

Project Title: GNSS and Ionospheric Data Products for Disaster Prevention and Aviation in Magnetic Low-Latitude Regions (Phase II)

Background :

The ionosphere in the magnetic low-latitude and the magnetic equator region is observed to be highly unstable due to unique disturbance events, resulting in degradation in performances of communication and navigation. Therefore, It needs to be analyzed or forecasted based on the collected data including GNSS and other related data from the station networks in the region. Based on the measurements, data products and prediction models are implemented for positioning, navigation, communications, and aviation, especially in this region.

Targets:

- 1. To expand GNSS and ionospheric monitoring system into Cambodia.
- 2. To upgrade data products and disturbance prediction models for disaster prevention and aviation developed in Phase I
- 3. To develop a low-cost real-time kinematics (RTK) receiver system and test its performance during Plasma Bubble using the data collected from newly installed stations in Phase I.
- 4. To continue the recently established GNSS and SW Excellence Center at KMITL and conduct capacity building for domestic network and partnered institutions on GNSS technology, ionosphere, and Space Weather parameters understanding.

Speaker: Asst. Prof. Dr. Lin Min Min Myint, KMITL, Thailand

Project Title: GNSS and Ionospheric Data Products for Disaster Prevention and Aviation in Magnetic Low- Latitude Regions (Phase II)

Project Members : 6 Institutes from 4 countries

Party	Name	Party	Name				
NICT,	TSUGAWA Takuya	CMU, Thailand	Tharadol Komolmis				
Japan	HOZUMI Kornyanat		Prayoonsak Praychan				
	Pornchai Supnithi	NUOL, Lao	Donekeo Lakanchan				
KMITL,	Watid Phakphisut		Phutsavanh Thogphanh				
Thailand	Punyawi Jamjareegulgarn		Phouthong Southisombath				
	Prasert Kenpankho	CADT,	Khema Van				
GISTDA, Thailand	Sittiporn Channums Cambodia		Thayheng Nhem				
6 Associate Project Members.							

Project Duration :

April 1st, 2021 - March 31st, 2023 (24 Months)

Project Budget:

First year (April 1st, 2021 – March 31st, 2022) : 39,880 USD Second year (April 1st, 2022 – March 31st, 2023) : 39,980 USD Project Activities: 1st April 2021 – 31st March 2022

R&D description		Sub	ocategories	Responsible members
A :	To Install dual-frequency GNSS receiver in Cambodia			KMITL, CADT, NICT
В:	To upgrade daily GNSS and SW data products for disaster and aviation	a:	Modify daily GNSS data such as 2-D TEC maps, ROTI data products including the data from Laos, Cambodia	KMITL, CADT, NUOL
		b:	Upgrade daily ionospheric data products for Communications and Aviation.	KMITL, NICT, CADT, GISTDA, CMU
		c:	Develop AI and Machine learning model the applications of GNSS and Aviation	KMITL, NICT
С	To develop and test a real-time kinematics (RTK) positioning system using the post- processed data from newly installed GNSS network.			KMITL, NUOL, CADT
D	To support capacity- building for domestic network and partnered institutions on GNSS technology, ionosphere, basic space weather			ALL

IVO

IVO

A: Expanding GNSS and Ionospheric Monitoring System into Cambodia

Checking satellites availability and received signal SNR

CADT Innovation Center Building

NovAtel PwrPak7 GNSS receiver, GNSS-850 GNSS antenna, computer and other required equipment have been installed at Cambodia Academy of Digital Technology (CADT), Phnom Penh, Cambodia by the project members from KMITL, Thailand and CAD, Cambodia together. Budget: \$20,221.70 GNSS Receiver Set (in 2021) + \$800.00 Installation Trip Expense

November 30, 2022 in Bangkok

IVO

A: Expanding GNSS and Ionospheric Monitoring System into Cambodia

TEC at Ionospheric Pierce Point (IPP)

Year 2022 DOY 278 VTEC(TECU) at 12:00:00 UTC

60

110

105

We have studied Ionospheric Variation and Disturbance Information based on GNSS data from the new CADT station, Cambodia together with other stations.

