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Abstract—Many applications and security systems have widely
applied automatic speaker verification (ASV). However, these
systems are vulnerable to various direct and indirect access
attacks, which weakens their authentication capability. The
research in spoofed speech detection contributes to enhancing
these systems. Unfortunately, the study in spoofing detection
is limited to only some languages due to the need for various
datasets. This paper focuses on a Thai language dataset for
spoof detection. The dataset consists of genuine speech signals
and various types of spoofed speech signals. The spoofed speech
dataset is generated using text-to-speech tools for the Thai
language, synthesis tools, and tools for speech modification. To
showcase the utilization of this dataset, we implement a simple
spoof detection model based on a convolutional neural network
(CNN) taking linear frequency cepstral coefficients (LFCC) as
its input. We trained, validated, and tested the model on our
dataset referred to as ThaiSpoof. The experimental result shows
that the accuracy of model is 93%, and equal error rate (EER)

is 6.78%. The result shows that our ThaiSpoof dataset has the
potential to develop for helping in spoof detection studies.

Index Terms—Thai database, spoof detection, automatic
speaker verification, speech synthesis, speech modification.

I. INTRODUCTION

Automatic speaker verification (ASV) systems have gained
widespread application in various fields and security systems.
However, these systems are susceptible to direct and
indirect access attacks, compromising their authentication
capabilities. Significant research has been dedicated to spoofed
speech detection to bolster the security of these systems.
Unfortunately, the scope of this research is limited to some
languages due to the need for appropriate datasets. This paper
is a part of the ASEAN IVO 2023 project, “Spoof Detection
for Automatic Speaker Verification,” which aims to enhance979-8-3503-7121-5/23/$31.00 ©2023 IEEE



the security and reliability of speaker verification by effectively
detecting spoofing attacks.

In literature, in the beginning, voice spoofing detec-
tion research involved speech and speaker. An effective
database and a performance metric was discussed at the
INTERSPEECH 2013 special session on Spoofing and ASV
countermeasures [1]. This first meeting raised Spoofing and
Countermeasures Challenge, ASVspoof, in 2015. The dataset
ASVspoof 2015 consists of two spoofing attacks: synthetic
speech and voice conversion [2]. Consequently, ASVspoof
2017 [3], ASVspoof 2019 [4], and ASVspoof 2021 [5] were
organized. Each ASVspoof challenge published an available
dataset for download. There are several common publicly
available datasets which are used by voice presentation attack
detection researchers, for example, ReMASC [6], Spoofing
and anti-spoofing (SAS) corpus [7], RedDots [8], Vox Celeb
[9], voicePA [10], and BioCPqDPA [11]. All databases are in
the English language. The only ADD dataset from the Audio
Deepfake Detection Challenge is in the Chinese language [12].

This paper addresses the need for a Thai language dataset
specifically designed for spoof detection. In prosodic features,
intonation, and accent are most important in the Thai language.
Therefore, the database in Thai is necessary for studying spoof
detection of the Thai voice. This paper aims to contribute to the
ongoing efforts to enhance ASV system security by providing
a robust and reliable Thai language dataset for spoofed speech
detection.

II. DATABASE DEVELOPMENT

This section provides detail about database development.
The dataset consists of the genuine dataset and the spoof
dataset. The genuine dataset comprises 143, 262 utterances
developed from Common Voice Corpus 13 [13]. The spoof
dataset consists of 1, 575, 882 utterances and is generated
using different techniques. Three techniques: text-to-speech,
fundamental frequency (F0) modification, and pitch shifting,
are performed to provide a spoof dataset. The number of
signals in the text-to-speech dataset equals the number of
genuine speech signals. The number of signals in the F0
modification dataset is four times that of genuine speech
signals because we vary the value of F0 with four different
values. The number of signals in the pitch-shifting dataset is
six times that of genuine speech signals because we apply six
different values for pitch-shifting. Table I shows information
about our ThaiSpoof database. The detail of generating each
type of signal in the database is provided in this section.

A. Genuine Dataset

This study’s genuine dataset was sourced from the Common
Voice Corpus database [13]. Common Voice is a free and
open-source voice dataset that anyone can contribute to.
Datasets contain a diverse range of speakers and languages.
The Common Voice Corpus contains 28, 118 hours of recorded
audio, including a corresponding text file. The audio files
include demographic metadata such as age, sex, and accent,
which can help train the accuracy of speech recognition

TABLE I
A SUMMARY OF THAISPOOF DATABASE FOR SPOOF DETECTION.

