
Received 16 October 2022, accepted 23 October 2022, date of publication 1 November 2022, date of current version 8 November 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3218655

An Optimized Multi-Task Learning Model for
Disaster Classification and Victim Detection
in Federated Learning Environments
YI JIE WONG 1, MAU-LUEN THAM 1, BAN-HOE KWAN 2,
EZRA MORRIS ABRAHAM GNANAMUTHU 1,
AND YASUNORI OWADA3, (Member, IEEE)
1Department of Electrical and Electronic Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman,
Selangor 43000, Malaysia
2Department of Mechatronics and Biomedical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman,
Selangor 43000, Malaysia
3Resilient ICT Research Center, Network Research Institute, National Institute of Information and Communications Technology (NICT), Tokyo 184-8795, Japan

Corresponding author: Mau-Luen Tham (thamml@utar.edu.my)

This work is the output of the ASEAN IVO (http://www.nict.go.jp/en/asean_ivo/index.html) project, Context-Aware Disaster Mitigation
using Mobile Edge Computing and Wireless Mesh Network, and financially supported by NICT (http://www.nict.go.jp/en/index.html).

ABSTRACT Disaster classification and victim detection are two important tasks in enabling efficient
rescue operations. In this paper, we propose a multi-task learning (MTL) model which accomplishes these
two tasks simultaneously. The idea is to attach one pruned head model to another backbone network.
We mathematically pinpoint the optimal branching location and the depth of the pruned head model.
Apart from the decoupled task training capability, the MTL model offers lesser memory requirements
(12.8MB saving) and better disaster classification accuracy (1-2% gain), while preserving the same detection
performance (0.694 of average precision (AP)), as compared to the traditional method. Such advantages of
flexibility, speed and accuracy facilitate the large-scale deployment of Internet of Things (IoT) applications,
where we explore the potential of federated learning (FL) and active learning (AL). Given the high ambiguity
within disaster images, amodified version ofAL-based technique is introduced. For realistic implementation,
production-ready OpenFL and OpenVINO tools are adopted to update the global FL model and to optimize
the trainedmodel, respectively. Experiment results are promising: the FL-based techniques are comparable to
or better than their centralized learning (CL) counterparts. Also, our application portability is demonstrated
via different hardware such as CPU and Raspberry Pi.

INDEX TERMS Disaster classification, victim detection, convolution neural network (CNN), hard parame-
ter sharing, representation similarity analysis, multi-task learning, federated learning, uncertainty sampling,
optimal branching, OpenVINO, OpenFL.

I. INTRODUCTION
Annually, natural disasters inflict damages, monetary costs,
injuries, and deaths. For instance, the 2021 Fukushima earth-
quake inflicted 187 casualties, while causing significant dam-
age across Japan [1]. Given that the first 72 hours after a
disaster are critical for rescuing survivors [2], disaster detec-
tion plays a vital role in facilitating search and rescue efforts.

The associate editor coordinating the review of this manuscript and

approving it for publication was Turgay Celik .

The successfulness of these operations heavily relies on the
reported activity of disasters and number of victims.

Deep learning (DL) can extract the aforementioned fea-
tures through a convolutional neural network (CNN). Disaster
classification task can be readily trained by utilizing CNN
architectures such as VGG16 [3] andMobileNet [4].Whereas
for victim counting, it falls into the class of object detection
task, which can be addressed by the popular CNN models
such as You Only Look Once (YOLO) [5] and Single-Shot
Detector (SSD) [6]. In the literature on disaster detection,
these two tasks are generally studied in isolation. How to

115930 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0003-4598-2653
https://orcid.org/0000-0003-4600-9839
https://orcid.org/0000-0001-7094-8612
https://orcid.org/0000-0003-4218-2263
https://orcid.org/0000-0001-6925-6010

Y. J. Wong et al.: Optimized MTL Model for Disaster Classification and Victim Detection

design a joint disaster classification and victim detection
CNN model is a topic worthy of investigation.

Training a disaster detection model in practice presents
another technical hurdle. Existing works commonly assume
that the abundant labelled dataset is available at a central-
ized server with high-performance graphical processing units
(GPUs) [7]. These assumptions do not hold in a large-scale
disaster monitoring environment, especially with a massive
deployment of relatively low powered Internet of Things
(IoT) devices. Within an IoT, all connected devices are able
to collect and exchange data. However, such flexibility is
accompanied with several challenges such as the scarcity of
labelled dataset, data privacy concerns and prohibitive cost of
transmitting data as training samples. Federated learning (FL)
is an emerging paradigm that can help to build an accurate
global CNN model via a collaborative training among edge
IoT devices, without sharing the confidential and bandwidth-
hungry data.

