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ABSTRACT Disaster classification and victim detection are two important tasks in enabling efficient
rescue operations. In this paper, we propose a multi-task learning (MTL) model which accomplishes these
two tasks simultaneously. The idea is to attach one pruned head model to another backbone network.
We mathematically pinpoint the optimal branching location and the depth of the pruned head model.
Apart from the decoupled task training capability, the MTL model offers lesser memory requirements
(12.8MB saving) and better disaster classification accuracy (1-2% gain), while preserving the same detection
performance (0.694 of average precision (AP)), as compared to the traditional method. Such advantages of
flexibility, speed and accuracy facilitate the large-scale deployment of Internet of Things (IoT) applications,
where we explore the potential of federated learning (FL) and active learning (AL). Given the high ambiguity
within disaster images, amodified version ofAL-based technique is introduced. For realistic implementation,
production-ready OpenFL and OpenVINO tools are adopted to update the global FL model and to optimize
the trainedmodel, respectively. Experiment results are promising: the FL-based techniques are comparable to
or better than their centralized learning (CL) counterparts. Also, our application portability is demonstrated
via different hardware such as CPU and Raspberry Pi.

INDEX TERMS Disaster classification, victim detection, convolution neural network (CNN), hard parame-
ter sharing, representation similarity analysis, multi-task learning, federated learning, uncertainty sampling,
optimal branching, OpenVINO, OpenFL.

I. INTRODUCTION
Annually, natural disasters inflict damages, monetary costs,
injuries, and deaths. For instance, the 2021 Fukushima earth-
quake inflicted 187 casualties, while causing significant dam-
age across Japan [1]. Given that the first 72 hours after a
disaster are critical for rescuing survivors [2], disaster detec-
tion plays a vital role in facilitating search and rescue efforts.

The associate editor coordinating the review of this manuscript and

approving it for publication was Turgay Celik .

The successfulness of these operations heavily relies on the
reported activity of disasters and number of victims.

Deep learning (DL) can extract the aforementioned fea-
tures through a convolutional neural network (CNN). Disaster
classification task can be readily trained by utilizing CNN
architectures such as VGG16 [3] andMobileNet [4].Whereas
for victim counting, it falls into the class of object detection
task, which can be addressed by the popular CNN models
such as You Only Look Once (YOLO) [5] and Single-Shot
Detector (SSD) [6]. In the literature on disaster detection,
these two tasks are generally studied in isolation. How to
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design a joint disaster classification and victim detection
CNN model is a topic worthy of investigation.

Training a disaster detection model in practice presents
another technical hurdle. Existing works commonly assume
that the abundant labelled dataset is available at a central-
ized server with high-performance graphical processing units
(GPUs) [7]. These assumptions do not hold in a large-scale
disaster monitoring environment, especially with a massive
deployment of relatively low powered Internet of Things
(IoT) devices. Within an IoT, all connected devices are able
to collect and exchange data. However, such flexibility is
accompanied with several challenges such as the scarcity of
labelled dataset, data privacy concerns and prohibitive cost of
transmitting data as training samples. Federated learning (FL)
is an emerging paradigm that can help to build an accurate
global CNN model via a collaborative training among edge
IoT devices, without sharing the confidential and bandwidth-
hungry data.

A few recent works such as [8] and [9] have demonstrated
the promising performance of disaster classification via FL.
However, training-level evaluation results do not necessarily
translate into good inference performance. For actual model
deployment in production environment, the legitimate judges
of CNN model quality are IoT local devices, serving as
monitoring nodes. Given the heterogeneity of IoT system, the
portability and acceleration of inference process are crucial
towards scalable disaster monitoring frameworks.

In this paper, we optimize the CNN performance at both
training and inference stages. The starting point is the design
of an efficient multi-task learning (MTL) model that simulta-
neously performs disaster classification and victim detection.
The training burden is relieved by active learning (AL), which
allows the training algorithm to interactively query and label
informative data from the pool of unlabelled dataset in each
local IoT device.

Once the model is trained, we aim to minimize the pro-
cessing time while maximizing classification and detection
performance at the inference phase. Indeed, this stage must
be designed and analyzed correctly in order to achieve a
robust model working in production environment. To this
end, we first accelerate the inference process and port the
optimized model on different Intel platforms via the Intel
OpenVINO toolkit [10]. It is comprehensive toolkit which
fine-tunes and optimizes DL inference performance on target
low-powered devices. Note that the optimized model facili-
tates edge computing, which is one of goals of the ASEAN
IVO project titled ‘‘Context-Aware Disaster Mitigation using
Mobile Edge Computing and Wireless Mesh Network’’.

Experiment results are encouraging: the FL-based disaster
detection techniques are comparable to or better than their
centralized learning (CL) counterparts. Our application porta-
bility is demonstrated via different hardware such as CPU
and Raspberry Pi. Under the same hardware, the optimized
model achieves 151% of frames per second (FPS) gain over
the original MTL model, while having higher accuracy and
slightly lower average precision (AP).

