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Abstract—Deepfake speech, a misuse of speech technology, is
of great concern since it seems natural and is difficult to detect.
Although many methods using various speech features have been
proposed, deepfake-speech detection accuracy must be improved,
especially in real-world scenarios. Therefore, this paper presents a
method for detecting deepfake speech on the basis of pathological
features used by pathologists for assessing voice quality. The
six-pathological features, including jitter, shimmer, harmonics-
to-noise ratio, cepstral-harmonics-to-noise ratio, normalized noise
energy, and glottal-to-noise excitation ratio, are fed to a multilayer
perceptron neural network. We evaluated the proposed method
using the Audio Deep Synthesis Detection Challenge dataset. The
results indicate that the proposed model can be used for detecting
deepfake speech. The proposed method’s accuracy, precision,
recall, and F1-score were over 98% on the development set, and
it outperformed the baseline method on the adaptation set.

I. INTRODUCTION

Deepfake speech is a misuse of speech technologies, such
as voice conversion or text-to-speech techniques [1], [2], to
synthesize fake speech. Since deepfake speech seems natural
and is challenging to detect, it poses a significant threat to
economies and societies. For example, criminals used deepfake
speech to impersonate a CEO’s voice and successfully swin-
dled over USD 243, 000 [3]. Automatic speaker verification to
authenticate personal voice is also vulnerable to such attack
[4].

Several methods have been proposed to detect deepfake
speech [5]–[9]. Many classifiers have been utilized, such as
the Gaussian mixture model (GMM), deep neural networks
(DNNs) [10], recurrent neural networks (RNNs) [11], convolu-
tion neural networks (CNN) [12], and residual neural network
(ResNet) [13]. Also, many speech features, including spec-
trograms, linear-frequency cepstral coefficients (LFCCs) [14],
mel-frequency cepstral coefficients [15], constant-Q transform
[16], and constant-Q cepstral coefficients [17], have been used.
For example, Yi [18] and Wang [19] independently proposed a
method based on GMM that takes LFCCs as the input feature
[20].

These features are represented in phase, power spectrum,
and cepstral coefficients. However, to the best of our knowl-
edge, there is a lack of attention on pathological features

in deepfake-speech detection. Since pathological features are
widely used to analyze voice disorders, we hypothesize that
the voice quality of deepfake speech can be considered as a
disordered voice. Hence, pathological features might be clues
for deepfake-speech detection.

We, therefore, investigated six pathological features, includ-
ing jitter, shimmer, harmonics-to-noise ratio (HNR), cepstral-
harmonics-to-noise ratio (CHNR), normalized noise energy
(NNE), and glottal-to-noise excitation ratio (GNE). These
features are fed to a classifier for detecting deepfake speech.

The rest of this paper is organized as follows. Section 2
briefly describes the pathological features mentioned above.
Section 3 presents the proposed method. Sections 4 and 5
present the evaluation of the proposed method, results, and
discussion. Finally, Section 6 summarizes this work.

II. PATHOLOGICAL FEATURES

Pathological features can be used to distinguish between
normal and pathological voices [21] and diagnose diseases
such as Parkinson’s disease [22] neck and head cancers [23].
This study investigated whether the following pathological
features can be used to recognize the deepfake-speech signal.

A. Jitter features

Jitter is the measure of the cycle-to-cycle variations of the
fundamental frequency [24], [25]. As the characteristics of
jitter can be identified by several methods, this work focuses
on four types as follows.

1) Jitter (local): Jitter (local) is the average absolute dif-
ference between consecutive periods divided by the average
period, that is:

Jitter (local) =
1

N−1

∑N−1
i=1 |Ti − Ti+1|
1
N

∑N
i=1 Ti

× 100, (1)

where Ti represents the extracted f0 period lengths, and N is
the number of extracted f0 periods [25].



