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ABSTRACT Fake audio detection (FAD) aims to identify fraudulent speech generated through advanced
speech-synthesis techniques. Most current FAD methods rely solely on a deep neural network (DNN)
framework with either speech waveforms or commonly used acoustic features to extract high-level
representations, overlooking the analysis of prosody differences between genuine and fake speech. Prosody
carries important cues about the naturalness of speech and emotional content, which can be leveraged in the
detection of fake audio. This paper explicitly investigates the differences in prosody information between
genuine and fake speech represented by the jitter and shimmer features. On the basis of our investigation,
we found strong evidence that obvious differences exist in the level of jitter and shimmer between fake
and real speech, particularly on the shimmer feature that has a large dynamic variation for fake speech.
To ensure accurate estimation of F0 for better jitter and shimmer feature representations, we propose using
two additional F0 estimation methods, YIN and SWIPE, in place of the IRAPT algorithm in the feature
extraction process. Moreover, we design a DNN-FAD system by explicitly combining the shimmer and
Mel-spectrogram features. The effectiveness of the proposed method for FAD is evaluated in the datasets
of Audio Deep Synthesis Detection (ADD) 2022 and 2023 challenges. The experimental results show that
both the static and dynamic continuous shimmer features, especially that extracted with the YIN and SWIPE
algorithms, can provide complementary knowledge to the traditional spectrum-based FAD systems. The
optimal results effectively reduce the equal error rate from 41.29 % to 35.77 % in the ADD2023 challenge,
achieving a relative improvement of 13.37 %.

INDEX TERMS Fake audio detection, amplitude perturbation, frequency perturbation, jitter and shimmer
features, prosody information.

I. INTRODUCTION
The primary objective of fake audio detection (FAD) [1] is to
identify fraudulent speech generated through advanced voice
conversion (VC) [2], [3] or text-to-speech (TTS) [4], [5], [6]
technologies. FAD technologies can be used to safeguard
automatic speaker verification (ASV) systems from the
risks posed by spoofing attacks. In recent years, numerous
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advanced methods for FAD have emerged. Most of them
focus on two aspects, one is focusing on designing effective
deep model architectures, and the other is focusing on
exploring different types of acoustic features.

In [7], [8], and [9], a light-convolution neural network
(LCNN) with a max-feature-map activation function, pro-
posed for face verification [10], was utilized. The advantages
of LCNN include a reduced number of trainable param-
eters and faster computation speed. In addition, the light
convolutional gated recurrent neural network (LC-GRNN),
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variants of a squeeze-excitation network (SENet) [11],
and ResNet [12] were used as a deep-feature extrac-
tor [13] to defend against spoofing attacks. Many more
works related to the back-end classifiers have also been
reported [14], [15], [16], [17], [18], [19], [20]. Most
architectures of DNNs are based on CNN or RNN modules
because a CNN can efficiently extract features, while a
RNN can effectively detect long-term dependencies in time
variances. However, the performance of these methods highly
depends on the discrimination of the front-end input.

Concerning acoustic features, traditional methods for
extracting front-end features in FAD primarily rely on digital
signal processing algorithms to extract spectra, phase, and
other acoustic characteristics [7], [21]. Among these, spectro-
grams [8], linear frequency cepstral coefficients (LFCC) [22],
and constant Q cepstrum coefficients (CQCC) [23] are
widely used acoustic features. Spectrograms are commonly
used as input features in CNN-based classifiers. On the
other hand, CQCC features utilize a constant Q transform
(CQT) instead of the short-time Fourier transform (STFT)
to process speech signals. They have demonstrated superior
performance to the commonly used mel-frequency cepstral
coefficients (MFCCs) [22], [24].

However, these methods often do not explicitly analyze the
distinctions between genuine and fake speech. Usually, the
distinctions between the two types of speech stem from the
challenging issue of unnaturalness in speech synthesis [25].
Moreover, the unnaturalness in synthesized speech is often
caused by the limitations in capturing and reproducing
rich and diverse prosody information. Prosody related to
representations of non-linguistic information of voice is
a key issue for solving the unnaturalness of synthesized
speech. Therefore, exploring prosody differences between
genuine and fake speech holds great promise in providing
discriminative information for FAD.

