

## **2018 PROJECT**

### Cyber-Attack Detection and Information Security for Industry 4.0

### PROGRESS REPORT November 2021



VNU University of Engineering and Technology





From November 18 Online



### **Context - Industry 4.0**

- a main driver for the development of smart cities
- a vision of smart factories built with intelligent cyber-physical systems
- breakthrough achievements in many sectors (healthcare, food, and agriculture, ...)

- when connected to the cyber world, cybersecurity risks become a key concern due to open systems with IP addresses





- 1. A method to detect cyber-security threats in Industry 4.0 through using advanced deep learning algorithms
- 2. A framework to protect data from cyber-attacks using blockchain technology
- 3. Solutions to enhance security at the physical interface of information transmission using physical-layer security technology
- A sustainable research collaboration network in the ASEAN region, in Australia and worldwide, for developing human resources in Vietnam that is able to develop effective cybersecurity solutions



### **Project information: Members, etc.**

### Project members:

- 1. VNU-UET (Vietnam): Prof. Nguyen Linh Trung (leader)
- 2. VNU-UET (Vietnam): Prof. Nguyen Viet Ha
- 3. NTU (Singapore): Prof. Dusit Niyato
- 4. UTS (Australia): Prof. Eryk Dutkiewicz
- 5. UTS (Australia): Dr. Diep Nguyen
- 6. UTS (Australia): Dr. Hoang Dinh
- 7. VNU-UET (Vietnam): Dr. Tran Thi Thuy Quynh (9/2019)
- 8. VNU-UET (Vietnam): Dr. Ta Duc Tuyen (9/2019)
- 9. VNU-UET (Vietnam): M.Sc. Tran Viet Khoa (Ph.D. student, 9/2019)
- 10. VNU-UET (Vietnam): M.Sc. Bui Minh Tuan (Ph.D. student, 9/2019)
- ✤ Project duration: 7/2018 6/2021 (36 months) Extended to July 2022.
- Project budget: NICT: 110k; Actual expenses: 41.5k







### 1. Scientific development

- Task 1: Analyze and identify potential cyber-security risks in Industry 4.0
- Task 2: Develop an innovative risk assessment model to quantify the risks in Industry 4.0
- **Task 3**: Implement an online web reference ranking the risks in Industry 4.0
- Task 4: Develop and implement an innovative method to detect and isolate cybersecurity attacks using deep learning
- Task 5: Develop an unprecedented data securing method using blockchain technology
- Task 6: Develop receiver-based friendly jamming and collaborative beamforming methods to safeguard sensors/actuators

### 2. Technological Development & Experiments

Task 7: Implement and evaluate the performance of the proposed blockchain application on a real testbed

### 3. Networking

Task 8: Annual Workshops and Exhibitions on Cyber-Security

Project Activities & Results: Scientific - Task 1 (UET)

### Task 1: Analyze and identify potential cyber-security risks in Industry 4.0 (I4)

2019: Surveyed cyber-security vulnerabilities and potential risks of manufacturing systems in Industry 4.0

2020: Surveyed main vulnerabilities and risks in Vietnam

2021: Surveyed cybersecurity risk assessment and management standards widely used

- ✓ NIST SP 800-30 and ISO IEC, focusing on operational systems in Industry 4.0
- ✓ Standards applied in Vietnam: Vietnam National Standard 10295:2014, ISO/IEC 27001:2009, ISO/IEC 27005:2011
- 2022: To survey cybersecurity risk assessment and management standards for Industrial IoT systems.



Information security risk management process from ISO/IEC 27005

[1] Analyze and identify potential cyber-security risks in Industry 4.0, Technical reports, 2020 & 2021

IVO

## Project Activities & Results: Scientific - Task 2 (UET, UTS)

## Task 2: Develop an innovative risk assessment model which can efficiently quantify cyber-security risks for Industry 4.0

2019 & 2020: Overviewed the quantitative and qualitative risk analysis and risk assessment model [1].