A preliminary version of this article appeared at the IEEE
UEMCON 2021 [12]. While sharing the same basic solution
concept, this version includes a substantial amount of new
material, including a discussion on how optimal branching
can be determined by quantitative analysis instead of empiri-
cal approach, an extended framework with the aid of AL and
FL, and new results for deployment in production environ-
ment. The main contributions of this work are summarized as
follows:

1. Existing studies focus on solving single-task issue of
disaster classification [13], [16], [27], [28], [29] and
victim detection [18], [19], [20], [21], [31], [32], [33]
separately. In contrast, we introduce a MTL model
by attaching a disaster classification head model to
the backbone of a victim detection model. Different
from existing MTL works [34], [35], [36], [37], [38],
we employ an efficient mathematical analysis to pin-
point the optimal branching location and to prune the
head model.

2. The framework design decouples training of two tasks.
Solutions can be found in a per-task fashion before
merging them into one unified model, which has
smaller size than a combination of two separate single-
task models. Such lightweight network architecture
facilitates both bandwidth-sensitive FL training and
cost-limited inference. On top of being lightweight, the
proposed model can even produce better classification-
related accuracy while preserving the same detection-
related AP.

3. Most AL methods advocate uncertainty sampling,
which selects the most uncertain samples from the
unlabeled data pool to label [22]. Such strategy is ill-
suited for disaster dataset, where samples from differ-
ent classes exhibit high similarity. To enable efficient
AL-based FL, we introduce a simple heuristic by com-
bining both uncertainty and diversity samplings.

4. The correctness of the post-training optimization
results, especially for model accuracy, is very crucial
for actual deployment. The majority of the research in
[23], [24], [25], and [26] tries to accelerate the infer-
ence process without detailing the degree of accuracy
loss. In contrast, our measurement outputs are based
on open-source and production-ready frameworks to
ensure reusability, interoperability, and scalability.

The rest of the paper is organized as follows. Section II
describes the related work. Section III presents the proposed
solution. Section IV discusses the experimental setup, fol-
lowed by results and discussions. Section VI concludes the
paper and outlines future research directions.

II. RELATED WORK
To give the readers a big picture of the works in this broad
area, this section reviews related works on disaster classifi-
cation and victim detection, MTL, FL and AL, followed by
inference optimization.
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A. DISASTER CLASSIFICATION AND VICTIM DETECTION
The performance of disaster monitoring is tightly connected
with the quality and quantity of dataset. The authors in [15]
collected and filtered tweet messages that people post during
disasters into one dataset, known as Artificial Intelligence
for Disaster Response (AIDR). Similar work can be found
in [14], where a large multimodal dataset collected from
Twitter during different natural disasters, known as Crisis-
MMD was released. To facilitate benchmarking purpose, the
authors in [16] consolidated the aforementioned datasets into
a dataset called Crisis Image Benchmarks Dataset (Crisis-
IBD), which will be served as input dataset in this paper.

Inspired by the richness of dataset information, various
disaster classification methods have been devised. The work
in [28] analyzed the aerial images for floodmagnitude assess-
ment. However, the assessment is limited to only single dis-
aster type. By focusing on four natural disasters, the authors
in [27] proposed a damage assessment method which out-
performs traditional machine learning approach. The work
in [16] also investigated multi-disaster classifications by har-
nessing the power of several existing CNN models such as
VGG16 and MobileNet. However, these CNNs are directly
used without any modification for further improvement.
Differently, we prune theMobileNetv2 network in such a way
that it can be attached to another CNN backbone network and
yet performs better than the original version. Another CNN
framework was adopted in [13], where multiple pre-trained
unimodal CNNs that extract textual and visual features inde-
pendently are combined and fed into a final classifier for
disaster damage identification. The results in [13], [16], [27],
and [28] however, did not discuss the inference speed aspect,
which is critical for real-time disaster response. Besides that,
the aforementioned works focus on single-task domain.

In [29], the authors presented a cross-domain dataset,
called FloodNet, which incorporates tasks of image classifi-
cation, sematic segmentation and visual question answering.
These tasks are accomplished by executing three separate
models. Such approach (hereafter referred to as conventional
approach), however, requires high memory footprint and
computational resources.

Unlike the previous works [13], [15], [27], [29] which
focus on single-task classification, the same authors in [16]
extended their work to a multi-task classification model [17],
which targets on (i) disaster types, (ii) informativeness, (iii)
humanitarian, and (iv) damage severity assessment. However,
the solution is limited to the image-classification domain,
without considering the victim detection.

Another pool of literature is exploring the potential of IoT
technologies in detecting victims. Unmanned aerial vehicle
(UAV) has emerged as one of the effective IoT solutions for
dealing with a broad affected area [30]. In [18], the authors
leveraged a MobileNet-SSD model to detect victims of natu-
ral disaster through Raspberry Pi camera installed on a drone.
The work in [19] investigated similar problem by considering
a thermal camera. Results show that their victim detection
from aerial thermal view can achieve up to AP of 82.49 %.

The studies in [20] and [21] shifted their focus from aerial
view to burning building and flood scenes, respectively. Apart
from the aforementioned image-based victim detection, the
authors in [31] proposed an integrated audio-visual human
search system, in order to boost the system performance.
The works in [32] and [33] took another divergent approach
by locating mobile terminals based on radio frequency (RF)
signal. However, this method is effective only when user
equipment and victims are in the proximity of each other.
Furthermore, none of the above works [18], [19], [20], [21],
[31], [32], [33] consider a multitask system that concurrently
strives for two coupled goals.

From the literature survey, it is observed that disaster
classification and victim detection are generally studied in
isolation. In contrast, our work aims to develop a MTLmodel
which executes these two tasks simultaneously.