2) Jitter (rap): Jitter (rap) is the average absolute differ-
ence between a period of its average and its two neighbors,
divided by the average period. It is defined as:

Jitter (rap) =
1
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× 100. (2)

3) Jitter (ppq5): Jitter (ppq5) is the average absolute dif-
ference between a period and its average and its five closest
neighbors, divided by the average period. It is defined as:

Jitter (ppq5) =
1
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4) Jitter (ppq55): Jitter (ppq55) is the average absolute
difference between a period and its average and its 55 closest
neighbors, divided by the average period. It is defined as:

Jitter (ppq55) =
1
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(4)

B. Shimmer features

Shimmer is a variation of a signal in amplitude that results
from irregular vocal fold vibrations. There are various ways to
identify shimmer characteristics. We focused on two types of
shimmer features.

1) Shim (local): Shim (local) refers to the average of ab-
solute differences between the source-signal-amplitude-related
in each index (Ai) and its next neighbor (Ai+1), divided by
the average of the signal amplitudes. It is defined as:

Shim (local) =
1

N−1

∑N−1
i=1 |Ai −Ai+1|
1
N

∑N
i=1 Ai

, (5)

where N is the number of fundamental frequency periods, and
Ai denotes the signal amplitude at index i.

2) Shim (x-point amplitude perturbation quotients): Shim
x-point amplitude perturbation quotients (APQx) is also de-
fined similarly as Shim (local). However, it considers the
absolute difference between the amplitude of each index and
its x− 1 closest neighbors. It is defined as:

Shim (APQx) =
1

N−1

∑N−1
i=1 |Ai − ( 1x

∑i+m
n=i−m An)|

1
N
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, (6)

where m = x−1
2 .

C. Harmonics-to-noise ratio (HNR)

The HNR is a measure of the proportion of the harmonic
and noise components of speech. The noise (ιEn) is computed
as the energy of the residual produced after subtracting the
average waveform from each individual cycle. The harmonic
energy (γEn) is determined as the energy of an average
waveform of a frame pitch built synchronously around ten
consecutive glottal cycles. Hence, this feature requires an
earlier f0 estimation [26]. The HNR is defined as:

HNR = 20 log
γEn

ιEn
. (7)

The HNR is calculated for each frame of analysis. The output
HNR is the average of each frame.

D. Cepstral-harmonics-to-noise ratio (CHNR)

The CHNR is used to calculate HNR as the level difference
between the total energy of the spectrum and noise energy,
with the noise component being considered as the energy that
cannot be related to the spectrum of the original signal [26].
The CHNR-calculation process is illustrated in Fig. 1.

Fig. 1. CHNR calculation process [26].

E. Normalized noise energy (NNE)

NNE is another feature used to quantify the amount of
additive noise, and it is defined as the ratio of the energy of
the noise to the total energy of the signal for each frame of
analysis [26]. The NNE-calculation process is illustrated in
Fig. 2.

Fig. 2. NNE calculation process [26].

F. Glottal-to-noise excitation ratio (GNE)

The GNE is used to describe turbulent noise while disregard-
ing modulation effects [27]. It is assumed that glottal pulses
produce a simultaneous and synchronous excitation of multiple
frequency channels, which is indicated by the correlation
between Hilbert envelopes of multiple frequency bands [26].
The GNE-calculation process is illustrated in Fig. 3.
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Fig. 3. GNE calculation process [26].

III. PROPOSED METHOD

The proposed method detects deepfake speech using a
multilayer perceptron (MLP) neural network that takes a
combination of the above pathological features as its input,
as shown in Fig. 5.

A. Feature analyses

We first investigated those features that can be used to
distinguish between genuine and fake speech signals. We
conducted an experiment by using the dataset from the Audio
Deep Synthesis Detection (ADD) 2022 Challenge [18].

Fig. 4. Histograms of Jitter (apq55) and Shim (apq55) in the development
set.