Label Database type Degree No. utterrance
Genuine Genuine dataset - 143,262

Spoofed

Text-to-speech dataset - 143,262

F0 modification dataset

10 ch/oct 143,262
40 ch/oct 143,262
160 ch/oct 143,262
320 ch/oct 143,262

Pitch shifting

+ 4% 143,262
+ 10% 143,262
+ 20% 143,262
- 4% 143,262
- 10% 143,262
- 20% 143,262

engines. The dataset currently consists of 18, 652 validated
hours in 112 languages. The Thai Common Voice Corpus 13.0
dataset utilized in our study contains 416 recorded hour and
167 validated hour from 7, 784 speakers. Note that only the
validated dataset was employed for our genuine dataset. The
original utterances are in MP3 format. We change its format
to become wav file.

B. Spoof Dataset

1) Text-to-Speech Dataset: Text-to-Speech (TTS) tech-
nology has undergone significant advancements, enabling
the synthesis of speech that closely resembles human-like
expressions from written text. Within this domain, VAJA 9.0,
an open-source software developed by AI for THAI. This
software effectively addresses three essential components of
the TTS pipeline for the Thai language: text processing, text-
to-phoneme conversion, and speech synthesis. The text-to-
speech process is shown in Fig. 1.

Fig. 1. The process of text-to-speech.

Text Processing: This technique prepares the input text for
speech synthesis. It encompasses four sub-steps:

a) Text pre-processing. Managing punctuation, special
characters, and whitespace ensure text uniformity.
Normalization techniques standardize text representation.

b) Linguistic Analysis. After pre-processing, the text
undergoes linguistic analysis to identify key units-
words, syllables, and phonemes. VAJA 9.0 introduces
pseudo syllables and smaller word segments that enhance
pronunciation accuracy [14]. For example, ”Hello, nice
to meet you” becomes [’Hel’, ’lo’, ’ni’, ’ce’, ’to’, ’meet’,
’you’].

c) Pseudo Syllable Generation. Pseudo syllables are gener-
ated by considering the linguistic properties of individual
characters, ensuring context-aware pronunciation aligned



with natural speech patterns. These encapsulate phonetic
and phonological characteristics, leading to smoother and
more natural-sounding synthesized speech.

d) Speech Signal Generation. Pseudo syllables form the
basis for speech signal generation. The TTS system
converts linguistic representations into corresponding
acoustic representations, incorporating pitch, duration,
and amplitude. These representations are combined to
create the final synthesized speech waveform.

Text-to-Phoneme Conversion: This technique accurately
converts written text into corresponding phonemes, the basic
unit of speech sounds. It consists of three sub-steps:

a) Sequence-to-Sequence (Seq2Seq) Learning: The encoder
processes input text and generates a context vector. The
decoder then creates the phoneme sequence, while paired
data helps the model learn the mapping between text and
phonemes.

b) Conditional Random Fields (CRFs) for Phoneme
Prediction: CRFs are probabilistic graphical models that
consider contextual dependencies between neighboring
phonemes. Unlike Seq2Seq models, CRFs model the
probability distribution over all possible phoneme
sequences, given the input text [14]. CRFs perform
joint inference over the entire sequence, accounting
for interactions between neighboring phonemes. By
capturing contextual dependencies, CRFs enhance the
accuracy and naturalness of synthesized speech [15].

c) Integration of Sequence-to-Sequence and CRFs: Seq2Seq
and CRFs synergize in VAJA for precise phoneme
prediction. Seq2Seq sets the foundation, and CRFs refine
phoneme accuracy by considering the context.

Speech Synthesis: This technique involves transforming
linguistic representation into acoustic features for speech
generation. It consists of three sub-steps:

a) Transformation of Linguistic Representations: Linguistic
information, such as pseudo syllables and phonemes, is
transformed into acoustic features. These features encode
critical speech characteristics like pitch, duration, and
amplitude.

b) Acoustic Representation to Speech Signal: Acoustic
features are combined to produce the speech signal
waveform. The waveform captures intricate details for
natural-sounding speech, including prosody, rhythm, and
articulation.

c) Sound Synthesis: The final synthesized sound waveform
is created by seamlessly merging acoustic features. This
waveform closely mimics human speech and effectively
translates written text into expressive, intelligible speech.

In this study, we employed VAJA text-to-speech technology
to generate high-quality speech. Leveraging the capabilities of
VAJA, we seamlessly processed the text files sourced from the
Common Voice Corpus 13.0, effectively transforming written
text into spoofed-sounding speech with remarkable accuracy
and fluency.