B. MULTI-TASK LEARNING (MTL)
MTL is to perform more tasks using one model, without the
need of using a separate model for each task. In the context
of object detection, MTL can be categorized into three types.
In the first category, the number of headmodels represents the
total tasks needed to perform. If the headmodels share a back-
bone, it is called hard parameter sharing. Whereas for soft
parameter sharing, each task has its own backbone. Examples
of using hard parameter sharing can be found in [34] and [35].
In self-driving car application, the work in [34] added another
head model for lane lines detection to the joint segmentation
and detection model. The scheme in [35] adopted four head
models for (i) citrus detection and (ii) segmentation, as well
as (iii) maturity and (iv) quality classification on the citrus
detection. On the other hand, the authors in [36] resorted
to the soft parameter sharing approach, for achieving joint
detection and segmentation.

Secondly, multi-tasking is made possible with minimal
modifications on the original detector model. It was demon-
strated in [37] for the application of joint vehicle classifica-
tion and distance estimation. The idea is to make the distance
prediction a classification task and subsequentlymerge it with
the task of vehicle classification in order to form a unified
task. Thirdly, some models improve their main tasks based
on several auxiliary tasks. For example, [38] defined three
auxiliary tasks, namely (i) closeness labelling, (ii) multi-
object labelling and (iii) foreground labelling, in order to
refine the learning process of the object detection model.

The successes of the aforementioned MTL solutions are
proven via a centralized data availability. Such assumption
does not hold in a large-scale disaster monitoring scenario.
How effectivelyMTL can be trained from distributed datasets
at local devices is still largely missing. Also, majority of
these works adopt empirical approach to determine the best
branching settings by performing transfer learning on dif-
ferent combinations and subsequently selecting the optimal
one. Such approach requires intensive computation due to
the additional training on each combination to evaluate the
transfer learning performance.
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This paper aims to cast some light on these aspects by
utilizing FL and smarter branching selection strategy.

C. FEDERATED LEARNING (FL) AND ACTIVE
LEARNING (AL)
In FL, only the model weights have to be transferred across
the network for aggregation, which is more efficient as
compared to sharing the entire dataset. Such FL benefits
are exploited in a wide variety of applications ranging
from healthcare [39], wireless communications [40], through
vehicular edge computing [41], to manufacturing [42]. In the
context of disaster detection, the work in [9] proposed a FL
and autonomous UAVs for hazardous zone detection. The
CNN-LSTM model weights trained within each UAV are
transmitted to a central server for global model aggregation.
Despite promising results, the FL usage has been limited by
single-task models adopted in these previous works.

The scheme in [8] also considered FL based single-task
disaster classification, with additional concern regarding the
annotation burden for each local training. Armedwith AL, the
authors reported that the proposed AL-based FL framework
performs equally well under two strategies namely uncer-
tainty sampling and query by committee. Our work distin-
guishes itself by offering more insights into the properties of
disaster dataset. For dataset samples that are close to classi-
fication boundary, uncertainty sampling may always choose
similar samples without diversity [43]. Furthermore, most of
the aforementioned works such as [8] and [9] do not use
production-ready tools for FL implementation.

D. INFERENCE OPTIMIZATION
Efficient execution of a CNN model is undoubtedly another
important criterion for implementing production-ready DL
solutions. This is especially true for deploying heterogeneous
IoT devices of different hardware constraints. How to enable
fast inference on low-powered embedded platforms remains
an open research question. Intel OpenVINO toolkit emerges
as an extremely useful tool of choice since it optimizes DL
models across Intel hardware while minimizing the inference
time [11]. A large portion of the studies discussed above quite
commonly neglect this design aspect and demonstrates their
DL solutions based on expensive GPU resources.

By recognizing the importance of inference optimization,
a plethora of works utilized OpenVINO on various use cases
such as license plate detection [23], person re-identification
system [24] and face recognition [25]. Work that explicitly
optimizes OpenVINO model for disaster scenario was found
in [26]. However, all these research tries to accelerate the
inference process without detailing the degree of accuracy
loss. An allied question is: How much accuracy and AP we
need to sacrifice while pursuing faster inference? In con-
trast, our measurement outputs are based on OpenVINO DL
Workbench [11], which is an open-source and production-
ready framework to ensure reusability, interoperability, and
scalability.

FIGURE 1. Overview of the proposed disaster detection framework.
(a) Communications between server and devices. (b) Interaction from
training to inference.

III. PROPOSED APPROACH
Fig. 1 displays the overview of the proposed disaster detection
framework. In the federated network, there are K devices
communicating with a server. Each IoT device can locally
train its model for Task 1: Disaster Classification or Task 2:
Victim Detection, or in combination of both. Note that even
within the same device, both tasks are trained individually for
the following rationales. Firstly, it allows fine-tuning of spe-
cific tasks, depending on target performance requirements.
Secondly, not all clients have gathered both task information.
Thirdly, some devices are not powerful enough to train both
tasks.

The overall procedures are illustrated in Fig. 1(b). Firstly,
the local training for Task 1 or/and Task 2 are executed.
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FIGURE 2. Network architecture of Task 1 and Task 2. (a) Conventional model. (b) Task 1 splitting. (c) Proposed model.