Prosody refers to the melodic and rhythmic aspects of
speech, including variations in pitch, loudness, duration, and
intonation [26]. Jitter and shimmer are acoustic measures that
provide information about the stability and irregularities in
vocal fold vibration and intensity [27], [28]. These measures
can be related to prosody because variations in vocal stability
and irregularities can affect the melodic aspects of speech,
such as pitch and loudness modulation. Previous studies have
demonstrated the efficacy of these features in characterizing
voices with pathological prosody [29], [30], [31]. It is
reasonable to regard jitter and shimmer as valuable features
for distinguishing between genuine and fake speech.

The accuracy of fundamental frequency (F0) estimation
directly affects the effectiveness of jitter and shimmer
features [27]. Typically, Instantaneous Robust Algorithm for
Pitch Tracking (IRAPT) [32] is used in the extraction process.
The IRAPT algorithm precisely estimates instantaneous
pitch values and demonstrates resistance to rapid frequency
modulations. Although designed to be robust, the IRAPT
algorithm may perform less accurately and robustly for
complex application scenarios, such as the FAD task.

The YIN algorithm has gained significant popularity [33].
It is an effective approach based on thewell-known autocorre-
lationmethod, incorporating several modifications. A notable
advantage of the YIN algorithm is its unrestricted frequency
search range, making it suitable for high-pitched speech
and music. The improved version called Probabilistic YIN
(pYIN) was presented in [34]. For speech and music, another
pitch estimator known as Sawtooth Waveform-Inspired
Pitch Estimator (SWIPE) has been developed [35]. SWIPE
estimates the F0 by matching the spectrum of the input
signal with that of a sawtooth waveform. The SWIPE
algorithm and its variation, SWIPE’, are effective in reducing
subharmonic errors commonly observed in other pitch
estimation algorithms. According to the results of natural
speech reported in [32], theYIN algorithm is suitable formale
speechwhile SWIPE’ is suitable for female speech. Both hold
significant potential for enhancing the effectiveness of jitter
and shimmer features in the FAD task.

We aim to explicitly investigate the differences in prosody
features, encoded in the jitter and shimmer, between fake
and genuine speech and incorporate these features in a
DNN-based FAD system for improving performance. Toward
this end, we previously proposed using statistical analysis
methods to identify the most promising features. In accor-
dance with the statistical results, both the static and dynamic
continuous shimmer features are then selected for integration
into a light convolutional neural network bidirectional long
short-term memory (LCNN-BLSTM)-based FAD system.
However, in our previous work [36], we utilized a less
accurate F0 estimation algorithm that limited the effec-
tiveness of the shimmer features. Additionally, the optimal
combination weights between the Mel-spectrogram and
shimmer features were not thoroughly discussed, potentially
leading to performance degradation due to inconsistencies in
the dynamic range of different features.

To overcome these remaining problems, in this paper,
we propose using the F0 estimation algorithms, YIN and
SWIPE, instead of the commonly used IRAPT. Various com-
bination weights are tested for optimally integrating shimmer
and spectrum-based features.We evaluate the effectiveness of
our proposed method for FAD in the datasets of Audio Deep
Synthesis Detection (ADD) 2022 and 2023 Challenges.

II. JITTER AND SHIMMER
Jitter and shimmer features represent variations in F0 and
amplitude of adjacent glottis periods, respectively. They
reflect the characteristics of amplitude and frequency per-
turbation (AFP). To illustrate the disparity in AFP between
genuine and fake speech, particularly under degraded speech
quality, two segments of genuine and fake speech were
chosen with identical linguistic content (/i/). These segments
are depicted in Figure 1. To visualize the difference in AFP,
an amplitude normalization operation was conducted, scaling
the amplitudes to the range of [0,1]. From Figure 1, it is
evident that the stability of the fake-speech segment notably
decreased in terms of both amplitude and frequency/period.
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FIGURE 1. Comparison of differences among genuine and fake speech
waveforms. These segments retain the same linguistic content (/i/). The
sampling frequency used for the comparison is 16 kHz.