2) Fundamental Frequency Modification Dataset: A
fundamental frequency (F0) of a person’s voice can give
listeners clues about the speaker’s identity, gender, and
age. Studies have shown that when the F0 of a voice is
changed, for example, if a voice is made higher-pitched,
people will remember it as being even higher-pitched than it
was initially. Therefore, changing F0 can fault the automatic
speaker verification system or the person [16]. We employ the
WORLD vocoder, a free software tool, to analyze, manipulate,
and synthesize speech. It can estimate the fundamental
frequency (F0), aperiodicity, and spectral envelope of speech,
and it can also generate speech that sounds like the input
speech with only the estimated parameters [17]. The structure
of WORLD vocoder is shown in Fig. 2.

Fig. 2. Structure of WORLD vocoder.

There are several versions of WORLD. However, all
versions apply the same main concept to decompose speech
waveform into constituent parts, such as the fundamental
frequency (F0), spectral envelope, and aperiodicity [18]–
[20]. Users can transform this parameter to compose the
synthesized speech. The version of WORLD used in this
study applied a fundamental frequency estimator named
Harvest [20]. The spectral envelope is estimated using the
CheapTrick algorithm. Lastly, the D4C algorithm is applied
for aperiodicity estimation [18]. This spoofed dataset focuses
on F0 modification. Therefore, the concept of Harvest is
described. Since continuous F0 modeling assigns a fixed F0
to unvoiced sections, Harvest tries to reduce the number of
unvoiced frames and assign them more accurate F0 values.
Harvest consists of two stages: estimating F0 candidates and
generating a reliable F0 contour based on these candidates.

The purpose of the first stage of Harvest is to collect all F0
candidates even if they include estimation errors. The outline
of the first stage is shown in Fig. 3. It consists of four sub-
stages.

a) Estimation of the basic F0 candidates. Since our spoofed
speech was created from F0 modification, let us consider
closely on the F0 candidate estimation. The speech
waveform is filtered by many band-pass filters with
different center frequencies. The filter h(t) is designed by
multiplying the Nuttall window w(t) and the sine wave
[21].

h(t) = w(t) cos(ωct), (1)



Fig. 3. Outline of the first stage of Harvest.

and

w(t) = 0.355768 + 0.487396 cos (
π

2Tc
t)

+ 0.144232 cos (
π

Tc
t)

+ 0.012604 cos (
3π

2Tc
t),

(2)

where ωc represent the center frequency of the filter, and
Tc is 2π

ωc
. The filter has range from −2Tc ≤ t ≤ 2Tc. The

filter can extract the fundamental frequency of speech
if the frequency is within a certain range near the
filter’s center frequency (ωc). However, the fundamental
frequency is unknown before it is estimated, so many
filters with different center frequencies are needed. In
Harvest, the center frequencies of the filters are assigned
to a different number of a number of channels per octave
(ch/oct) from the floor and ceiling frequencies to make
the speech signal become spoofed speech. The number
of ch/oct was set as follows, 10 ch/oct, 40 ch/oct, 160
ch/oct, and 320 ch/oct. The filter ’s output signal is shaped
like a sine wave when only the fundamental component
is extracted. The basic F0 candidate is calculated as the
inverse of the average of the four intervals in the output
signal. Any estimated candidate that is not included in
the range of ωc ± 10% is removed.

b) Estimation of F0 candidates from basic F0 candidates.
Harvest obtains the F0 candidate when the filter outputs
the same basic F0 candidates in a certain bandwidth. The
bandwidth is set to ωc ± 10%.

c) Overlapping F0 candidates. Sometimes, there are frames
with no F0 candidates because of noise. One way to
solve this problem is to overlap the F0 candidates from
neighboring frames. Harvest overlaps the F0 candidates
by ±3 ms.

d) Refining and scoring all F0 candidates by instantaneous
frequency. Harvest refines and scores all F0 candidates
by using the instantaneous frequency.

The purpose of the second stage is to create a single, accurate
F0 contour from all of the possible F0 values. It consist of
four sub-stages.

a) Removal of unwanted F0 candidates. Harvest removes F0
candidates that change too quickly or that are outside of
the expected frequency range for voiced speech.

b) Removal of short voiced sections. Short voiced sections
with a length below the threshold are removed and
counted as the unvoiced section.

c) Expansion of each voiced section. Harvest expands
voiced sections by looking for F0 candidates in unvoiced
sections. The expansion is limited to 100 ms, and short
voiced sections are removed after expansion. If two
expanded F0 contours overlap, the one with the higher
reliability score is selected.

d) Interpolation and smoothing of the F0 contour. F0s in
this section are given by the linear interpolation between
the F0s of the anteroposterior voiced section of their
boundaries, then the connected F0 contour is smoothed
in each voiced section by a zero-lag Butterworth filter.
The smoothing result is the final F0 contour estimated
by Harvest.

