this dataset used to created a network graph. After that, applied k-Clique to cluster this network graph into several communities by using a value of k = 3 to 14. Later on, a suitable community will find to a new user. Finally, list of 5, 10, and15 movies from suitable community will be recommended to the new users.
- Afterward, we performed an experiment in 10 randomly for each dataset.
 - o Rated at least 20 movies = 10 dataset
 - Rated at least 50 movies = 10 dataset
 - o Rated at least 100 movies = 10 dataset
 - Rated at least 200 movies = 10 dataset

A G D C B F E

H

40 ds


Example: The nodes C, D, E, and F show a 4-clique since these nodes are connected with each other. In a similar manner, the set of nodes D, F, and G show a 3-clique.

PROPOSED METHOD:

Method 1: An Efficient Movie Recommendation Algorithm Based on Improved k-Clique	 Social Network Network G Detecting t Developed Similarity 	eloped, Applied on various: work Analysis Method raph Method the Community from the Network Graph (k-Clique) an improved k-Clique Method Measure Method ive Filtering Method					
Method 2: Personalized Movie Recor System Combines Data M the k-Clique		 Studied, Developed, Applied on various: Network Graph Technologies Data Mining Technologies Improving algorithm of the proposed work 					
Method 3: Movie Recommendation S User's Personal Informat Rated using the method Normalized Discounted C	ion and Movie of k-Clique an	 Betweenness Centrality + kNN Normal Discounted Cumulative Gain Method Improving algorithm of the proposed work 					
Method 4: An Efficiency of a DoPar Algorithm and an FCA Net Graph Applied to Recommendation Syste	allel twork • Va	ied, Developed, Applied on various : formal Concept Analysis(FCA) Method reating a Network Graph Based on FCA arious R Parallel Processing Technique					

PROPOSED METHOD: METHOD 4

An Efficiency of a DoParallel Algorithm and an FCA Network Graph Applied to Recommendation System

EV&LU&TION:

• Experimental Set-Up:

• Dataset:

- Movie Lens, 100,000 rating data,
- 0 193 users, 1,684 movies,
- 10th random training 80%,
- 10th random testing 20%,
- o rated 20, 50, 100, 200 movies.
- Total dataset is 40.

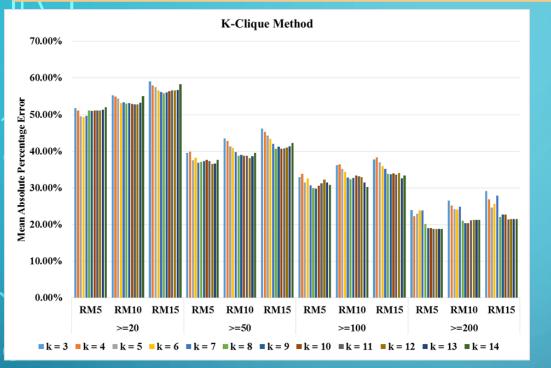
Accuracy Measurement Method:

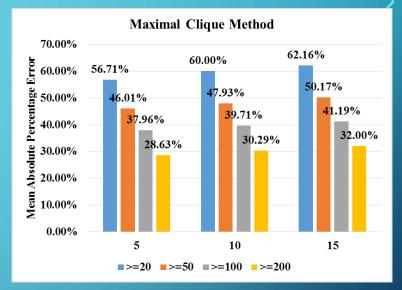
• Mean Absolute Percentage Error(MAPE)

Existing Method:

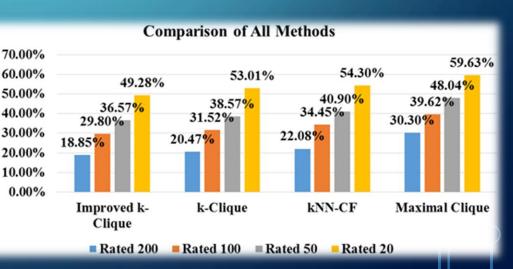
- Maximal Clique Method
- Collaborative Filtering + kNN Method
- Original Collaborative Filtering Method
- 0 K-Clique
- Improved k-Clique
- K-Clique + Data Mining Method
- K-Clique + Normal Discounted Cumulative Gain Method
- Collaborative Filtering + kNN+ NDCG Method

Descriptions	Specification
Operating System	Windows 10 Pro Version 1809
Processor	Intel® Core™ i5 750 @2.67GHz
RAM	24 GB
System type	64 bit Operating System
Hard Disk	500 GB
Data analysis software	R Studio i386 Version 3.4.0, Lattice Minor 2.0

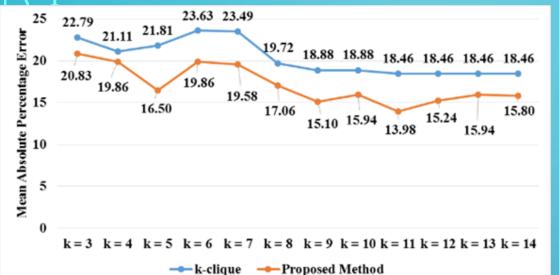

$$\mathbf{MAPE} = \frac{\mathbf{100\%}}{n} \sum_{t}^{n} \left| \frac{A_t - F_t}{A_t} \right|$$