2021: Studied the risk assessment methods, identified their pros and cons to find the appropriate method for Industry 4.0 [1]

- ✓ Studied the risk assessment methods widely applied to identifying the risks in Industry 4.0: OWASP, CVSS, Risk Scanning.
- ✓ Studied the architecture of smart factory systems and IoT ecosystems to find the weight of different layers in systems
- 2022: To propose a method of risk assessment, able to identify the risks in both IT and OT systems of a smart factory.



[1] Risk models for the security of Industry 4.0 systems, Technical reports, 2020 & 2021

<sup>asean</sup>

## Project Activities & Results: Scientific - Task 3 (UET)

## <u>Task 3</u>: Implement an online web reference service listing and ranking the risks in Industry 4.0

2019 and 2020: not started.

IVO

2021: Studied web programming for creating the target website and connect API to open-source risk assessment method

- ✓ Built the design flow of the website
- ✓ Connected the website to open-source methods
- 2022: To complete the website based on the proposed method in Task 2, for identifying the risks of both IT and OT of a smart factory.



Project Activities & Results: Scientific - Task 4 (UET, UTS)

### <u>Task 4</u>: Develop and implement an innovative method to detect and isolate cybersecurity attacks using deep learning

2019 & 2020: Proposed a novel collaborative learning-based cyberattack detection model, based on Federated Learning, to identify an attack in the distributed environment of Industry 4.0 by learning data that have the same properties, but with non-IoT datasets [1].

2021: Extended the above collaborative learning model, to combining both Federated Learning and Transfer Learning [2]:

 ✓ This model can identify an attack in a distributed environment of IoT networks from datasets that have different features, samples, or labels
✓ The model was run with Botnet-IoT KDD, NSL-KDD, UNSW dataset and demonstrated its advantage in comparison with unsupervised Deep Learning



Features

|        | FTL    | UDL    |
|--------|--------|--------|
| IoT1   | 88.259 | 51.897 |
| IoT2   | 86.666 | 67.181 |
| IoT3   | 95.220 | 81.397 |
| IoT4   | 82.959 | 77.885 |
| IoT5   | 92.000 | 82.085 |
| IoT6   | 92.525 | 82.703 |
| IoT7   | 92.750 | 86.453 |
| IoT8   | 86.381 | 69.700 |
| IoT9   | 86.052 | 73.082 |
| KDD    | 99.438 | 81.742 |
| NSLKDD | 98.561 | 83.675 |
| UNSW   | 97.177 | 69.482 |

[1] "Collaborative Learning Model for Cyberattack Detection Systems in IoT Industry 4.0", WCNC, 2020.

[2] "Deep Transfer Learning: A Novel Collaborative Learning Model for Cyberattack Detection Systems in IoT Networks", *IEEE Transactions on Cognitive Communications and Networking*, 2021 (to submit in December)

Project Activities & Results: Scientific - Task 5 (UET, NTU, UTS)

## <u>Task 5</u>: Develop an unprecedented data securing method using blockchain technology

- 2020: Reviewed the migration of PoW in Ethereum 1.0 to PoS in Ethereum 2.0 [1]: computational power and Last-revealer attack.
- 2021: We proposed an effective framework to build a private Ethereum network for a smart grid [2].
  - A practical Ethereum-based smart grid is deployed with essential hardware at the home electrical system.
  - A smart contract for authentication in a securely multi-devices system is proposed.
  - A method to improve the efficiency of an Ethereum-based smart grid setup in practical work with the support of numerical experiments.



| Parameters                   | Avg values<br>in the private Eth | Avg values<br>in the main Eth |
|------------------------------|----------------------------------|-------------------------------|
| Transactions per second      | 50.08 tx/s                       | 16.25 tx/s                    |
| Uncle Rate                   | 3.03%                            | 4.81%                         |
| Block interval               | 2.7 seconds                      | 13.48 seconds                 |
| Highest Network<br>Hash rate | 215 kH/s                         | 643 805 GH/s                  |

Improve Performance of a Private Ethereum Network: Verification on the Real System

[1] Data Securing Method using Blockchain Technology: From Ethereum 1.0 to Ethereum 2.0, *Technical report*, 2020
[2] An effective framework of private Ethereum blockchain network for smart grid. *ATC 2021*, Vietnam