A few recent works such as [8] and [9] have demonstrated
the promising performance of disaster classification via FL.
However, training-level evaluation results do not necessarily
translate into good inference performance. For actual model
deployment in production environment, the legitimate judges
of CNN model quality are IoT local devices, serving as
monitoring nodes. Given the heterogeneity of IoT system, the
portability and acceleration of inference process are crucial
towards scalable disaster monitoring frameworks.

In this paper, we optimize the CNN performance at both
training and inference stages. The starting point is the design
of an efficient multi-task learning (MTL) model that simulta-
neously performs disaster classification and victim detection.
The training burden is relieved by active learning (AL), which
allows the training algorithm to interactively query and label
informative data from the pool of unlabelled dataset in each
local IoT device.

Once the model is trained, we aim to minimize the pro-
cessing time while maximizing classification and detection
performance at the inference phase. Indeed, this stage must
be designed and analyzed correctly in order to achieve a
robust model working in production environment. To this
end, we first accelerate the inference process and port the
optimized model on different Intel platforms via the Intel
OpenVINO toolkit [10]. It is comprehensive toolkit which
fine-tunes and optimizes DL inference performance on target
low-powered devices. Note that the optimized model facili-
tates edge computing, which is one of goals of the ASEAN
IVO project titled ‘‘Context-Aware Disaster Mitigation using
Mobile Edge Computing and Wireless Mesh Network’’.

Experiment results are encouraging: the FL-based disaster
detection techniques are comparable to or better than their
centralized learning (CL) counterparts. Our application porta-
bility is demonstrated via different hardware such as CPU
and Raspberry Pi. Under the same hardware, the optimized
model achieves 151% of frames per second (FPS) gain over
the original MTL model, while having higher accuracy and
slightly lower average precision (AP).

A preliminary version of this article appeared at the IEEE
UEMCON 2021 [12]. While sharing the same basic solution
concept, this version includes a substantial amount of new
material, including a discussion on how optimal branching
can be determined by quantitative analysis instead of empiri-
cal approach, an extended framework with the aid of AL and
FL, and new results for deployment in production environ-
ment. The main contributions of this work are summarized as
follows:

1. Existing studies focus on solving single-task issue of
disaster classification [13], [16], [27], [28], [29] and
victim detection [18], [19], [20], [21], [31], [32], [33]
separately. In contrast, we introduce a MTL model
by attaching a disaster classification head model to
the backbone of a victim detection model. Different
from existing MTL works [34], [35], [36], [37], [38],
we employ an efficient mathematical analysis to pin-
point the optimal branching location and to prune the
head model.

2. The framework design decouples training of two tasks.
Solutions can be found in a per-task fashion before
merging them into one unified model, which has
smaller size than a combination of two separate single-
task models. Such lightweight network architecture
facilitates both bandwidth-sensitive FL training and
cost-limited inference. On top of being lightweight, the
proposed model can even produce better classification-
related accuracy while preserving the same detection-
related AP.

3. Most AL methods advocate uncertainty sampling,
which selects the most uncertain samples from the
unlabeled data pool to label [22]. Such strategy is ill-
suited for disaster dataset, where samples from differ-
ent classes exhibit high similarity. To enable efficient
AL-based FL, we introduce a simple heuristic by com-
bining both uncertainty and diversity samplings.

4. The correctness of the post-training optimization
results, especially for model accuracy, is very crucial
for actual deployment. The majority of the research in
[23], [24], [25], and [26] tries to accelerate the infer-
ence process without detailing the degree of accuracy
loss. In contrast, our measurement outputs are based
on open-source and production-ready frameworks to
ensure reusability, interoperability, and scalability.

The rest of the paper is organized as follows. Section II
describes the related work. Section III presents the proposed
solution. Section IV discusses the experimental setup, fol-
lowed by results and discussions. Section VI concludes the
paper and outlines future research directions.

II. RELATED WORK
To give the readers a big picture of the works in this broad
area, this section reviews related works on disaster classifi-
cation and victim detection, MTL, FL and AL, followed by
inference optimization.