Secondly, the local model weights are transmitted to the
server for model aggregation. Thirdly, the global fine-tuned
model is sent back to each device for another round of train-
ing. This process repeats until convergence. Fourthly, both
individual trained models are merged into a single unified
model. Fifthly, the multi-task model is optimized in a device
agnostic manner. Lastly, the optimized model is executed on
device k by setting the inference engine mode compatible
with their own hardware.

A. MTL MODEL
Since hard parameter sharing is the most frequently used
approach in MTL [45], our design follows this setting by

branching a disaster classification head model from the back-
bone of a selected object detection model.

In this work, we select MobileNetv2 [46] and YOLOv3 as
the model for Task 1 and Task 2, respectively. MobileNetv2
is one of the lightweight network architectures, which is
suitable for real-time disaster classification. Whereas for
YOLOv3, it is one of the most widely used object
detector [47], thanks to its superiority in achieving the trade-
off between accuracy and speed [48]. Note that our proposed
branching strategy is not limited to only these two CNNs
and can be expectably applicable to other CNNs such as
YOLOv7 [49].

Fig. 2 (a) depicts the ‘‘conventional approach’’ where
the same image serves as an input to two separate models,
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which undergo transfer learning for accomplishing Task 1 and
Task 2, respectively. Specifically, Task 1 adopts a pre-trained
model on ImageNet and finetunes all Nori blocks for disaster
classification. This original model is denoted as θ1,ori, which
consists of one convolution layer, seven inverted residual
blocks (IRBs), one pointwise convolution layer followed by a
global average pooling, and one more pointwise convolution
layer for the classification.

On the other hand, Task 2 initially extracts all weights
learned from the MS-COCO pre-trained model. Then, the
backbone known as DarkNet-53 and Feature Pyramid Net-
work (FPN) are kept frozen. FPN takes three feature maps
from the 82nd, 94th and 106th of DarkNet-53 as its inputs.
Correspondingly, there are three head models which detect
object at different scales. To detect victim, the weights
belonging to three head models are fine-tuned. Given that an
object detector will likely predict more than one bounding
box for the same object, we apply the non-maximum suppres-
sion (NMS) technique for removing redundant object. Here,
we denote Task 2 model as θ2.
To merge these two CNNs into one unified model, the

following questions arise. Questions: How do we split θ1,ori
into one base model θ1,base and one head model θ1,head ,
as shown in Fig. 2 (b)? Where do we attach θ1,head among
three different depth of the shared DarkNet-53? Fig. 2 (c) pro-
vides the answers, where the optimized head model θ∗1,head
consists of two IRBs, followed by the remaining blocks, and
θ∗1,head is branched from the 94th location. Another question
arising is: How do we decide these optimal settings with
quantitative analysis? Hence, it is important to investigate the
relationship between Task 1 and Task 2.
The study in [50] demonstrates that representation simi-

larity analysis (RSA) can measure the task similarity using
the learned representations, without any subsequent training.
Their results show that a higher score of task similarity leads
to better model selection strategy for transfer learning. Here,
we adopt the RSA to decide the optimal branching location.
We enumerate the steps to compute the similarity score for a
different merging combinations of Task 1 and Task 2 in the
following paragraph.

Firstly, a subset of images is randomly selected from
CrisisIBD as the conditions for dissimilarity computation.
We can acquire the representation or feature map of each
image at any layers of a CNN by forward passing the image
until the target layer. The dissimilarity score of a pair of
images can be expressed as 1 − ρ, where ρ is the Pearson’s
correlation coefficient of the feature maps of the two images.
ρ is formulated as follows:

ρ (x, y) =
∑N

i=1 (xi − x̄) (yi − ȳ)√∑N
i=1 (xi − x̄)

2
√∑N

i=1 (yi − ȳ)
2

(1)

where N represents the feature map size. Then, a representa-
tion dissimilarity matrix (RDM) is populated by the dissimi-
larity scores for all pair of images in the subset. This process

FIGURE 3. RSA approach to quantify the similarity score between Task 1
and Task 2. (a) RDM computation. (b) rs computation.

is repeated six times for different CNN frameworks, as shown
in Fig. 3 (a).

Secondly, the similarity between the RDMs of two CNNs
can be computed with the Spearman’s correlation (rs)
between the upper or lower triangular part of the RDMs,
as shown in (2):

rs = 1−
6
∑M

i=1 di
M
(
M2 − 1

) (2)

where di denotes the difference between the ranks of ith

elements of the lower triangular part of the two RDMs in
Fig. 3 (b), and M is the number of elements in the lower
triangular part of the RDM. This procedure is repeated nine
times for various combinations of two CNNs, as shown in
Fig. 3 (b). Intuitively, the combination pair with the highest
rs yield the best multitasking performance, which will be
validated in Section IV.

The unified model in Fig. 2 (c) deserves further elabora-
tion. The frozen model weights from θ2,backbone and θ2,FPN
allows the training process of Task 1 θ∗1,head and Task 2 θ2,head
to be decoupled. This indicates that solutions can be found
in a per-task fashion before merging them into one unified
model. Such lightweight network architecture facilitates both
bandwidth-sensitive FL training and cost-limited inference.
On top of being lightweight, the proposed model can even
produce better classification-related accuracy while preserv-
ing the same detection-related AP. This is accomplished
by transferring feature representations from denser network
θ2,backbone to learn Task 1.