Figure 4 shows the histograms of the difference between
genuine and fake speech signals for each pathological feature
that is not useful in detecting fake speech signals. We randomly
selected 2, 000 samples of both genuine and fake speech
signals.

Figure 6 shows histograms of the difference between gen-
uine and fake speech signals. for each pathological feature used
for detecting fake speech in this paper.

For distinguishing genuine and fake speech, we found that
Jitter (local), Jitter (rap), Jitter (ppq5), CHNR, NNE, and GNE
help discriminate between genuine and fake speech signals.

Shim (local), Shim (APQ3), Shim (APQ5), Shim (APQ11),
and HNR are less effective in discriminating between genuine
and fake speech signals, as shown in Fig. 6.

On the other hand, it was found that Jitter (ppq55) and
Shim (APQ55) are unsuitable for the discrimination because
their genuine and fake speech histograms overlap, as shown in
Fig. 4.

TABLE I
NUMBER OF UTTERANCES IN ADD 2022 DATASET [18]

Dataset Number of utterances
Fake Genuine Total

training set 24,072 3,012 27,084
dev. set 26,017 2,307 28,324
adp. set 700 300 1,000

Therefore, we used Jitter (local), Jitter (rap), Jitter (ppq5),
Shim (local), Shim (APQ3), Shim (APQ5), Shim (APQ11),
HNR, CHNE, GNE, and NNE with an MLP neural network
for detecting deepfake speech.

Fig. 5. Proposed method.

B. Experimental setup

The ADD 2022 dataset was used to evaluate the performance
of the proposed method. The dataset is divided into three sets:
training, development, and adaptation, as shown in Table I.
From our observation, both training and development sets have
a high signal-to-noise ratio (SNR), whereas the adaptation set
has a low SNR with real-world background noise, such as
background music and people chatting. In this research, our
method was trained from the training set. We then evaluated the
proposed method from the development and adaptation sets.
For jitter and shimmer extraction, we used the perturbation
analysis code implemented in MATLAB [28]. For HNR,
CHNR, NNE, and GNE extraction, we used the AVCA-ByO
MATLAB toolbox [26].

For classification, we applied the MLP neural network, 3
layers, 11 input features, 11 hidden-layer nodes, and one output
layer. The number of training epochs was set to 1, 000. The
model used an Adam optimizer, and a learning rate was set
to 0.0001. The total number of parameters of our model were
only 288.
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Fig. 6. Histograms of pathological features used in the development set.

IV. RESULTS

We compared our method with two methods using the LFCC
feature with two classifiers: GMM and CNN. The method
using gammatone cepstral coefficients (GTCCs) with Resnet34
was also compared [29]. The results are shown in Table II.
They indicate that even though the accuracy, precision, recall,
and F1-score of the proposed method were slightly lower than
those of LFCC with GMM, LFCC with CNN, and GTCC with
ResNet34 in the development set, the accuracy, recall, and F1-
score of our method were better than those of the three other
methods in the adaptation sets. It means that the proposed
method may be robust against speech signals with background
noise, even though the proposed method has never been trained
with speech signals with background noise before.

It can be seen from the table that using the pathological
features alone is not good in terms of balanced accuracy.
However, the proposed method can be improved further by
incorporating these pathological features with others, e.g.,
features obtained from a CNN that takes LFCCs as its input, as
shown in Fig. 7. The 11 pathological features and the flattened
feature obtained from the CNN are combined and fed to an
MLP neural network. The results indicate that the efficiency
improved in both the development set and adaptation set, as
shown by the fifth method of Table II. It can be concluded
that the flattened feature from the CNN with LFCCs may

marginally enhance the performance of the proposed method
for the clean speech signal but considerably improve the
balanced accuracy and precision for the noisy signal. However,
such improvement costs a poorer recall.