FIGURE 2. Extraction process of jitter and shimmer features.

As shown in Fig. 2, the extraction process of jitter
and shimmer involves three essential steps [28]. First, the
F0 is estimated using general F0 estimation methods. The
estimated F0 contour is used as a ‘‘reference’’ signal for
further period detection. Therefore, the accuracy of Fo
estimation directly affects the effectiveness of jitter and
shimmer features. Second, the boundary of each fundamental
period is detected using waveform matching with a phase
constraint algorithm. Lastly, jitter and shimmer are calculated
by considering several adjacent periods. In this section,
we roughly introduce three state-of-the-art methods for
estimating F0: IRAPT [32], YIN [34], and SWIPE [35].
Subsequently, we provide the calculation method for the jitter
and shimmer features.

A. F0 ESTIMATION ALGORITHMS
Choosing an appropriate F0 estimation algorithm entails
considering several trade-offs. These include the upper and
lower bounds of the F0 search range, time and frequency
resolution, robustness, computational complexity, and delay.

1) IRAPT
The main target of the IRAPT algorithm [32] is to estimate
the instantaneous pitch values accurately, particularly in
scenarios where there are rapid frequency modulations or
noisy conditions. The IRAPT algorithm utilizes a robust
framework that is less sensitive to rapid frequency changes
and noise. Although designed to be robust, the IRAPT
algorithm may still be influenced by certain artifacts or
specific types of noise, which can affect the accuracy of
pitch estimation. In addition, the algorithm may perform less
accurately for extreme pitch ranges, where the instantaneous
pitch values exhibit significant variations.

FIGURE 3. Schematic diagram of calculation of jitter and shimmer. Ai
refer to the amplitude of the i th period, and Fi refer to the frequency of
the i th period.

2) YIN
The YIN algorithm is based on the concept of the auto-
correlation function and is particularly effective in handling
non-periodic and noisy signals. The YIN algorithm provides
an effective method for F0 estimation, particularly in speech
and music signals, with notable advantages in terms of
computational efficiency and noise robustness. However,
its applicability may be limited in certain scenarios with
complex harmonic content or overlapping sounds.

3) SWIPE
The main theory behind the SWIPE algorithm is inspired
by the sawtooth waveform, which is known for its periodic
nature. The algorithm utilizes a comb-filtering approach to
identify the F0 by searching for the best match between the
input signal and a series of synthetic sawtooth waveforms
with varying periods. The key idea is to find the period
that produces the highest correlation or similarity measure
between the synthetic waveform and the signal being
analyzed. The SWIPE algorithm offers a robust and efficient
approach to F0 estimation, particularly in scenarios involving
speech and music signals.

B. CALCULATION OF JITTER FEATURES
Jitter, as depicted in Fig. 3, measures the variability of the
fundamental period between consecutive periods, represent-
ing short-term variations rather than voluntary changes in F0.
In this paper, the jitter is utilized to provide some information
related to the stability of speech-synthesis systems. Building
upon the findings in [28], the following jitter features are
considered:

(i) average and continuous differences of jitter between
consecutive periods (AJ1/CJ1);

(ii) relative average and continuous perturbation of jitter,
which evaluates the smoothness of period duration over
3 adjacent periods (AJ2/CJ2) [37];

(iii) average and continuous period-perturbation quotient of
jitter, which quantifies the pitch period variability over
5 consecutive periods (AJ3/CJ3);

(iv) average and continuous frequency perturbation quotient
of jitter (AJ4/CJ4), which aims to eliminate the
influence of frequency ‘‘drift’’ and provide a more
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FIGURE 4. Proposed system using a combination of Mel-spectrogram and AFP features for FAD. The jitter features, consist of CJ1, CJ2, CJ3, and CJ4,
are denoted by J. The shimmer features, encompassing CS1, CS2, CS3, CS4, and CS5, are denoted by S.

accurate index of underlying jitter in 55 consecutive
periods.