VOLUME 10, 2022 115931

Y. J. Wong et al.: Optimized MTL Model for Disaster Classification and Victim Detection

A. DISASTER CLASSIFICATION AND VICTIM DETECTION
The performance of disaster monitoring is tightly connected
with the quality and quantity of dataset. The authors in [15]
collected and filtered tweet messages that people post during
disasters into one dataset, known as Artificial Intelligence
for Disaster Response (AIDR). Similar work can be found
in [14], where a large multimodal dataset collected from
Twitter during different natural disasters, known as Crisis-
MMD was released. To facilitate benchmarking purpose, the
authors in [16] consolidated the aforementioned datasets into
a dataset called Crisis Image Benchmarks Dataset (Crisis-
IBD), which will be served as input dataset in this paper.

Inspired by the richness of dataset information, various
disaster classification methods have been devised. The work
in [28] analyzed the aerial images for floodmagnitude assess-
ment. However, the assessment is limited to only single dis-
aster type. By focusing on four natural disasters, the authors
in [27] proposed a damage assessment method which out-
performs traditional machine learning approach. The work
in [16] also investigated multi-disaster classifications by har-
nessing the power of several existing CNN models such as
VGG16 and MobileNet. However, these CNNs are directly
used without any modification for further improvement.
Differently, we prune theMobileNetv2 network in such a way
that it can be attached to another CNN backbone network and
yet performs better than the original version. Another CNN
framework was adopted in [13], where multiple pre-trained
unimodal CNNs that extract textual and visual features inde-
pendently are combined and fed into a final classifier for
disaster damage identification. The results in [13], [16], [27],
and [28] however, did not discuss the inference speed aspect,
which is critical for real-time disaster response. Besides that,
the aforementioned works focus on single-task domain.

In [29], the authors presented a cross-domain dataset,
called FloodNet, which incorporates tasks of image classifi-
cation, sematic segmentation and visual question answering.
These tasks are accomplished by executing three separate
models. Such approach (hereafter referred to as conventional
approach), however, requires high memory footprint and
computational resources.

Unlike the previous works [13], [15], [27], [29] which
focus on single-task classification, the same authors in [16]
extended their work to a multi-task classification model [17],
which targets on (i) disaster types, (ii) informativeness, (iii)
humanitarian, and (iv) damage severity assessment. However,
the solution is limited to the image-classification domain,
without considering the victim detection.

Another pool of literature is exploring the potential of IoT
technologies in detecting victims. Unmanned aerial vehicle
(UAV) has emerged as one of the effective IoT solutions for
dealing with a broad affected area [30]. In [18], the authors
leveraged a MobileNet-SSD model to detect victims of natu-
ral disaster through Raspberry Pi camera installed on a drone.
The work in [19] investigated similar problem by considering
a thermal camera. Results show that their victim detection
from aerial thermal view can achieve up to AP of 82.49 %.

The studies in [20] and [21] shifted their focus from aerial
view to burning building and flood scenes, respectively. Apart
from the aforementioned image-based victim detection, the
authors in [31] proposed an integrated audio-visual human
search system, in order to boost the system performance.
The works in [32] and [33] took another divergent approach
by locating mobile terminals based on radio frequency (RF)
signal. However, this method is effective only when user
equipment and victims are in the proximity of each other.
Furthermore, none of the above works [18], [19], [20], [21],
[31], [32], [33] consider a multitask system that concurrently
strives for two coupled goals.

From the literature survey, it is observed that disaster
classification and victim detection are generally studied in
isolation. In contrast, our work aims to develop a MTLmodel
which executes these two tasks simultaneously.

B. MULTI-TASK LEARNING (MTL)
MTL is to perform more tasks using one model, without the
need of using a separate model for each task. In the context
of object detection, MTL can be categorized into three types.
In the first category, the number of headmodels represents the
total tasks needed to perform. If the headmodels share a back-
bone, it is called hard parameter sharing. Whereas for soft
parameter sharing, each task has its own backbone. Examples
of using hard parameter sharing can be found in [34] and [35].
In self-driving car application, the work in [34] added another
head model for lane lines detection to the joint segmentation
and detection model. The scheme in [35] adopted four head
models for (i) citrus detection and (ii) segmentation, as well
as (iii) maturity and (iv) quality classification on the citrus
detection. On the other hand, the authors in [36] resorted
to the soft parameter sharing approach, for achieving joint
detection and segmentation.