3) Pitch-shift: The pitch of a person’s voice can be affected
by several factors, including their vocal cords, their size and
shape, and their breathing. These factors can also be affected
by age, gender, and emotion. For example, young children
typically have higher-pitched voices than adults, and women
usually have higher-pitched voices than men. Therefore, if the
pitch of speech signal is manipulated, The manipulated speech
can fault the automatic speaker verification system or lead to
missed speaker identification.

Since our spoofed speech was created by shifting the pitch
of speech, we deployed a time-scale modification algorithm
for speech using pointer interval control overlap and add
(PICOLA) developed N. Morita et al. [22]. PICOLA is
the method to adjust the length of utterance by expanding
or condensing voiced vowels on the time sequence. This
algorithm was derived from time domain harmonic scaling
(TDHS). Thus, PICOLA has advantages by using just a period
size buffer, making its code easy to implement.

Generally, time-scale modification (TSM) algorithms use
a single speaking rate, r, for all time scales. This speaking
rate, r, is a real number between 0 and 1 when speeding up
the speech, and greater than 1 when slowing the speech. The
speaking rate of the speech without modification is typically
set to 1. Let us consider the slowing case as shown in shown
in Fig. 4 (left).

Fig. 4. Time scale modification: slowing down (left) and speeding up (right).

The algorithm separates a signal into the exact period size,



TABLE II
SUMMARY OF IMPLEMENTED DATABASE.

Dataset Degree setA setB setC setD(Dev) Test Total
Genuine - 16,500 16,500 16,500 16,500 16,500 82,500
TTS - 5,500 5,500 5,500 5,500 5,500 27,500

F0
changing

10 ch/oct 1,375 1,375 1,375 1,375 1,375 6,875
40 ch/oct 1,375 1,375 1,375 1,375 1,375 6,875
160 ch/oct 1,375 1,375 1,375 1,375 1,375 6,875
320 ch/oct 1375 1,375 1,375 1,375 1,375 6875

Pitch
shifting

+4% 917 917 917 917 917 4585
+10% 917 917 917 917 917 4,585
+20% 917 917 917 917 917 4,585
-4% 917 917 917 917 917 4,585
-10% 916 916 916 916 916 4,580
-20% 916 916 916 916 916 4,580

Total 165,000

Lp, i.e., waves A and B in Fig. 4 (left). Then A + B is
crossfaded with parameter r. This speech signal is compressed
using rate r. Parameter L is a reduced length which can be
determined using:

L = [
Lp

r − 1
], (3)

where [·] is a round function.
Let us consider the speeding up case as shown in

Fig. 4 (right). The algorithm separates a signal into the exact
period size, Lp. Then A + B is combined with parameter r.
This speech signal is expanded using rate r. Parameter L is a
increased length which can be determined using:

L = [
r

1− r
Lp]. (4)

This speaking rate, r, is a parameter we adjust to various
values to create the spoofed speech dataset. We create the
pitch-shift dataset using six different values of the speaking
rate: +4%, +10%, +20%, -4%, -10%, and -20%. Therefore,
the speaking rate, r, was set to be 1.04, 1.10, 1.20, 0.96, 0.9,
and 0.8, respectively.

III. IMPLEMENTATION AND EVALUATION OF A SPOOFING
DETECTION MODEL

To showcase the practical use of ThaiSpoof, we
implemented a model that classifies a genuine and spoofed
speech signal. Also, performance evaluation of the model is
provides in this section.

A. Dataset

We select 165, 000 utterances for this experiment, where
82, 500 utterances is genuine and another half comprises
various types of spoofing. The dataset for evaluation is shown
in Table II.

B. Implementation

The framework for spoofing detection is shown in Fig. 5.
To demonstrate the use of our dataset, we implement a

model based on a convolutional neural network (CNN) that
classifies speech signals using their linear frequency cepstral
coefficients (LFCCs). The details of feature extraction and
model architecture are as follows.