Overall, the benefits of using the model are flexibility,
speed, and accuracy. The training procedures of Task 1
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Algorithm 1 Training Strategy for Task 1
Input: Labeled Dataset, L

Number of Epoch, Nt1
Learning rate, α
Task 1 Head Model, θ∗1,head
Categorical Cross-Entropy Loss Function,
ICCE

Output: Trained Task 1 Head Model, θ∗1,head
01 L is divided into mini batches of data, l
02 Obtain and freeze pre-trained θ2,backbone

(until 94th Layer)
03 // Train Task 1 Head Model, θ∗1,head
04 for t = 1 : Nt1 do
05 for l in L do
06 // Use θ2,backbone to extract l’s feature maps, f
07 f ← θ2,backbone (l)
08 // Compute gradients and update model
09 ∇ ←

δ
δx JCCE (θ

∗

1,head , f )
10 θ∗t+11,head ← θ∗t1,head − α∇

11 end for
12 end for

and Task 2 are described in Algorithm 1 and Algorithm 2,
respectively.

B. ACTIVE LEARNING (AL)
There exist two pool-based strategies, namely uncertainty
sampling and query by committee. We choose the former
since it is one of the most popular approaches [22] and
consumes lesser computational power [51]. The category
of uncertainty sampling can be further divided into three
subgroups namely least confidence, entropy sampling, and
margin sampling. Here, we focus on only the third technique
since these three methods perform equally well in a disaster
classification scenario [8].

Fig. 4 visualizes the t-SNE results for the test images from
CrisisIBD [16]. From the figure, it is observed that most of
the images, regardless of the classes, are clustered near to
the centre. These samples, labelled as ‘‘hard’’, would always
be prioritized by margin sampling in terms of selection.
Table 1 illustrates some sample images from the CrisisIBD
[16] with high ambiguity.

A better strategy is to incorporate diversity into the query
process [43]. To this end, we design a simple heuristic by
combining both uncertainty and diversity samplings. Apart
from the hard samples, our modified sampling process as
shown in Algorithm 3 considers two additional categories
namely ‘‘easy’’ and ‘‘moderately-hard (mod)’’. These sam-
ples represent those that are far away from the centre and
have clear classification boundaries. Specifically, for each
round of query selection in Phase 2, all available unlabelled
samples are ranked in terms of uncertainty and sorted in a
descending order. Hard, moderately-hard and easy samples
are then picked according to the lines 9, 10, 11 of Algorithm
3. These selected samples are removed from the unlabelled

Algorithm 2 Training Strategy for Task 2
Input: Labeled Dataset, L

Number of Epoch, Nt2
Mini Batch Gradient Accumulation Round,B
Learning Rate, α
Task 2 Head Model, θ2,head
YOLOv3 Loss Function, JY3

Output: Trained Task 2 Head Model, θ2,head
01 L is divided into mini batches of data, l
02 Obtain and freeze both pre-trained θ2,backbone and θ2,FPN
03 // Train Task 2 Head Model, θ2,head
04 for t = 1 : Nt2 do
05 Counter: c← 0
06 Accumulated Gradients: ∇accumulate← 0
07 for l in L do
08 // Compute & accumulate gradients
09 ∇ ←

δ
δx JY3(θ

t
2,head , l)

10 ∇accumulate← ∇accumulate +∇

11 // Update model
12 if c mod B = 0 then
13 ∇accumulate← ∇accumulate/B
14 θ t+12,head ← θ t2,head − α∇

15 ∇accumulate← 0
16 end if
17 // Increase α after 10 epochs of warm up training
18 if t mod10 = 0 then
19 α← α × 10
20 end if
21 end for
22 end for

FIGURE 4. t-SNE results for the test dataset. Bold color corresponds to
33% of hard samples.

dataset pool and the process repeats until the communication
epoch Na is reached.

C. FEDERATED LEARNING (FL)
Tominimize the effort of implementation, we choose the sim-
ple Federated Averaging (FedAvg) algorithm as in [52], [53],
and [54]. FedAvg combines the model parameters collected
from each local device via averaging. Algorithm 4 describes
the overall process. Firstly, a FL server is initialized with a
global model. Secondly, it will share the global copy with

115936 VOLUME 10, 2022



Y. J. Wong et al.: Optimized MTL Model for Disaster Classification and Victim Detection

TABLE 1. Examples of high-similarity images in CrisisIBD [16].

Algorithm 3 The Proposed Active Learning Process
Input: Initial Model, θ∗1,head

Number of Active Learning Epoch, Na
Small Labeled Dataset (seed), L0
Unlabeled Dataset, Ut
Uncertainty Function, Func
Query Batch Size,

(
Keasy,Kmod ,Khard

)
Output: Labeled Dataset, Lt
01 Each Client executes:
02 // Phase 1: Warm Up the Model
03 θ∗01,head ← train θ∗1,head for 5 epochs using L0
04 for t = 1: Na do
05 // Phase 2: Query Selection
06 Q← Func (Ut , θt); Rank the uncertainty of

each data point in Ut
07 Arrange Q in descending order based on uncertainty
08 Q

easy
t ←

{
Ut,i|inci ∈ argbtmK

(
Q,Keasy

)}
; Pick

the last correspondingKeasy samples from Q

09 Qmodt ←
{
Ut,i|inci ∈ argmidK (Q,Kmod )};

Pick the corresponding(
1+ |Ut |

/
2 to Kmod + |Ut |

/
2
)
samples from Q

10 Qhardt ←
{
Ut,i|unci ∈ argtopK (Q,Khard )};

Pick the first corresponding Khard samples
from Q

11 Qt = Q
easy
t ∪ Qmodt ∪ Qhardt

12 // Phase 3: Sample Annotation
13 Yt ← annotate Qt
14 Lt ← Lt−1 ∪ {(X,Y) |X ∈ Qt ,Y ∈ Yt }