25

20

-atitude (Degree)

10

0 0 0 5 10 15 20 Time (UTC)

The Rate of TEC index (ROTI) at each stations

ROTI at Ionospheric Pierce Point (IPP) Year 2022 DOY 278 ROTI(TECU/min) at 13:35:00 UTC 25 0.8 20 atitude (Degree) 0.6 0.5 0.4 0.3 0.2 0.1 100 105 110 Longitude (Degree)

100

Longitude (Degree)

Using the data from CADT, we can observe more coverage area of the ionospheric variations.

Note: *ionospheric pierce point* (IPP) isthe signal transmitted from the satellite to the receiver crosses the ionospheric shell in IPP.

November 30, 2022 in Bangkok

Project Activities: B: To upgrade daily GNSS and SW data products for disaster and aviation

a) Modify daily GNSS data such as 2-D TEC maps, ROTI data products including the data from Laos, Cambodia

Using the data from newly installed stations, we can extend the coverage area of the ionospheric observation and increase the resolution of the TEC and ROTI maps.

Daily Maps and Plots can be observed at KMITL's GNSS and SW Excellence Center http://iono-gnss.kmitl.ac.th/?page_id=807

November 30, 2022 in Bangkok

IVO

IVO

B: To upgrade daily GNSS and SW data products for disaster and aviation

b) Upgrade daily ionospheric data products for Communications and Aviation.

S4 index is used to measure the severity of scintillation (fluctuation) on GNSS or GPS signals.

Daily S4 at Chumphon Station near magnetic equator can be observed at KMITL's GNSS and SW Excellence Center http://iono-gnss.kmitl.ac.th/?page_id=807

Maximum usable frequency (MUF) Map

Local Geomagnetic K index from Magnetic Equator Phuket Station

November 30, 2022 in Bangkok

IVO

B: To upgrade daily GNSS and SW data products for disaster and aviation

c) Develop AI and Machine learning model for the applications of GNSS and Aviation.

Develop a machine learning model using support vector machines (SVM) and Singular Value Decomposition (SVD) to detect the occurrences of equatorial plasma bubbles

Flynner Paren balle Desters Infraren Flynner Paren balle Desters Infraren Flynner Paren balle Desters Infraren Balle Desters Infr	Accuracy	Accuracy	Accuracy of			
Location: Chumphon Campus, HMITL March Year/Month/Day: 2020/1004 Time: 03.06 A.M.	Compare 4 Kernels	of SVM model (%)	SVD+SVM model (%)	An SVM model using RBF		
Classification : Non Plasma Top height : 0 Km Initial high : 0 Km	Linear	82.58%	83.05%	Kernels provides		
200 	Sigmoid	62.77%	63.42%	accuracy.		
Develop Software By: EMITL (THAILAND) and NICT (JAFAN)	Radial Basis Function	86.67%	87.58%			
	Polynomial Kernel	83.76%	84.47%			

November 30, 2022 in Bangkok

D: Capacity Building and Knowledge Sharing

No.	Activity	Mode/Location	Date	# Participant
1	Project Kick-Off Meeting and Technical Workshop	Online	July 29 th , 2021	35
2	GNSS & S/W Training Workshop	Onsite, at CADT in Cambodia	July 21 st , 2022	20
3	PMU-B Frontier Research & ASEAN-IVO Seminar	Hybrid, at KMITL in Thailand	Sept. 29 th , 2022	40

Project Kick-Off Meeting and Technical Workshop

GNSS & S/W Training Workshop at CADT

PMU-B Frontier Research & ASEAN-IVO Seminar

Scientific Contribution:

Published Journal Papers:

