

Project Title: GNSS and Ionospheric Data Products for Disaster Prevention and Aviation in Magnetic Low-Latitude Regions

Effects of ionosphore

Background:

Ionospheric irregularity such as plasma bubble

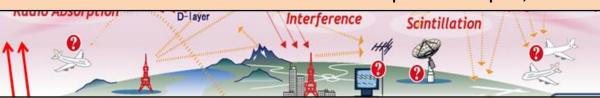
- → typically occurs after sunset due to the bottomside instability
- → degrades HF communication, precise positioning and aeronautical navigation.

Extreme Ultraviolet
Radiations
Form the ignosphere

Solar X-rays Form the ionosphere Visible Lights

Broadcasting/Communication/ Observation Satellites

is in


Navigation Satellites (GPS)

Targets:

- 1. Expand GNSS and ionospheric monitoring system in neighboring countries
- 2. Daily GNSS data products for disaster prevention and aviation
- 3. Ionospheric data products and disturbance prediction models for disaster prevention and aviation
- 4. Support the Installation of a new VHF radar station at Chumphon campus, Thailand

Disaster Power plant

Speaker:

Prof. Dr. Pornchai Supnithi (Project Leader)

Project Title: GNSS and Ionospheric Data Products for Disaster Prevention and Aviation in Magnetic Low-Latitude Regions

Project Members:

Name	Institution	Country	
Prof. Pornchai Supnithi	KMITL	Thailand	
Dr. Win Zaw	YTU	Myanmar	
Asst.Prof. Donekeo Lakanchan	NUOL	Laos	
Assoc.Prof. Punyawi Jamjureekulkarn	KMITL (Chumphon)	Thailand	
Asst.Prof. Watid Phakphisut	KMITL	Thailand	
Assoc.Prof. Tharadol Komolmis	Chiangmai Univ.	Thailand	
Dr. Takuya Tsugawa (NICT)	NICT (Space Environment Laboratory)	Japan	
Dr. Kornyanat Hozumi	NICT (Space Environment Laboratory)	Japan	

Project Duration: 2 Years

Project Budget: \$38,750 (first year)

Project Activites			Responsible members	
Install dual-frequency GNSS receiver at YTU (Myanmar) Collect observational data for further analysis Expand			KMITL, YTU	
2. Install dual-frequency GNSS receivers at NUOL (Laos) Collect observational data for further analysis	GNSS stations		KMITL, NUOL	
 3. Develop daily GNSS data products for disaster and Aviation Study the Space Weather (SW) Data Format for Aviation 2-D TEC map, ROTI data products Analyze the loss-of-lock statistics and scintillation Prediction model for iono parameters, GNSS para 	viation	Data prod TEC, ROTI, foF2, Spre		
4. Develop daily ionospheric data products: foF2, Spread F		·	KMITL, CMU	
5. To support the new installation of VHF Radar Station at Ch Thailand	numphon,	VHF radar station	KMITL (Chumphon), NICT	
6. Kick-off Meeting Workshop, GNSS station site visit - June 2019 ASEAN IVO Workshop on "GNSS and total electron content (TEC) analysis"			ALL	
7. GNSS Positioning and Total Electron Content Analysis Workshop – January 2020			ALL	
8. Research seminar on GNSS and Ionosphere: Trends and Challenges in Precise Positioning Technology – October 2020			ALL	

Budget Spent:

No.	title	items	US\$
1	Kick-off Meeting (1)	meeting package (venue fee, accomodation, flight tickets, etc.)	\$3,932.02
2	Kick-off Meeting (2)	luncheon buffet, cofee break*2	\$527.02
- ≺	Purchase of experimental equipment (Myanmar)	GNSS receiver, antenna, cable, etc. for YTU station (Myanmar)	\$21,843.61
	GNSS Positioning and Total Electron Content Analysis Workshop (Chumphon, KMITL)	Meeting package, Travel expense, Accomodation Printing materials	\$5,043.12
5	Purchase of experimental equipment (Laos)	GNSS receiver, antenna, cable, etc. for NUOL station (Laos) (2,403,583 Yens)	\$23,216.2

Project Activities: GNSS Positioning and Total Electron Content Analysis Workshop, Chumphon, Thailand