15 // Phase 4: Update Model
16 θ∗t+11,head ← fine-tuning θ∗t1,head using Lt
17 Ut+1← UtQt
18 if |Ut+1| = 0
19 break
20 end for
21 return Lt+1

a group of selected clients participating in the local model
training. Thirdly, the trained model parameters are collected
and averaged at the FL server. Lastly, this process repeats
until it reaches the threshold ofNe. The entire FL framework

Algorithm 4 Train Task 1 or Task 2 using Federated Learning
Input: Initial Model, θ∗1,head or θ2,head

Number of Communication Round, Nc
Total Number of Clients, K

Output: Trained Model, θ∗1,head or θ2,head
1 If Task 1, set θ = θ∗1,head ; else, set θ = θ2,head
2 Server executes:
3 Initialize a global model, θglobal

4 for t = 1 : Nc do
5 Operations on the server side:
6 // Select a fraction of Clients, C
7 m← max (C · K , 1)
8 St ←{random set of m clients}
9 // Train each selected client, θk

10 for each client k ∈ St in parallel do
11 θ

global
t+1 ←ClientUpdate(θglobalt )

12 end for
13 θ

global
t+1 ←

∑K
k=1

nk
n θ

k
t+1

14 end for
15 ClientUpdate(θglobal):
16 // Train the client model using local dataset
17 θ ← θglobal

18 update θ using any preferred strategy
19 return θ

is implemented using the OpenFL [55]. It is a Python 3 open-
source FL framework that supports many real world applica-
tions such as medical imaging [39], [56], [57].

D. INFERENCE OPTIMIZATION
Once the individual head models for Task 1 and Task 2 are
trained, they are merged into a unified model. Given the
heterogeneity of IoT devices, it is favourable to accelerate
the inference in such a way that the same optimized model
can be executed across different hardware. OpenVINO is a
promising candidate to meet these portability requirements.
It calibrates the model for execution on several hardware
types including Intel CPU, Intel Integrated GPU, Intel FPGA,
and Intel Movidius Neural Compute Stick 2 (NCS2). Overall,
OpenVINO involves two major steps as follows.

1. Model Optimizer: It converts the trained model into an
OpenVINO format, known as intermediate representa-
tion (IR). IR consists of two files (∗.xml +∗.bin). The
former and the latter contain the network topology and
model weights, respectively.

2. Inference Engine: It is a C++ librarywith a set of C++
classes to infer input data (images) and obtain a result.
The C++ library provides an API to read the IR, set
the input and output formats, and execute the model on
target devices.

IV. EXPERIMENT, RESULTS, AND DISCUSSIONS
A. DATASETS
The datasets used in Task 1 and Task 2 are listed in
Tables 2 and 3, respectively. All images are extracted from
CrisisIBD [16]. For Task 1 dataset, those events related to
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TABLE 2. Data split for disaster types.

TABLE 3. Data split for victim detection.

FIGURE 5. Experimental setup.

road accident, plane crash, explosion, and war are classified
as ‘‘other disaster’’. For Task 2 dataset, additional annotation
efforts are required since there is a lack of publicly avail-
able victim detection datasets. Specifically, we identify those
images containing victims from [16] and generate bound-
ing boxes via a combination of automatic [58] and manual
annotations.

B. EXPERIMENTAL SETUP
Fig. 5 depicts the experiment with following setup.

1. Training phase: A maximum of three FL clients
(K = 3) can be instantiated by OpenFL. A workstation
consists of an Intel core i7 processor with 2.30GHz, 64
GB of DDR4 RAM memory and NVIDIA RTX 2070
SUPER. The workstation hosts two FL clients whereas

the remaining client is executed at an Intel NUC with
an Intel core i7 processor with 4.70GHz and 64 GB
of DDR4 RAM memory. This yields a sum of one
Tensorflow GPU and two Tensorflow CPU operators.
During the FL training, these two hardware are con-
nected via Wi-Fi and model weights are shared for
each communication epoch. Clearly, the local training
completion time differs for each FL client and model
aggregation can be initiated once all participating FL
clients finish their tasks. Without loss of generality,
we made the following assumptions:
• All FL clients always participate in each round
• All FL clients train Task 1 and Task 2
• The workstation concurrently acts as the FL server

2. Inference phase: We calibrate the model to a variety
of IR format, ranging from single-precision floating-
point (FP32), through half-precision floating-point
(FP16) to unsigned integer value (INT8). Obviously,
the lower the quantization bits, the higher the through-
put capacity. These models are benchmarked over
three hardware: CPU 1, NCS2 and Raspberry Pi 4
(RP4) via OpenVINO DLWorkbench. NCS2 is a dedi-
cated hardware accelerator for inference with ultra-low
power consumption. The great power savings, how-
ever, is accompanied by two limitations: (i) it can run
only FP16 mode and (ii) it does not support the NMS
feature.