Let F(i) represent the frequency of the ith fundamental
period in an utterance. The parameters Lp, with p =

2, 3, 4, represent the number of consecutive periods used in
calculating AJ2/CJ2, AJ3/CJ3, and AJ4/CJ4, respectively.
Specifically, L2 is set to 3, L3 to 5, and L4 to 55. N
is the total number of fundamental periods. With these
definitions, we can calculate AJ1/CJ1, AJ2/CJ2, AJ3/CJ3,
and AJ4/CJ4 as follows:

AJ1 =

1
N−1

∑N
i=2 |F(i) − F(i− 1)|
1
N

∑N
i=1F(i)

× 100, (1)

CJ1 =
|F(i) − F(i− 1)|

1
N

∑N
i=1F(i)

× 100, (2)

AJP =

1
N−Lp+1

∑N−
Lp−1
2

i=1+
Lp−1
2

|F(i) − F̃(i)|

1
N

∑N
i=1F(i)

× 100, (3)

CJP =
|F(i) − F̃(i)|
1
N

∑N
i=1F(i)

× 100, (4)

where

F̃(i) =
1
Lp

i+
Lp−1
2∑

k=i−
Lp−1
2

F(k). (5)

C. CALCULATION OF SHIMMER FEATURES
Shimmer, a measure of variation in expiratory flow during
articulation, has been successfully utilized in previous
studies [28]. The ADD2022 and ADD2023 databases exhibit
frequent amplitude variations in fake audio. Therefore, in this
paper, we explore the potential usefulness of shimmer as a
feature in FAD. Five shimmer features are considered for
analysis. The first feature, AS1/CS1, represents the average
and continuous basic shimmer measure. It is defined as
the average absolute difference between the amplitudes of
consecutive periods divided by the average amplitude [37].
To mitigate the influence of long-term changes in vocal inten-
sity onAS1/CS1 and obtain amore effective representation of

TABLE 1. Architecture of LCNN-BLSTM-based deep classifier for FAD.

shimmer, we calculate four additional amplitude-perturbation
quotients of shimmer. These are denoted as AS2/CS2,
AS3/CS3, AS4/CS4, and AS5/CS5. The computation of
these shimmer features follows a similar approach as that
used for jitter. The calculations for the shimmer features are
presented as follows:

AS1 =

1
N−1

∑N
i=2 |A(i) − A(i− 1)|
1
N

∑N
i=1A(i)

× 100, (6)
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FIGURE 5. Statistical results using means and variances of averaged jitter and shimmer features in both Train + Dev. and Adp. datasets.

CS1 =
|A(i) − A(i− 1)|

1
N

∑N
i=1A(i)

× 100, (7)

ASP =

1
N−LP+1

∑N−
LP−1

2

i=1+ LP−1
2

|A(i) − Ã(i)|

1
N

∑N
i=1A(i)

× 100, (8)

CSP =
|A(i) − Ã(i)|
1
N

∑N
i=1A(i)

× 100, (9)

where

Ã(i) =
1
LP

i+ LP−1
2∑

k=i− LP−1
2

A(k). (10)

A(i) is the amplitude of the ith period, Lp, with p =

2, 3, 4, 5, represent the number of consecutive periods used
in calculating AS2/CS2, AS3/CS3, AS4/CS4 and AS5/CS5,
respectively. Specifically, L2 is set to 3, L3 to 5, L4 to 11, and
L5 to 55.