17-19 January, 2020

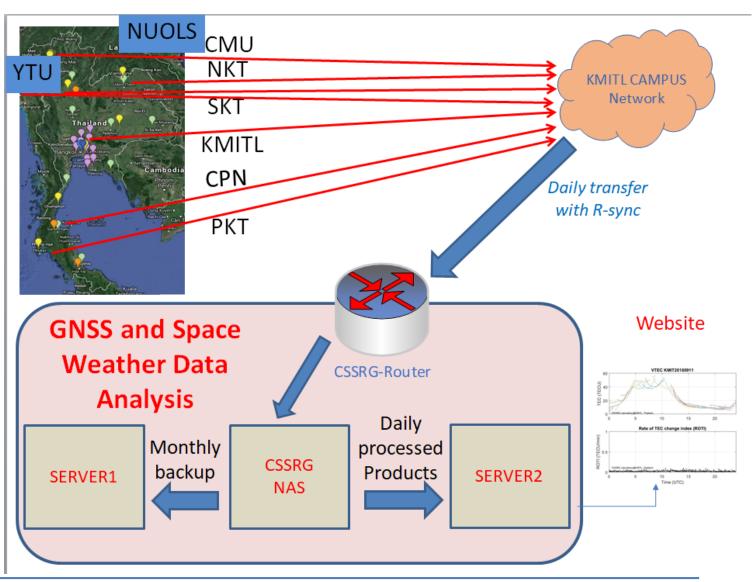
17 Jan: VHF Radar site visit, research presentation

18 Jan: Hand-on session

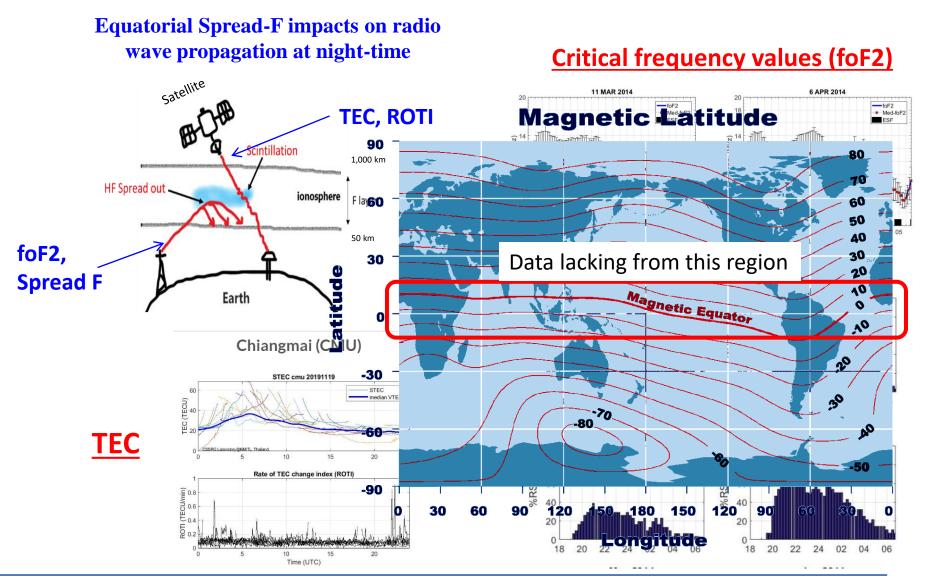
Project Activities: Research Seminar on GNSS and Ionosphere

30th November, 2020 Auditorium#3, KMITL

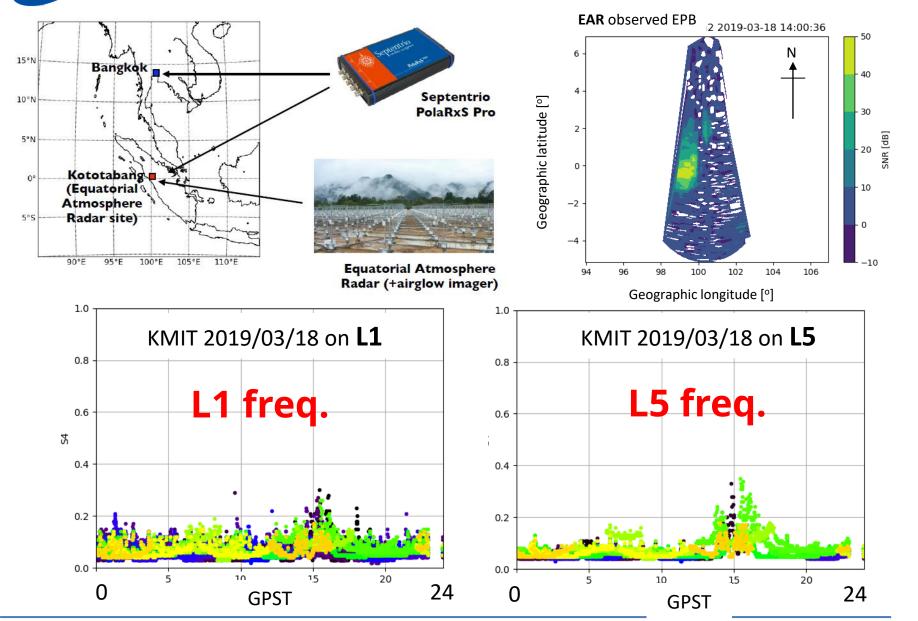
R&D results (1): 1. Data network and Analysis


