

Estimating Crowd Density to Detect Sparse Areas to Aid in Crowd Management

Rhodessa J. Cascaro (Presenter)

Janelle Cassandra Uy John Francis Puebla Ian Miguel Lancian

Mapua Malayan Colleges Mindanao

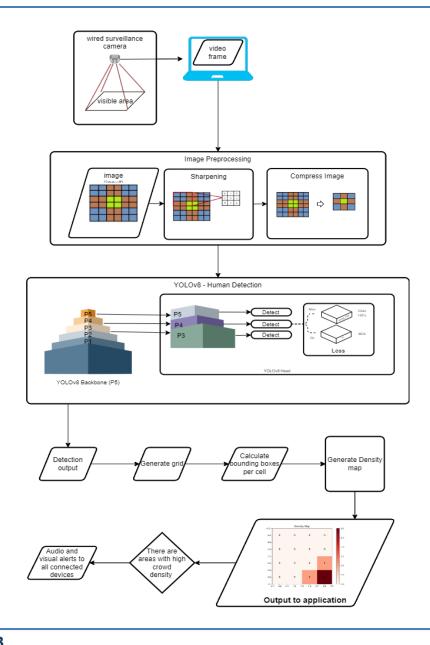
Davao City, Philippines

Background:

- Authoritative members of any city should prioritize the safety and security of the citizens
- Crowd surges and stampede-associated crush injuries and deaths are considered as one of the most major non-communicable public health hazards during a mass gathering event
- Davao City Public Safety and Security Office (PSSO) has strengthened their requirements for major event organizers by submitting security and safety plans
- To help prevent accidents during crowding, crowded areas analysis and monitoring can be used

Targets:

Develop an application that would:

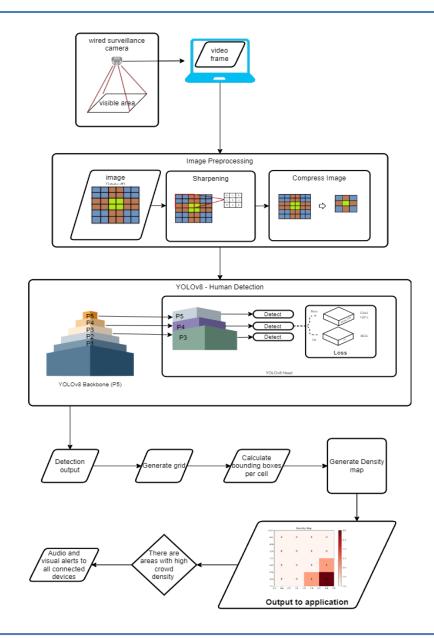

- Sharpen and compress images from video streams
- Estimate crowd density and generate heatmaps to detect dense and sparse areas
- Provide visual and auditory alerts for areas that are excessively crowded

PROPOSED METHOD: SCIENTIFIC AND TECHNOLOGICAL

Currently at the development stage.

- High-powered CCTV cameras installation (the area captured by the camera must be specified in m^2 for the density calculation)
- OpenCV image preprocessing
- Crowd density estimation
- YOLOv8 for human detection
 - Density calculation measured by detected_people/area_captured_by_camera (people/m^2)
 - Density grid creation
 - Density map indicating dense and sparse regions
- Alert generation
- Notification system

PROPOSED METHOD: IMPLEMENTATION AND EXPERIMENTS


Datasets

- UCF-CC-50
- ShanghaiTech

System Prototype

Testing and implementation will be at:

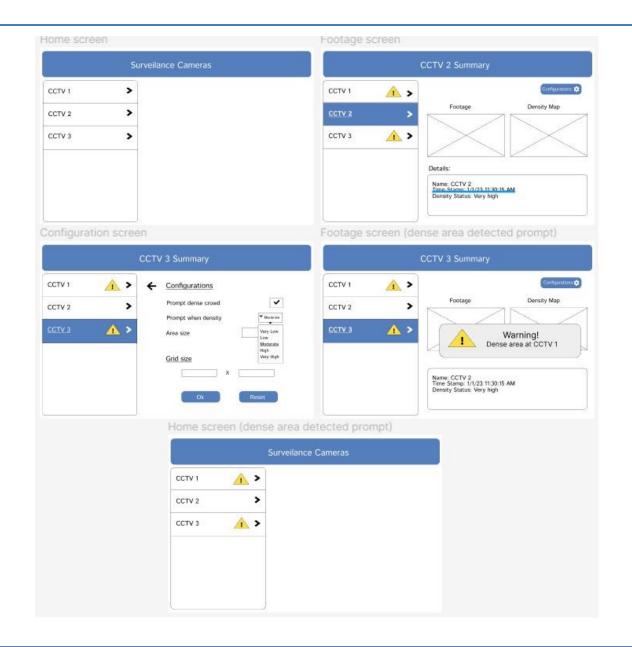
- Mapua Malayan Colleges
 Mindanao
- If allowed, to the Barangays of Davao City

SCIENTIFIC

- Advancement in Crowd Management
- Crowd Behavior Analysis
- Data-driven Insights
- Cross-disciplinary Collaboration

TECHNOLOGICAL

- Real-time Monitoring
- Automation & Reduced Human Error
- Scalability & Safety Enhancements
- Cross-domain Applications


SOCIETAL

- Enhanced Public Safety
- Reduced Congestion & Inclusive Events
- Emergency Response Efficiency
- Improved Urban Planning
- Data-Driven Decision Making

COLLABORATIVE

- Interdisciplinary Collaboration
- Industry Integration
- Knowledge Sharing
- Policy and Regulation Development
- Community Engagement

- Model/Framework
- Dataset for public use
- Desktop application
- Training materials/manual
- Partnership with barangays and local organizations
- Journal articles published

TARGET:

Develop an application that will estimate crowd density and generate heatmaps to detect dense and sparse areas.

METHOD:

Utilize YOLOv8, generate density map indicating crowded/dense and sparse areas, give out alerts through a notification system.

TAKEAWAYS:

Scientific Advancement

Technological Innovation

Societal Benefits

Collaboration

Probable Outcomes