III. FAD SYSTEM WITH JITTER AND SHIMMER FEATURES
Designing a FAD system that can combine the jitter
and shimmer features with a conventional acoustic feature
reasonably is also a challenging point. Fig. 4 illustrates the
proposed FAD system, which combines jitter and shimmer
features with a Mel-spectrogram. Previous studies [39], [40]
have demonstrated that a shallow network is sufficient for
downstream tasks, including anti-spoofing tasks. Therefore,
this paper chooses a light convolutional neural network
(LCNN) [40] based architecture as the baseline system. This
LCNN is accompanied by two bi-directional recurrent layers
utilizing LSTM units (BLSTM), a global-average pooling
layer, and two fully connected output layers [41]. The dimen-
sions of the BLSTM layers match the output dimensions of
the LCNN. This specific architecture is commonly referred
to as an LLGF network in the literature [7], [8].
We adopt a late-fusion approach to add jitter and shimmer

features to the baseline system. Specifically, the jitter
and shimmer features are first extracted using the method
introduced in Section II. Next, these extracted features are

TABLE 2. Statistics information for the training, development, adaptation,
and test datasets of the ADD2022 and ADD2023 challenges. The duration
values are presented in a format indicating the minimum, mean, and
maximum durations.

utilized as input for two fully connected layers (FC_1 and
FC_2). The resulting output from FC_2 is combined with
the output of global average pooling (GAP) [42], employing
distinct weights (w1 and w2). Different weights used here
aim to regularize dynamic ranges of different features. This
combined output is then passed into two additional fully
connected layers (FC_3 and FC_4). Finally, to compute the
score of each audio, a sigmoid function is employed. The
detailed architecture of the LCNN-BLSTMmodel, including
the kernel shape, the output shape of each layer, and the
number of trainable parameters are listed in Table 1.
An objective function named binary cross entropy (BCE)

is used for optimizing the model parameters. BCE is defined
as:

LBCE = −

N∑
i=1

[yi logPθ (xi) + (1 − yi) log(1 − Pθ (xi))]

(11)

where N refers to the number of samples, θ denotes model
parameters, yi and Pθ (xi) are respectively the ground truth
of the i-th training sample and its corresponding output
probability from the model.

IV. EXPERIMENTS
A. DATA AND METRICS
The datasets from the ADD2022 [43] and ADD2023 [44]
challenges were selected to assess the effectiveness of
the proposed method. These challenges aim to shape the
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FIGURE 6. Comparison of discrimination of CS1, CS2, CS3, CS4, CS5, CS3 (△), CS3 (△△), and CS3 (△△△) for the ADD2022
adaptation set. The dimensions of these features were decreased to two and plotted by using the t-SNE toolkit [45].

future direction of detecting deep synthetic and manipulated
audio in multimedia. In ADD2022, all tracks share the
same training and development datasets, while an individual
adaptation dataset is provided for fine-tuning and evaluation
in each track. The ADD2023 comprises only the training
and development datasets. For evaluation purposes, test
datasets for ADD2022 and ADD2023 are available online.
These datasets contain unseen audio samples obtained from
various speech-synthesis systems. Notably, these samples
present more real-life and challenging multimedia scenarios

than those in the ASVspoof2021 challenge [46]. This paper
uses the data from the track of low-quality FAD (LF)
in ADD2022 and the track of audio fake game detection
(FG-D) track in ADD2023. The difference between these
two datasets is from the setting of the competition system,
the FG-D track in the ADD2023 challenge includes two
rounds of testing. The second round test is more difficult,
so this paper considers the results from the second round
only. Table 2 provides statistical information regarding these
datasets.
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TABLE 3. FAD results (EER) in the adaptation (Adp.) and test sets of ADD2022 Challenge. Data augmentation and VAD are applied in the extraction of the
Mel-spectrogram only.

The performance of the proposed FAD system was
assessed using the equal error rate (EER), following the
same evaluationmethod used in the ADD2022 andADD2023
challenges.