GNSS & space Weather Website: http://iono-gnss.kmitl.ac.th/?page_id=807

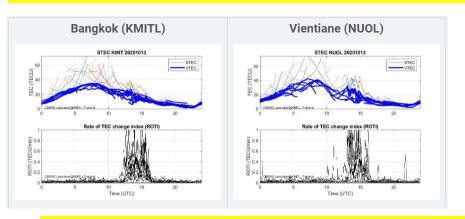
GNSS receiver

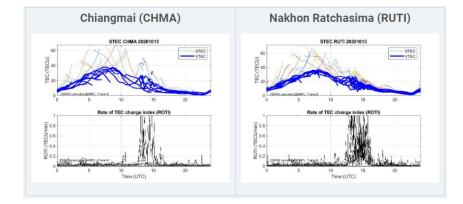


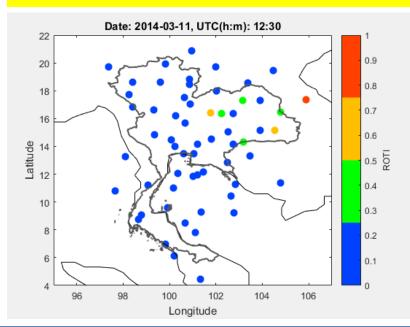
Ionosonde system

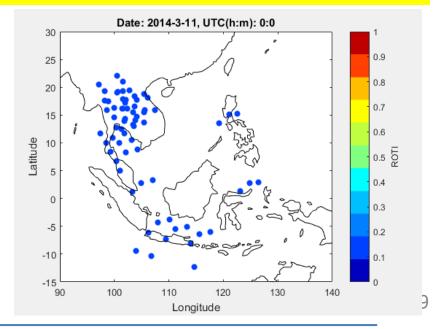


R&D results (2): 2. GNSS and Iono data analysis for disaster and aviation (KMITL, CMU)