LFCC is a feature typically used in many speech signal
processing applications. The general process to compute LFCC

Fig. 5. Spoof detection framework.

is as follows. Firstly the input speech signal is segmented into
overlapping frames. The frame length is 0.030 seconds, and
the step between successive frames is 0.015 seconds. Each
frame is weighted using the Hamming window, and then the
discrete Fourier transform is performed on the weighted frame.
A linearly-spaced filterbank with 70 filters is applied on those
frames. The filterbank captures the energy distribution of the
signal in different frequency bands. Then, the logarithmic
function is taken to energies from the filterbank to compress
the dynamic range. Finally, the discrete cosine transform
is applied to the log spectrum energies, and the first 20
coefficients are used. In this work, LFCCs are used with their
deltas and delta-deltas as the input of the classification model.

The classification model is a CNN consisting of five
convolutional layers, one flatten layer, and three fully
connected layers. The input LFCC dimension is 128-by-60,
and there are two classes: genuine and spoofed. The numbers
of filters and their sizes in the convolutional layers are 96
(with a size of 5-by-5), 256 (3-by-3), 384 (3-by-3), 384
(3-by-3), and 256 (3-by-3), respectively. All use the ReLU
activation function. The outputs of the first, second, and fifth
convolutional layers are pooled using max pooling with a pool
size of 2-by-2 and a stride of 2-by-2. The output of the last
convolutional layer is flattened and then forwarded to three
fully connected layers, each with 4096 neurons, 50% dropout,
and ReLU activation function. The output layer is a fully
connected layer with two neurons, one for each class, and
the softmax activation function is used to output a probability
distribution between those two classes. The optimizer used
for training the model is Adam, with a learning rate of
0.000177828, and the loss function is the sparse categorical
cross-entropy.

C. Evaluation and Results

The performance of an a spoof detection system is typically
measured using the equal error rate (EER), which is the point
where the false accept rate (FAR) and false reject rate (FRR)
are equal [23]. The EER is a widely used metric for anti-
spoofing, and a lower EER value indicates better performance.
Other classification metrics, such as accuracy, recall, and F1
score, are also used to evaluate a spoof detection systems.
Table III shows the evaluation result of the model developed
on ThaiSpoof.

IV. DISCUSSION AND CONCLUSION

Based on the evaluation, this study delved into the
development and evaluation of a CNN model tailored for



TABLE III
EVALUATION OF THE IMPLEMENTED MODEL ON OUR DATABASE.

4-fold cross-validation Loss Accuracy Balanced Acc Precision Recall F1 EER

Round1 Train 0.0927 0.9722 0.9722 0.9919 0.9522 0.9716 0.0972
Validation - 0.9320 0.9320 0.9584 0.9033 0.9300 0.0679

Round2 Train 0.0934 0.9623 0.9623 0.9939 0.9410 0.9668 0.0967
Validation - 0.9773 0.9773 0.9843 0.9701 0.9771 0.0627

Round3 Train 0.0954 0.9615 0.9615 0.9902 0.9524 0.9709 0.0972
Validation - 0.9345 0.9345 0.9520 0.9152 0.9332 0.0655

Round4 Train 0.0981 0.9610 0.9610 0.9745 0.9709 0.9727 0.0972
Validation - 0.9302 0.9302 0.9350 0.9247 0.9298 0.0698

Test - 0.9322 0.9322 0.9509 0.9114 0.9307 0.0678

the detection of spoofed speech, Notably, the model achieved
an impressive accuracy of 93.22% during the final epoch of
training. This remarkable accuracy underscores the primary
objective of enhancing the security and dependability of ASV
systems.

During the evaluation phase, the model’s robustness was
assessed on the development and test dataset. Impressively,
the test dataset yielded accuracy, balanced accuracy, precision,
recall, and F1-score of 93.22%, 93.22%, 95.09%, 91.14%,
93.07% respectively, with the ERR of 6.78%. These outcomes
emphasize the model’s reliability in distinguishing between
genuine and spoofed speech.

The achieved results not only demonstrate the proposed
LFCCs and CNN classification but also contribute to the
broader goal of advancing spoofed speech detection. By
effectively addressing the challenges posed by a diverse
dataset containing various forms of spoofed speech, this study
contributes to improve the efficiency of ASV system.

In conclusion, the result shows that this ThaiSpoof dataset
has the potential to develop for helping in spoof detection
studies, and this study paves the way for future investigations
aimed at bolstering the security of ASV systems in the context
of the Thai language. As the field of spoof detection continues
to evolve, this research not only fills a critical gap in spoof
detection for the Thai language but also provides a foundation
for further advancements. By presenting a comprehensive
dataset and a model framework that effectively addresses
the challenges of Thai language prosody and accent, this
study contributes to the ongoing efforts to fortify the security
landscape of ASV systems.
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