B. EXPERIMENTAL SETUP
The Mel-spectrogram was extracted by using the
MelSpectrogram module in the torchaudio.transforms
library [47]. The parameters used in the STFT were
configured as follows: a fast Fourier transform size of
1024, a window length of 512, and a hop length of 256.
In cases where the audio duration is shorter than 4 seconds,
zero padding is applied. The resulting Mel-spectrogram
has dimensions of [64 × 80 × 404], denoting the batch
size, number of Mel filterbanks, and number of frames.
The YIN and SWIPE algorithms, implemented through the
libf 0 toolbox [48], are used in this paper. The dimension of
each continuous shimmer feature is [64 × 1 × 404].
Data augmentation techniques (including the introduction

of reverberation, babble, and music noise) were used during
the extraction of the Mel-spectrogram feature to enhance the
diversity of the training dataset, hence enhancing the robust-
ness of the back-end classifier. Additionally, voice activity
detection (VAD) [49] was utilized in the pre-processing stage
tominimize disturbances caused by silence clips. The training
process consisted of 30 epochs, and themodel that yielded the
best results was compiled using the Adam optimizer, with a
learning rate of 0.0001.

V. RESULTS AND DISCUSSION
This section is divided into two parts. The first part
presents the results and discussion derived from ADD2022,
demonstrating the efficacy of the jitter and shimmer features.
The second part encompasses the results and discussion
obtained from ADD2023, focusing on the utilization of
various F0 estimation methods.

FIGURE 7. Comparison of CS3 features extracted from genuine and fake
speech.

A. RESULTS AND DISCUSSION IN ADD2022
This paper examines the discrimination of various jitter
and shimmer features by using statistical methods. The
aim is to identify effective features for FAD. The most
promising features are selected and combined with the
Mel-spectrogram feature as the front-end input for an
LCNN-BLSTM classifier.

The mean and variance of four averaged jitter features
(AJ1, AJ2, AJ3, and AJ4) and five averaged shimmer
features (AS1, AS2, AS3, AS4, and AS5) were analyzed in
both the Train + Dev. (left column) and Adp. datasets (right
column) as depicted in Fig. 5. The top graphs represent the
results of genuine speech, while the bottom graphs illustrate
the results of fake speech. Notably, the mean and variance
of AS1, AS2, AS3, AS4, and AS5 exhibited an increase in
the case of fake audio compared with genuine audio. This
difference was more pronounced in the Train + Dev. dataset.
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TABLE 4. FAD results (EER) in the development (Dev.) and test set of ADD2023 Challenge. Different F0 estimation methods, including IRAPT, YIN, and
SWIPE, were utilized.

TABLE 5. FAD results (EER) in the test set of ADD2023 Challenge using
different combination weights between the Mel-spectrogram and CS3 △△

feature.

It is also clear that amplitude perturbation in the fake audio is
much more unstable. This amplitude-perturbation instability
of fake audio could provide discriminative information for
accomplishing FAD.

The continuous-shimmer features (CS1, CS2, CS3, CS4,
and CS5) were calculated to capture continuous variations
in the speech waveform, providing more discriminative
information than the averaged shimmer features. Principal
Component Analysis (PCA) was used to visualize the dis-
crimination capability of the continuous-shimmer features,
reducing the dimensions to two and depicted in Fig. 6. Among
these features,CS3 exhibited the fewest overlapping samples,
indicating that it facilitated easier separation between genuine
and fake speech. To enhance feature discrimination and incor-
porate dynamic variation characteristics, the first, second,
and third derivatives of CS3 were considered (CS3 (△), CS3
(△△), and CS3 (△△△)), as depicted at the bottom of Fig. 6.
It is evident from the figure that discrimination performance
improvedwith the use ofCS3 (△) and further withCS3 (△△),
with the best performance achieved by CS3 (△△). However,
the discrimination performance of CS3 (△△△) was lower
than that of CS3 (△△). In general, CS3 and its dynamic
features exhibit greater potential for successful FAD.

Fig. 7 illustrates the CS3 feature values for both genuine
(blue) and fake (red) audio, providing an intuitive distinction
between the two. The plot makes it evident that the CS3
feature exhibits more pronounced perturbation in fake audio
than genuine audio.