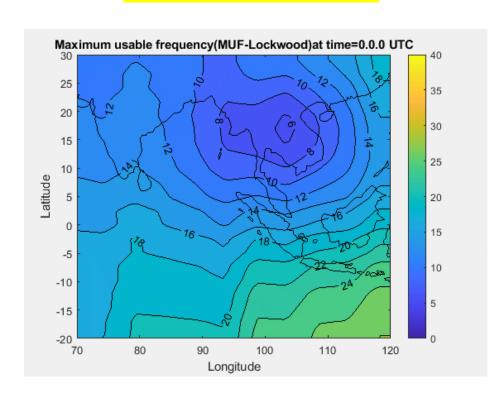

R&D results (3): 2. GNSS and Iono data analysis for disaster and aviation

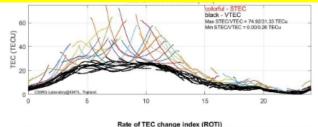


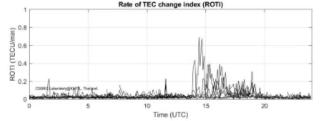

R&D results (4): 2. GNSS and Iono data analysis for disaster and aviation

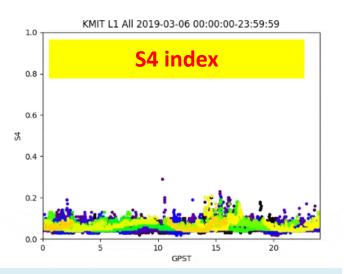

Daily TEC/ROTI Plots

2-D ROTI Map

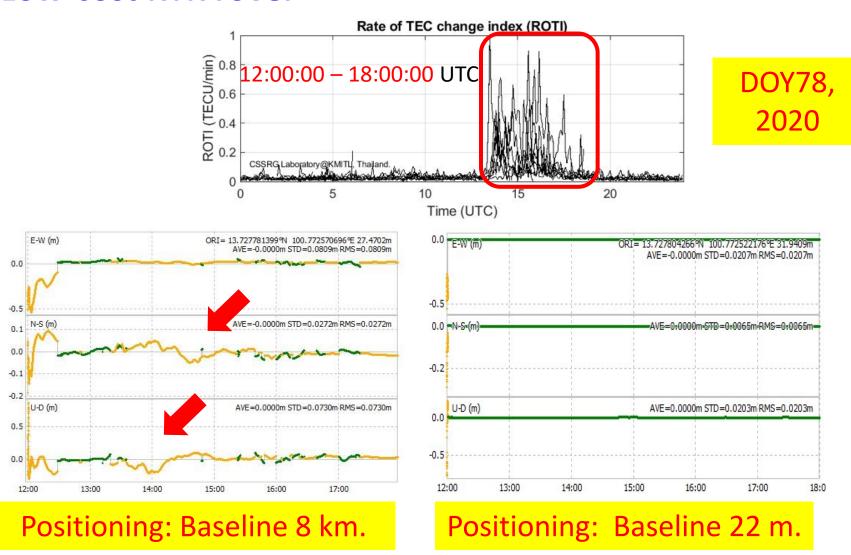





R&D results (5): 2. GNSS and Iono data analysis for disaster and aviation


Maximum usable frequency (MUF) Map

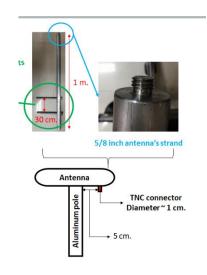
TEC / ROTI Plots


days with scintillation (2019) = 47 days

R&D results (3): 3. GNSS positioning accuracy at KMITL

Station during disturbed days (RTK positioning)

Low-cost RTK rover



Expanded GNSS and ionospheric monitoring system (NUOL, YTU)

1. GNSS station at NUOL: Site survey → NUOL

2. GNSS station at YTU (Mynamar): Site survey → YTU

Scientific Contribution: Presentations at International Journals/Conferences

No	Paper title:	Author names	Affiliation	Name:	The date	Venue
1	Spread F Prediction Model for the Equatorial Chumphon Station, Thailand	P. Thammavongsy, P. Supnithi, W. Phakphisut, K. Hozumi, T. Tsugawa	KMITL, NICT	Journal of Advances in Space Research	Vol. 65, 2020, pp. 152-162	
	Conferences					
1	Study of topside scale height based on NeQuick topside formulation and their comparison with ionogram-derived scale height in 2014 at Ascension Island	P. Jamjareegulgarn, P. Supnithi, T. Tsugawa, K. Hozumi	KMITL, NICT	IRI 2019 Workshop	9-13 Sept. 2019	Nicosia, Cyprus
2	Comparison of Spread-F probability and the IRI-2016 model during descending solar cycle in 2016 at the equatorial Chumphon station, Thailand	P. Thammavongsy, P. Supnithi, P. Kenpankho, K. Hozumi, T. Tsugawa	KMITL	IRI 2019 Workshop	9-13 Sept. 2019	Nicosia, Cyprus
3	The Statistics of Equatorial Spread-F and Effects on Critical Frequency at Chumphon, Thailand	P. Thammavongsy, P. Supnithi, W. Phakphisut, K. Hozumi, T. Tsugawa	NUOL, KMITL, NICT	(SICONIAN 2019)	15-16 Nov, 2019	Palembang, Indonesia
4	Performance os GAGAN Satellite-based Augmentation System in Thailand Region	S.Sophan, W.Phakphisut, L.Myint, P.Supntihi	KMITL	ITC-CSCC 2020	3-6 July, 2020	Nagoya, Japan (online)
5	Improvement of Kalman Filter for GNSS/IMU Data Fusion with Measurement Bias Compensation	N.Nilchan, P.Supntihi, W. Phakphisut	KMITL	ITC-CSCC 2020	3-6 July, 2020	Nagoya, Japan (online)
6	The disturbance effects on single-frequency GPS positioning at low-geomanetic latitude stations in Thailand	N.Tongkasem, L. Myint, P. Supnithi, K.Hozumi	KMITL, NICT	ITC-CSCC 2020	3-6 July, 2020	
	Exhibitions					
4	Space Weather Knowledge	National Science and	Technology Fair 2019			

Societal Impact:

- Enhance better understanding of ionospheric disturbance in magnetic equator and low-latitude region, particularly, ASEAN region.
- Useful ionospheric disturbance detection for aviation and HF communications, prevalent, in aviation and communications in disaster situation, especially, along the coastal areas.
- Better disturbance characterization is required to determine performance of high-accuracy GNSS system used in other industries such as precisioned agriculture and autonomous driving.
- Regional data collection is important for long-term study and useful to global model improvement (such as IRI model and IGS model).

- We have prepared the additional GNSS station installtion in Laos and Myanmar
 - → Site surveys and equipment purchase/allocation are completed
- We have analyzed the iono disturbance based on Ionosonde station
 - → foF2 statistics
 - → Spread F statistics

HF Communication data products

- We have analyzed the iono disturbance and create the ROTI map
 - → ROTI maps are accessible at http://iono-gnss.kmitl.ac.th

Aviation data products

- GNSS positioning analysis at Chumphon station, Chiangmai station
 - quiet days, disturbed days

Positioning, Navigation data products

The new VHF radar station at Chumphon has been opened and operated.