V. DISCUSSION

Although our method could successfully detect deepfake
speech in the development set, the following problems and
limitations should be discussed. First, the experimental results
indicate that the proposed method could equally efficiently
detect deepfake speech in the development set without back-
ground noise compared to the other methods regarding the
accuracy, precision, recall, and F1 score. However, its balanced
accuracy is poorer to some extent. The reason might be that
the unbalanced dataset was used to train the proposed model.
The investigation of the proposed method to be trained with a
balanced dataset will be explored further. Second, the feature
size of our proposed method is relatively small in comparison
with the other methods. For example, for the same utterance,
the size of the pathological features was only 11, whereas these
sizes for GTCC with ResNet34, LFCC with CNN, and LFCC
with GMM were larger, which are 60 × 128, 60 × 128, and
57 × 100, respectively. Thus, the pathological features have
discrimination potential for recognizing the deepfake speech.
Suppose they are used well and smartly with other conven-
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TABLE II
RESULTS OF PROPOSED METHODS COMPARED WITH EXISTING METHODS

Method Dev. set evaluation (%) Adp. set evaluation(%)

Accuracy Precision Recall F1-score Balanced
accuracy Accuracy Precision Recall F1-score Balanced

accuracy
1. LFCC with
GMM[18] 99.99 99.99 100 99.99 99.97 68.80 57.73 96.63 72.04 76.38

2. LFCC with
CNN 99.92 99.98 99.94 99.96 99.84 73.00 95.74 64.29 78.81 78.81

3. GTCC with
ResNet34 99.96 99.98 99.98 99.98 99.86 65.10 59.71 86.19 70.55 68.69

4. Pathological features
with MLP (Proposed method) 98.09 98.47 99.47 98.97 91.02 76.30 75.81 97.14 85.16 62.40

5. Pathological features,
LFCC and CNN features
with MLP (Proposed method)

99.76 99.92 99.82 99.87 99.45 79.90 96.46 74.00 83.75 83.83

tional features. In that case, they might reduce misclassification
in decision-making in some cases with higher uncertainty.
Third, the performances of our proposed method, LFCC with
GMM, and GTCC with ResNet34, gradually degraded in
noisy environments because all methods, trained from only
the training set, were fragile under noisy conditions in the
adaptation set. One possible way that we can try to solve
this problem is to apply augmentation techniques so that the
model can be trained with a noisy version of clean speech.
Finally, in this study, we experimentally explore the usefulness
of the pathological features by combining them with some
conventional features, as shown in the fifth row of Table II.
The overall performance is remarkably improved, especially in
the balanced accuracy and precision. However, there is a trade-
off between those improved aspects and recall. The reason for
the recall decrease will be studied further. Also, the features
used to combine with the pathological features in this study
were chosen to prove the concept. They are not crafted in such
a way that they go hand in hand with the pathological features.
Thus, feature selection is left from this study and will be done
in the future.

Fig. 7. Structure of proposed method using pathological features with LFCC
and CNN feature, and MLP neural networks.

VI. CONCLUSION

This paper highlighted the study of pathological features to
detect deepfake speech. We conducted experiments to inves-
tigate pathological features of genuine and fake speech. We
then proposed a method that uses three jitter features, four
shimmer features, HNR, CHNR, NNE, and GNE, for deepfake-
speech detection. These pathological features, consisting of
only 11 numbers, were classified using an MLP neural network

to determine whether the speech was genuine or fake. The
proposed method was evaluated on the basis of the ADD 2022
Challenge. The results indicate that the proposed method could
effectively detect deepfake speech. Although the efficiency of
the proposed method was still lower than the baseline in the
development set, it was better than the baseline in the adap-
tation set. Thus, these pathological features can consistently
account for synthetic voices and be used for deepfake-speech
detection. In addition, we can improve the performance of
the proposed method by combining these pathological features
with some conventional ones (e.g., flattened features obtained
from a CNN that takes LFCCs as its input) and then classifying
the integrated features with an MLP neural network or other
classifiers.
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