

Project Title: 2.5D Technology-based Integrated Antenna Array mm-Wave System For Non-Invasive Food Safety Scanner (TIAS)

Background :

Harmful substances such as **melamine** in daily foods, milk and animal feeds causes actual environmental and human health problems Illegally added to inflate the apparent protein content of food and animal feeds:

- 50% of dietary supplements are contaminated with melamine
- Found in **baby formula milk** in China, 2008, which was responsible for severe renal problems and kidney stones in infants.

Targets:

a portable and cost-effective **scanner** for real-time detection of contaminants in staple foods and/or animal feeds using non-invasive **mm-Wave sensing** with on-chip **antenna-array system**.

Speaker:

Nguyen Ngoc Mai-Khanh System Design Lab (d.lab) The University of Tokyo, Japan

Food safety should be widely monitored and improved

millimeter		submillimeter		infrared		visible	
30GHz 1cm	300	0GHz mm	1THz 0.3mm	10THz n 30µm	100 3.0μr	THz n	1000THz 0.3µm
		-	Frequenc —Waveleng	$y \longrightarrow th$			

Project Title: 2.5D Technology-based Integrated Antenna Array mm-Wave System For Non-Invasive Food Safety Scanner (TIAS)

Project Members :	Name /Position/Institution	Name /Position/Institution		
Toject Members .	Nguyen Ngoc Mai-Khanh (Project Leader)/Assist. Prof./ The University of Tokyo, Japan	Padapxay Sayakhot / Deputy Director General/IICT, Laos		
	Tran Thi My-Hanh /Vice-Director/Department Research Affiars, Nha-Trang University, Vietnam	Aromhack Saysanasongkham /Deputy Director/IICT, Laos		
	Pooja Shivanand Breh /Assist. Prof./Universiti Brunei Darussalam/Brunei Darussalam	Bich-Yen Nguyen /Senior Fellow/Soitec, Singapore		
	Gong Xiao /Assist. Prof./National University of Singapore, Singapore	Chea Socheat /Researcher/Cambodia Academy Of Digital Technology (CADT), Cambodia		
	Vo Nguyen Quoc-Bao /Assoc. Prof., Dean/PTIT, Vietnam	Tetsuya Kawanishi /Prof./Waseda University, Japan		

PTIT: Posts and Telecommnucations Institute of Technology; IICT: Institute of Information and Communication Technology

Project Budget:

Project Duration :

2 years

80,000USD

ASEAN IVO Project Review 2022

Project Activities: TIAS Meetings

- 1. Field Test @ Vietnam:
 - Time: April 21, 2022, Place: NhaTrang Univ. (NTU), Vietnam
 - Content:
 - Chemical and data analysis
 - Sample preparation plan
 - Members: NTU, Vietnam; Soitec, Singapore; UTokyo, Japan

2. Intl. Collaboration Expansion

- UCDavis (U.S): 77GHz radar measurement
- UCLouvain (Belgium): chip design & fab.

R&D results: Field Testing at NICT, Japan

- Time: Jun., Aug. 2022
- Place: UTokyo and NICT, Japan
- Content:
 - Sample preparation
 - THz/Mm-Wave measurements:
 - 220-330GHz; 330-500GHz
 - 0.1 3THz
- Members:

Waseda Univ, UTokyo, & NICT

ASEAN IVO Project Review 2022

- Broader impacts on different angles including advanced research, practice, and education
- Advance the research of food safety by integrating the latest portable semiconductor technologies such as antenna, and the advanced 2.5D integration technology
- Open vast opportunities to build fast, cheap, compact and energy-efficient mmW for developing countires
- For a look ahead, the project aims to build an Artificial Intelligence and Internet-of-Things (AIOT) library for mm-Wavebased sensing data as well as a **database** for consumer users with a **traceability** to e-society.

- 1. Scientific and technological:
 - Sucessfully designed an on-glass Vivaldi antenna for the purpose of sensing
 - Melamine sample preparation
- 2. Application development & experiment
 - Measurement in 10 500GHz and THz ranges
 - On-glass fabrication process: antenna design & implementation
- 3. Field test:
 - Vietnam & Japan
- 4. Intl' Collaboration
 - UCDavis (U.S) and UCLouvain (Belgium)

- Define the mm-wave specification for detecting harmful substances:
- Build a heterogeneous integrated mm-Wave sensing system:
 - Setting up a 2.5D modelling platform for implementing the proposed mm- wave system
 - Design on-chip antenna array and then integrate it with the transceiver
- System Implementation, Calibration & Validation
- Develop a prototyping system being used in the food safety sector currently.
- Data collecting and creating a big database of harmful food substances.