	No:	Paper title:	Author r	names	Affiliation Jou		Joui	rnal name: The		e publisher of T the Journal num		he volume per and Pages	e volume er and Pages	
	1	Analysis of local geomagnetic index under the influence of equatorial electrojet (EEJ) at the equatorial Phuket geomagnetic station in Thailand	of local geomagnetic der the influence of al electrojet (EEJ) at torial Phuket netic station in Thailand		KMITL, Bangkok, Thailand NICT, Tokyo, Japan ENRI, NIMPAT, Tokyo, Japan		Advances in Space Sp Research (C		Con Spac (COS	Committee on Vol. 7 pace Research Septe COSPAR) pp 14		70, No. 5, 1 mber 2022, 29-1440		
	Prese	ntations at International Co	nferences	:										
	No:	Paper title:		Autho	Author names		Affiliation Cor		Conference name:		The date of the conference		f the e	
	1	Equatorial Plasma Bubble detection Vector Machine at Chumphon Static	by Support on, Thailand	T.Thanak P. Supnit L. Myint, K. Hozun	kulketsarat, hi, ni	KMITL, Ba Thailand NICT, Tok Japan	ingkok, yo <i>,</i>	2022 37th ITC CSCC		05-08/07/2022		Duangjitt Hotel, PHUKET, THAILA	ND	
	2	Comparison study of amplitude scin between GNSS and satellite beacon receivers in Thailand	tillation	K. Seech L. Myint, K. Hozun P. Supnit	ai ni hi,	KMITL, Ba Thailand NICT, Tok Japan	ingkok, yo,	gkok, 2022 37th (TC), CSCC	2	05-08/07/2022		Duangjitt Hotel, PHUKET, THAILA	ND	
	3	Support Vector Machine (SVM) for e plasma bubble detection from VHF I Images at Chumphon VHF Radar Sta Thailand	equatorial Radar tion,	T.Thanak P. Supnit L. Myint, K. Hozun	kulketsarat, hi, ni	KMITL, Bangkok, Thailand NICT, Tokyo, Japan	ISEA-16		12-16/09/2022	16/09/2022	Uji Campus, Kyo University, Kyoto Japan	to D,		
	4	Time Series Prediction of the Equator F Occurrence using the LSTM netwo	orial Spread- ork	P. Tham P. Supnit L. Myint, K. Hozun	navongsy, hi, ni	KMITL, Ba Thailand NICT, Tok Japan	ingkok, yo <i>,</i>	k, ISEA-16		12-16/09/2022		Uji Campus, Kyo University, Kyoto Japan	to D,	
N	5	Study of Equatorial Geomagnetic Fie and its Relationship with Ionospheri disturbances at Low-Latitude	eld Activities c	L. Myint, K. Seech K. Hozun P. Supnit	ai ni hi,	KMITL, Ba Thailand NICT, Tok Japan	ıngkok, yo,	ISEA-16		12-16/09/2022		Uji Campus, Kyo University, Kyoto Japan	to D,	

Data product using ionospheric parameters and other relative data collected from GNSS receiver, Ionosonde, VHF radar, and magnetometer can

- Enhance understanding of ionospheric disturbance in magnetic equator and low-latitude region, particularly, ASEAN region.
- Be useful in detecting ionospheric disturbances and geomagnetic storms for aviation and HF communications, prevalent, in aviation and communications in a disaster situation.

Better disturbance characterization is required to determine performance of **highaccuracy GNSS systems** used in other industries such as smart agriculture and autonomous driving.

Regional data collection is important for long-term study and is useful to **global model improvement** (such as IRI model and IGS model).

The researchers from the partnered institutes in Cambodia and Laos are encouraged to work on **joint research** with the data collected for local communities.

- The project has accomplished installing the GNSS receiver system in CADT, Phnom Penh, Cambodia.
- □ The GNSS data from the new station is available and they are being analyzed to observe the ionospheric disturbaces.
- The data products for ionosphere observation such as TEC and ROTI 2-D plots and maps have been modified to include the new stations from Laos and Cambodia.
- We maintained and upgraded daily ionospheric data products such as S4 index plots, MUF maps, and K-index for Communications and Aviation. We also developed AI and machine learning models to analyze and predict ESF and EPB using the measured data from Ionosonde and the newly installed VHF radar in Chumphon, Thailand.
- We have organized three workshops and seminars for capacity building and knowledge sharing.

To develop and test a real-time kinematics (RTK) positioning system using the post-processed data from a newly installed GNSS station in Laos and Cambodia.

Methods

- ✓ Implement a low-cost RTK receiver system.
- Test the developed system and commercial RTK system using the collected data from our station networks, particularly, those newly installed in Phase I.

To establish Space Weather and GNSS technologies Learning Centers in National University of Laos in Laos and KMITL Chumphon Campus, Thailand.