IVO

### Project Activities & Results: Scientific - Task 6 (UET, UTS)

### <u>Task 6</u>: Develop receiver-based friendly jamming and collaborative beamforming methods to safeguard sensors/actuators

- 2020: Exploited the generalization capability of neural networks to develop the robust FJ scheme with imperfect channel [1].
- 2021: Embedded Deep Learning based beamforming into Autoencoder and MINE-based Friendly Jamming method to maximize secrecy capacity on MIMO wiretap channel when only imperfect CSI is available at transmitter [2].
  - Better secrecy capacity compared to the conventional method regarding CSI error at the transmitter
  - Lower complexity (floating-point operations/ FLOPs) of the proposed method compared to conventional methods

[1] Autoencoder based Friendly Jamming, WCNC 2020, Seoul, Korea



Secrecy rate versus transmit power.

[2] Learning based Friendly Jamming with Imperfect CSI for Security in MIMO Wiretap Channel, *IEEE Transactions on Communications*, 2021 (to submit in December)

ASEAN IVO

### Project Activities & Results: Technological - Task 7 (UET, NTU, UTS)

## Task 7: Implement and evaluate performance of the proposed blockchain application on a real testbed

- 2020: Built several system models to implement a testbed of blockchain for smart grid based on smart meter and beaglebone black [1].
- 2021: Built an Industrial IoT cyber-attack dataset and deployed a DL model into the IoT Gateways.
  - ✓ Sep 2021: Received 2 IoT Gateways and starter kits.
  - Deployed Industrial IoT cyber-attacks on our IoT network and extracted their properties in a dataset [1].
  - Implemented a collaborative learningbased deep belief network [2] to identify attacks on our collected dataset and monitor the results.
- 2022: To expand the system with the full network (with 2 new IoT gateways and related devices) and test with various scenarios in the smart factory.

| Catagorias     | Number of sample |         | Dataset on Worker-1 | Dataset on Worker-2 |  |
|----------------|------------------|---------|---------------------|---------------------|--|
| Categories     | (samples)        | reicem  | (samples)           | (samples)           |  |
| Normal samples | 351792           | 65,7 %  | 177374              | 174418              |  |
| DoS            | 115368           | 21,54 % | 57690               | 57678               |  |
| Brute Password | 4286             | 0,8 %   | 2041                | 2245                |  |
| Mirai (Botnet) | 62894            | 11,74 % | 31423               | 31471               |  |
| Cryptojacking  | 1110             | 0.22 %  | 615                 | 495                 |  |



- [1] Implementation a blockchain based testbed for smart grids, *Technical report*, 2020
- [2] Collaborative Learning Model for Cyberattack Detection Systems in IoT Industry 4.0, WCNC 2020, Seoul, Korea.



### Conference Papers:

| No: | Paper title:                                                                                                  | Author names                                                                                            | Affiliation          | Conference name                                                                                                     | date          | venue                   |
|-----|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------|---------------|-------------------------|
| 1   | Network Coding with Multimedia<br>Transmission: A Software-Defined-<br>Radio based Implementation<br>[Task 6] | TTT Quynh, TV Khoa,<br>LV Nguyen, NL Trung                                                              | VNU-UET              | International Conference on<br>Recent Advances in Signal<br>Processing, Telecommunications<br>and Computing         | March<br>2019 | Hanoi,<br>Vietnam       |
| 2   | Collaborative Learning Model for<br>Cyberattack Detection Systems in IoT<br>Industry 4.0<br>[Task 4]          | TV Khoa, YM Saputra,<br>DT Hoang, NL Trung,<br>DN Nguyen, NV Ha, E<br>Dutkiewicz                        | VNU-UET,<br>UTS      | IEEE Wireless Communications and Networking Conference                                                              | May<br>2020   | Seoul,<br>South Korea   |
| 3   | Autoencoder based Friendly Jamming<br>[Task 6]                                                                | BM Tuan, TD Tuyen,<br>NL Trung, NV Ha                                                                   | VNU-UET              | IEEE Wireless Communications and Networking Conference                                                              | May<br>2020   | Seoul,<br>South Korea   |
| 4   | An effective framework of private<br>ethereum blockchain networks for<br>smart grid<br>[Task 5]               | DH Son, TTT Quynh,<br>TV Khoa, HT Dinh,<br>N Linh Trung, NV Ha,<br>D Niyato, DN Nguyen,<br>E Dutkiewicz | VNU-UET,<br>UTS, NTU | 2021 International Conference<br>on Advanced Technologies for<br>Communications (ATC) [Best<br>student paper award] | Oct<br>2021   | Ho Chi Minh,<br>Vietnam |