The discrimination performance of CS3 and its dynamic
features (CS3 (△), CS3 (△△), and CS3 (△△△)), measured
by the EER, is presented in Table 3 and categorized into three
parts on the basis of the utilization of data augmentation
and VAD methods. We focus on the results obtained from
the test dataset only, as they exhibit the same trend as
the Adp. dataset. The baseline system, which utilizes an
LCNN-BLSTM model with a Mel-spectrogram as input,
achieved an EER of 38.63%. However, the static and dynamic
CS3 features yielded higher EERs than the Mel-spectrogram.

It is important to note that the dimension of the
Mel-spectrogram is 80 times larger than that of the shimmer
features. A specific-designed classifier could further improve
the performance of shimmer features.

By incorporating additional reverberation, noise, and
music during Mel-spectrogram extraction, the EER was
decreased to 33.47%. Combining the Mel-spectrogram with
CS3,CS3 (△),CS3 (△△), andCS3 (△△△) further decreased
the EER, which is consistent with the results of statistical
analysis. The best result (31.50%) was achieved when
combining the Mel-spectrogram with CS3 (△△), resulting
in a 5.89% improvement in EER compared with using only
the Mel-spectrogram (33.47%). However, combining the
Mel-spectrogram with CS3 and CS3 (△△), which have the
same distribution state (as shown in Fig. 6), led to a slight
increase in EER (from 31.50% to 32.28%). Applying VAD to
filter out interference information from silent clips decreased
EER to 29.90%.

B. RESULTS AND DISCUSSION IN ADD2023
Table 4 presents the experimental results conducted using
three distinct methods for F0 estimation. To ensure fairness,
the losses of the selected epoch remain nearly unchanged
(around 0.37). Implementing data augmentation significantly
reduces the EER from 61.21% to 41.29%. Moreover,
utilizing CS3, CS3 (△), and CS3 (△△) in conjunction
with the Mel-spectrogram feature contributes to further
reducing EER. These results validate the efficacy of utilizing
pathological prosody information, specifically the shimmer
features, for FAD.

Comparing the F0 estimation algorithms, both the YIN and
SWIPE methods improve the effectiveness of the shimmer
features and exhibit lower EER values than the IRAPT
algorithm. The reason for this may be that both YIN and
SWIPE encompass a broader frequency search range and
higher robustness for natural speech. The best result is
achieved when extracting theCS3 (△△) feature with the YIN
algorithm, resulting in an EER of 36.18%.

The exploration results of different combination weights
between the Mel-spectrogram and CS3 (△△) features are
presented in Table 5. The optimal result is achieved when
the weight is set at a ratio of 3:2. This results in a
significant improvement of 13.3% compared with using
the Mel-spectrogram only, which yields a performance of
41.29%. This finding indicates that setting different combi-
nation weights can balance the effects of inconsistencies in
the dynamic range of different features.
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VI. CONCLUSION
This paper aimed to investigate the prosody information
differences in the voice represented by using the jitter and
shimmer features for the fake audio detection (FAD) task.
In accordance with the statistical analysis results, the most
promising features were selected and incorporated with a
DNN-based FAD system. To further enhance the performance
of the proposed FAD system, two additional F0 estimation
methods, namely YIN and IRAPT, were utilized in place
of the IRAPT algorithm when extracting features. Different
weights were tested to find out the optimal combination
between the Mel-spectrogram and shimmer features.

Statistical analysis results indicate prosody differences
captured by the shimmer features, especially the CS3, can
provide important information to distinguish between fake
and genuine speech. This finding can be further verified
by combining the static and dynamic CS3 features with
the Mel-spectrogram and integrating them into the LCNN-
BLSTM-based FAD system. The results obtained from the
ADD2023 dataset indicate that utilizing YIN and SWIPE
algorithms can further improve the performance of the FAD
system due to the accuracy of F0 detection and broader
frequency search range. During the online test of ADD2022,
EER decreased from 33.47 % to 31.50 % in the absence of
VAD, namely an improvement of 5.89 %. During the online
test of ADD2023, a combined weight of 3:2 resulted in a
significant improvement. The EER decreased from 41.29 %
to 35.77 %, achieving an improvement of 13.37 %.
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