C. TRAINING STAGE
θ∗1,head is trained using the Cosine Decay strategy. Different
from Task 2, we train FL model of Task 1 in combination
with offline AL technique, as proposed in Algorithm 3. This
implies that the FL phase will only commence after the
completion of AL at each client. We do not use the online AL
mode in order to bypass the time-consuming round-by-round
sample selection in FL [8].

For Task 2, we adopt the gradient accumulation strategy to
facilitate the training at edge level. The hyperparameter for
both Task 1 and Task 2 are tabulated in Table 4.

D. RESULTS AND DISCUSSIONS
1) RSA SIMILARITY
Firstly, we validate our hypothesis that the optimized head
model θ∗1,hea consists of two IRBs, followed by the remain-
ing blocks, and its optimal branching location is at the 94th

location of θ2,backbone. To do so, we select 200 images from
CrisisIBD and use equation (2) to compute the rs for each
possible combination of θ1,base (where NIRB = 1, 2, 3) and
θ2,backbone (82nd, 94th and 106th Layer), as shown in Table 5.
It can be observed that all the rs score at 82nd layer has the
lowest value. This makes sense as the feature maps produced
at this level are considerably too low-level. On the other hand,
the highest score can be identified at 94th layer, instead of
106th layer. One possible reason is that the feature maps
generated by this deepest layer are highly specialized for
victim detection.
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TABLE 4. Important hyperparameter for Task 1 and Task 2.

These explanations are justified by using Grad-CAM [59]
to visualize the activation maps as shown in Fig. 6. We limit
our analysis to NIRB = 2 since this configuration gives the
best result in Table 5. A direct inspection suggests that among
all three layers, θ2,backbone (94th Layer) at Fig. 6 (b) yields
the highest similarity with θ1,head (NIRB = 2) at Fig. 6 (d).
This indicates that θ2,backbone at this layer still preserves
the meaningful semantic background knowledge needed for
disaster scene classification.

To prove that higher task similarity leads to better branch-
ing selection, we first attach θ1,head to θ2,backbone for a total
of nine combinations as shown in Table 5 and retrain θ1,head
for Task 1. Then, the computed F1 score is displayed in
Table 6. It can be observed that the performance of F1 score is
generally consistent with that of rs, where both optimal points
lie at the same location.

2) TASK 1: DISASTER CLASSIFICATION
The performance of the CL-trained θ∗1,head is compared to the
benchmarks provided by [17]. Note that their reported results
stem from several single-task CNN models that are trained
exclusively for Task 1. Also, for fair comparisons, we retrain
the entire MobileNetv2 in our environment (labelled as
MobileNetv2∗). Table 7 compares the performance from four
perspectives.

Among all models, the most closely related model is the
MobileNetv2∗ since θ∗1,head inherits similar network struc-
ture. Interestingly, the ability to distinguish disasters on top
of a victim-detection model does not jeopardize the classifi-
cation performance. In fact, it achieves 1-2% of performance
gain, in terms of accuracy, precision, recall and F1 score. The
rationale behind this is that θ2,backbone has a denser network
than MobileNetv2∗ to learn Task 1. Quantitatively speaking,

FIGURE 6. Grad-CAM visualization of activation maps. (a) θ2,backbone
(82nd Layer.) (a) θ2,backbone (94th Layer.) (c) θ2,backbone (106th Layer.)
(d) θ2,base (NIRB = 2.)

TABLE 5. Similarity (rs) between each θ1,base and θ2,backbone.

TABLE 6. F1 Score of θ1,head on top of each θ2,backbone after retraining.

the total parameters of θ2,backbone is 6.6x more than that of
θ1,base (NIRB = 2).

A direct comparison from Table 7 suggests that Efficient-
Netb1 [60] will be always the best choice. However, another
important factor in model selection is the computational
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TABLE 7. CL-Trained head model (θ∗1,head ) Vs. Benchmarks in [17].
MobileNetv2∗ was Retrained in the same environment as θ∗1,head to
ensure fair comparisons.

TABLE 8. Comparison between the disaster classification head models
trained via CL, FL and AL-FL. Methods labelled with an Asterisk (∗) are
trained using 3 FL clients.

TABLE 9. Average precision (AP) comparison for Task 2.

efficiency, which is ignored in [17]. In fact, MobileNetv2
has less than doubled the parameters required by Efficient-
Netb1 [61]. Nevertheless, there exist some state-of-the-art
models with high accuracy and yet fast processing such as
CustomNet [62]. We argue that our proposed branching strat-
egy is also applicable to these models, provided that the task
similarity between two merging candidate networks is good
enough. Overall, our solution is considered robust given that
it can handle two tasks.

So far, θ∗1,head as tabulated in Table 7 is a CL-trainedmodel.
In Table 8, we will use this as the benchmark (labelled as
‘‘CL (all data)’’) with respect to the FL and AL-FL perfor-
mance. We also consider two scenarios (‘‘CL (1/2 data)’’ and
‘‘CL (1/3 data)’’) where IoT devices individually train the

TABLE 10. Network model size comparison.

TABLE 11. Model inference speed (FPS) before and after model
optimization via OpenVINO toolkit.

model without sharing their model weights. As expected, the
individual training of each device yields inferior results due
to limited dataset.