### Journal Papers:

| No: | Paper title                                                                                                  | Author                                                                   | Affiliation | Journal     | Publisher | Volume,Number,<br>Pages           |
|-----|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------|-------------|-----------|-----------------------------------|
| 1   | A Survey on Consensus Mechanisms<br>and Mining Strategy Management in<br>Blockchain Networks<br>[Tasks 5, 7] | W Wang, DT Hoang,<br>P Hu, Z Xiong,<br>D Niyato, P Wang,<br>Y Wen, D Kim | NTU, UTS    | IEEE Access | IEEE      | vol. 7, pp. 22328-<br>22370, 2019 |



| No.        | Title                                                                    | Period & venue                | Yen        | US\$                |
|------------|--------------------------------------------------------------------------|-------------------------------|------------|---------------------|
| 1          | 2018 Forum<br>Travel expense: Nguyen Linh Trung, VNU-UET                 | 2018/11/27-28<br>Jakarta      | ¥91,347    | \$820.90            |
| 2          | Kick-off meeting                                                         | 2018/12/14<br>Hanoi           | ¥184,436   | \$1,655.50          |
| 3          | Kick-off meeting<br>Travel expense: Dusit Niyato, NTU                    | 2018/12/14<br>Hanoi           | ¥96,500    | \$871.17            |
| 4          | 1 <sup>st</sup> IVO Wworkshop                                            | 2019/3/26-28<br>Hanoi, Halong | ¥668,978   | \$5,947.00          |
| 5          | 1 <sup>st</sup> IVO Wworkshop<br>Travel expense: Takeshi Takahashi, NICT | 2019/3/26-28<br>Hanoi         | ¥104,500   | \$926.34            |
| 6          | Registration for WCNC 2020                                               | 2020/5/25-28                  | ¥35,158    | \$335               |
| 7          | Equipment                                                                | 2021/9/15<br>Hanoi            | ¥3,238,757 | \$30,860            |
| Total NICT |                                                                          |                               | ¥4,419,677 | \$ <b>41,415.91</b> |



### 1. Scientific development

- Task 1: Complete by aggregating and analyzing the advantages and disadvantages of exist cybersecurity risks assessments standards
- Task 2: Complete to develop the methods to classify the risk for I4
- Task 3: Complete to deploy the website to identify the risks for smart factory.
- Task 4: Completed applying the transfer learning model for cyberattack detection of IoT Network
  - ✓ Publication to be done.
- **\***-Task 5: Develop an unprecedented data securing method using blockchain technology
- Task 6: Show the capabilities of Deep learning based approaches to deal with channel estimation error to security communication.
  - ✓ Publication to be done.
- 2. Technological Development & Experiments
  - Task 7: Implement the completed testbed system for I4.
- 3. Networking

Task 8: Annual Workshops and Exhibitions on Cyber-Security





- Slow progress due to the outbreak of Covid-19
- Scientific: security solutions developed in detail
- Technological: basic design done
- Budget: equipment purchased (with big delay due to Covid); other plans could not be implemented (due to Covid)

Cyber-security in Industry 4.0, VNU (Vietnam), NTU (Singapore), UTS (Australia)





- To complete the project
- Scientific: method and website for risk assessment to be completed
- Technological: to complete the main testbed (all equipment purchased)
- Publication: 2 main manuscripts to submit and revise

Cyber-security in Industry 4.0, VNU (Vietnam), NTU (Singapore), UTS (Australia)



# Thank you!



VNU University of Engineering and Technology



