

MUST-CARE: Smart Waste Sorting Machine based IoT and Machine Learning Approaches

Sari Dewi Budiwati, Suryatiningsih, Rio Korio Utoro, Yahdi Siradj, Bethani Suryawardani, Amalia Audah, Khoirul Anwar

SCHOOL OF APPLIED SCIENCE TELKOM UNIVERSITY

MUST-CARE: Smart Waste Sorting Machine based on IoT and Machine Learning Approaches

Background :

IVO

- The amount of waste generated by the residents of Bandung City is increasing
- Bandung (a city in West Java, Indonesia) face a garbage crisis due to waste piling up at Waste Collection Points
- Lack of waste-sorting practices in household level

Targets:

- 1. Provide awareness about waste separation to address the lack of waste separation practices among residents
- Establish community recycling centers located within neighborhoods

Fig 1. Fire fighters try to extinguish the fire that burned down the Sarimukti landfill (CNN Indonesia, 12/09/2023)

ASEAN IVO

First activity

- 1. Waste separation awareness
 - a. Strategic partnership
 - b. Workshop and Seminars

Fig 2. Strategic partnership

Second activity

- 2. Develop smart waste sorting machines
- a. IoT Device
- b. Waste Sorter
- c. Waste Collection Application

Fig 3. Smart Waste Sorting Machine Design Environment

Fig 5. The distance between Telkom University and Lengkong village

Lengkong villages, Bojongsoang – Bandung, West Java -Indonesia

Fig 6. Telkom University student with Lengkong youth organization

Fig 4. Head of village with team using TelU dropbox

Develop smart waste sorting machines

IoT Devices

- Raspberry Pi 4
- Sensors: LDR, infrared
- Camera: Logitech C270

How to use

- User open feeder using QRCode Scan
- User obtained Point Reward through application
- Waste collectors received a notification when drop box was full

Develop smart waste sorting machines

Waste sorter

- Object: face masks, cans, plastic bottles, glass bottles.
- We used Convolutional Neural Network (CNN) model and MobileNetV2 architecture
- Testing
 - Four scenarios: input size, optimizer selection, learning rate adjustments, batch size configurations
 - Optimal result: input size of 128x128, Adam optimizer, LR 0.0001, batch size 8
 redicted: masker redicted: botol plastik redicted: botol plas

Fig 9. Testing result (https://github.com/amaliaaudah/Waste_ClassificationCNN/tree/main)

Develop smart waste sorting machines

Fig 10. Web based monitoring & Mobile apps

Waste Collection Application

- Waste pickups
- Waste bank
- Reporting issues
- Waste management initiatives

Impact of activities

Impact of waste management

- 1. Scientific and technological
 - Environmental protection
 - Health and public safety
 - Generates valuable data
 - Renewable energy

2. Collaboration

- Knowledge sharing
- Multi-stakeholder collaboration
- Innovation and research
- Policy development
- Circular economy

Impact of activities

Society

IVO

Fig xx. Circular economy in Indonesia is included in the National Medium Term Development Plan (RPJMN) 2020 – 2024, under the National Priorities agenda

https://lcdi-indonesia.id/ekonomi-sirkular/

Ongoing commitment to increasing awareness of waste separation is important for creating a cleaner and more sustainable environment. Some of the activities are:

- 1. Conduct waste sorting awareness seminars for the community
- 2. Expand the waste sorting machine to include additional waste types: cooking oil, plastic containers, batteries, small electronic devices
- 3. Enhance the waste collection application: integration with the Waste Bank in Bandung city, waste pickup service
- 4. Collaborative partnership with relevant stakeholder