Surprisingly, it can be noticed that FL outperforms CL
in both 2-client and 3-client settings. For instance, FL with
2-client and 3-client outperform CL by 1.13% and 0.50% in
precision, respectively. This is a very encouraging result from
a system design point of view and such performance trend is
aligned with the findings in [44] and [63].

Among all the AL-FL variations, the best performer is
the proposed heuristic, which picks a combination of easy,
mod, and hard samples. It approximates the CL model within
3.40% F1 score gap while using 36.57% less labelled dataset.

3) TASK 2: VICTIM DETECTION
Since θ2,head is trained with a custom dataset, there is no
benchmark to compare the results with. We consider similar
settings as in Task 1, except for theAL approach. Table 9 com-
pares the results of θ2,head trained on each setting. This time,
it can be observed that the FL approach is weaker than the CL
method for Task 2. The performance loss is likely attributed to
the scarcity of training dataset [8]. In FL mode, Task 2 clients
has a maximum of 2997 images, which is less than half of the
6423 images used in Task 1. Nevertheless, the FL approaches
outperform their distributed learning counterparts by up to
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TABLE 12. Model accuracy and AP before and after model optimization
via OpenVINO toolkit.

35%. These results again highlight the importance of sharing
model weights for better performance.

4) BENEFITS OF USING PROPOSED MODEL IN
FL ENVIRONMENT
Table 10 compares the actual parameter size between conven-
tional and proposed methods. It can be observed that the pro-
posed model saves about 11.3% of the transmission payload
for every communication round Nc. To train a specific task
in an FL environment, the total size of model weights w1/2
needed to exchange with a FL server can be calculated as
follows:

w1/2 = Nc × K × s1/2 (3)

5) INFERENCE RESULTS VIA DL WORKBENCH
To ensure reusability, interoperability, and scalability,
we measure the inference results via the DL workbench tool.
Table 11 compares the speed in terms of FPS among three
hardware as mentioned Fig. 5.

As expected, the highest inference speed is attained by
the powerful GPU mode. A direct deployment in the CPU 1
will drastically drop from 20.31 to 6.55 FPS. This unveils
the need of using OpenVINO models. Under the same hard-
ware and data format, the optimized model achieves 43% of
FPS gain. The speed can be further boosted to 151 % by
using INT8 IR model. For NCS2, the performance tradeoff
is visible through the reported FPS value of 2.50. The FPS
stemming from plugging the NCS2 into less powerful RP4
further drops to 1.8. However, this is acceptable since NCS2
consumes power of only 1.5 W [64], which is important
in establishing sustainable IoT solutions. To reveal more
insight, we also convert the models in conventional approach
into two separate OpenVINO models. A sequential execu-
tion of these two models on RP4 results in another FPS
slowdown of 18%.

At this point, it is important to determine how much
is the accuracy and precision drop. Since the inference
model is multi-tasking, Table 12 compares both classifica-
tion (accuracy) and detection (AP) related metrics. At first
glance, all the accuracy accrued by OpenVINO models
surprisingly outperforms the original TensorFlow model.
An in-depth analyse reveals that such trend conforms to
the OpenVINO mechanism. In fact, the OpenVINO model
optimizer uses 20% of the test dataset during the model
calibration. Similar performance trend can be observed for

FIGURE 7. Inference output of the multi-task model at different area.
(a) Flood. (b) Earthquake. The joint disaster classification and victim
count prediction are labeled at the top left corner of the input images.

AP of Task 2. Overall, the MTL model performance is
retained after optimization and such encouraging results will
promote the IoT deployment. Note that we wrote a custom
Python 3 NMS code to complement the OpenVINO IR For-
mat without NMS.

V. CONCLUSION
In this paper, we have devised a MTL model that performs
joint disaster classification and victim detection. Our two
merging CNN networks are MobileNetv2 and YOLOv3,
which can be trained separately. Through rigorous math-
ematical analysis, we proved that optimal branching loca-
tion and the number of IRBs are 94th layer and two,
respectively. As compared to the conventional approach, the
proposed model has lesser memory requirements and bet-
ter classification-related results, while preserving the same
detection-related performance. The first advantage would be
very useful in IoT environment, where the data (e.g., net-
work weights) are exchanged. We showed that AL and FL
can complement each other to bring positive impact to the
IoT scenario, where massive data is generated within dif-
ferent devices and requires exhaustive human annotation
efforts. As a proof of concept, we implemented our solu-
tion onto different hardware by utilizing several open-source
and production-ready tools. Even for the low-cost and low-
powered Raspberry Pi 4, the proposed method can still reach
up to 1.8 FPS, which is 18% faster than the conventional
method.
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Three potential directions have been identified as our
future works. Firstly, the communication between each FL
client and server is based on Wi-Fi technology, which has
transmission distance limitation. An alternative of long-
distance wireless technology such as LoRa and NB-IOT can
be considered. Secondly, the existing Wi-Fi implementation
operates in star topology, which is vulnerable to disaster
damage. Therefore, we need to explore a disaster-resilient
mesh network. Thirdly, the FL approach always requires all
clients to train their own models for every communication
round. In practice, some devices may have limited compu-
tational capacity, scarce dataset and poor channel conditions.
Therefore, we need to select a subset of FL clients in each
round more efficiently.
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