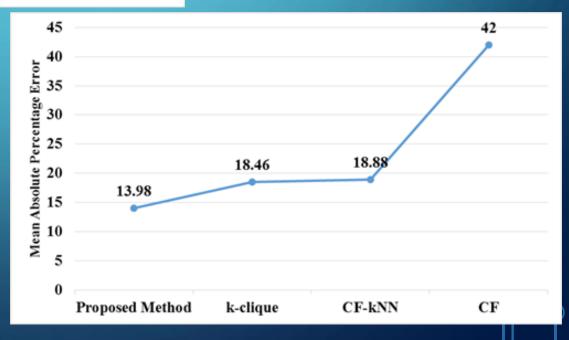

13

EVALUATION: METHOD 1 RESULT

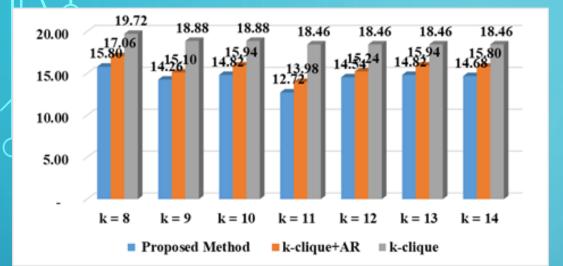

Percentage Error

Mean Absolute

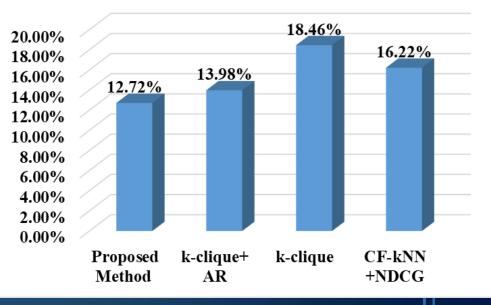



Collaborative Filtering using K Nearest Neighbor Method 70.00% Percentage Error 57.72% 60.00% 54.78% 50.40% 50.00% 43.60% **4**0.91% **3**8.19% 36.53% 40.00% 33.89% 32.95% 30.00% 24.09% 22.44% **Mean Absolute** 19.69% 20.00% 10.00% 0.00% 5 15 10 ■>=20 ■>=50 ■>=100 ■>=200

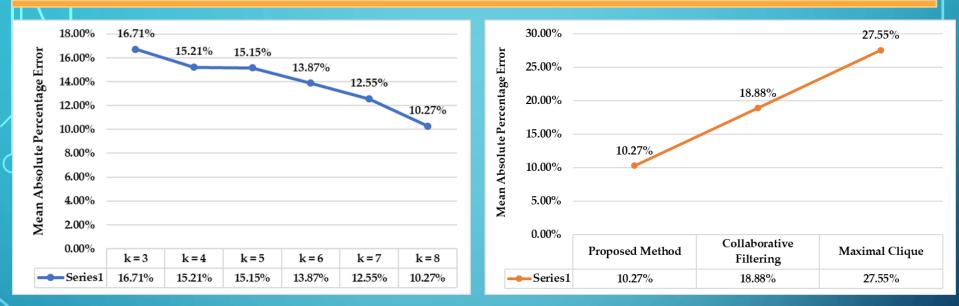
EVALUATION: METHOD 2 RESULT



Comparison result of k-clique and proposed work


Comparison result of proposed work and existing method

EVALUATION: METHOD 3 RESULT


Result Comparison

Result Comparison

 \bigcirc

EVALUATION: METHOD 4 RESULT

K-Clique Result

Comparison Result

#user	Number of Community
k=3	176
k=4	135
k =5	110
k=6	101
k=7	83
k=8	75

	Sequential	doParallel	
Proposed Method	48 hours	12 hours	/
Co	mparison of Ti	me 17	

CONCLUSION:

The major significant findings:

We are the first on developed and applied various methods:

- Developed a social network graph from the feature similarity among the users.
- Applied k-clique method to classifies communities in the social network graph.
- Developed improved k-Clique method.
- Applied improved k-clique to the recommendation system.
- Developed a network graph from a Formal Concept Analysis(FCA) method.
- Applied an FCA network graph to the recommendation system.
- Applied a "doParallel" algorithm to divide the proposed work algorithm into several processes, then executed them as parallel processing using the multi-core CPU.

• The result of the experiment was proved that an improved k-clique was:

- Efficient in detecting the community from various network graphs.
- Very significantly increasing accuracy in the recommendation system.
- Solved a Cold-Start problem.

FUTURE STUDY:

- Refer to the limitation of the experimental set-up,
- Limitation of the dataset which provides a few features information of users
- and the complexity of the proposed algorithm.

• In future work:

- The various type of datasets and various feature information of users will be applied to the proposed work.
- The proposed method algorithm would be a modification for easy to apply in real work.