Secondly, multi-tasking is made possible with minimal
modifications on the original detector model. It was demon-
strated in [37] for the application of joint vehicle classifica-
tion and distance estimation. The idea is to make the distance
prediction a classification task and subsequentlymerge it with
the task of vehicle classification in order to form a unified
task. Thirdly, some models improve their main tasks based
on several auxiliary tasks. For example, [38] defined three
auxiliary tasks, namely (i) closeness labelling, (ii) multi-
object labelling and (iii) foreground labelling, in order to
refine the learning process of the object detection model.

The successes of the aforementioned MTL solutions are
proven via a centralized data availability. Such assumption
does not hold in a large-scale disaster monitoring scenario.
How effectivelyMTL can be trained from distributed datasets
at local devices is still largely missing. Also, majority of
these works adopt empirical approach to determine the best
branching settings by performing transfer learning on dif-
ferent combinations and subsequently selecting the optimal
one. Such approach requires intensive computation due to
the additional training on each combination to evaluate the
transfer learning performance.

115932 VOLUME 10, 2022

Y. J. Wong et al.: Optimized MTL Model for Disaster Classification and Victim Detection

This paper aims to cast some light on these aspects by
utilizing FL and smarter branching selection strategy.

C. FEDERATED LEARNING (FL) AND ACTIVE
LEARNING (AL)
In FL, only the model weights have to be transferred across
the network for aggregation, which is more efficient as
compared to sharing the entire dataset. Such FL benefits
are exploited in a wide variety of applications ranging
from healthcare [39], wireless communications [40], through
vehicular edge computing [41], to manufacturing [42]. In the
context of disaster detection, the work in [9] proposed a FL
and autonomous UAVs for hazardous zone detection. The
CNN-LSTM model weights trained within each UAV are
transmitted to a central server for global model aggregation.
Despite promising results, the FL usage has been limited by
single-task models adopted in these previous works.

The scheme in [8] also considered FL based single-task
disaster classification, with additional concern regarding the
annotation burden for each local training. Armedwith AL, the
authors reported that the proposed AL-based FL framework
performs equally well under two strategies namely uncer-
tainty sampling and query by committee. Our work distin-
guishes itself by offering more insights into the properties of
disaster dataset. For dataset samples that are close to classi-
fication boundary, uncertainty sampling may always choose
similar samples without diversity [43]. Furthermore, most of
the aforementioned works such as [8] and [9] do not use
production-ready tools for FL implementation.

D. INFERENCE OPTIMIZATION
Efficient execution of a CNN model is undoubtedly another
important criterion for implementing production-ready DL
solutions. This is especially true for deploying heterogeneous
IoT devices of different hardware constraints. How to enable
fast inference on low-powered embedded platforms remains
an open research question. Intel OpenVINO toolkit emerges
as an extremely useful tool of choice since it optimizes DL
models across Intel hardware while minimizing the inference
time [11]. A large portion of the studies discussed above quite
commonly neglect this design aspect and demonstrates their
DL solutions based on expensive GPU resources.

By recognizing the importance of inference optimization,
a plethora of works utilized OpenVINO on various use cases
such as license plate detection [23], person re-identification
system [24] and face recognition [25]. Work that explicitly
optimizes OpenVINO model for disaster scenario was found
in [26]. However, all these research tries to accelerate the
inference process without detailing the degree of accuracy
loss. An allied question is: How much accuracy and AP we
need to sacrifice while pursuing faster inference? In con-
trast, our measurement outputs are based on OpenVINO DL
Workbench [11], which is an open-source and production-
ready framework to ensure reusability, interoperability, and
scalability.

FIGURE 1. Overview of the proposed disaster detection framework.
(a) Communications between server and devices. (b) Interaction from
training to inference.

III. PROPOSED APPROACH
Fig. 1 displays the overview of the proposed disaster detection
framework. In the federated network, there are K devices
communicating with a server. Each IoT device can locally
train its model for Task 1: Disaster Classification or Task 2:
Victim Detection, or in combination of both. Note that even
within the same device, both tasks are trained individually for
the following rationales. Firstly, it allows fine-tuning of spe-
cific tasks, depending on target performance requirements.
Secondly, not all clients have gathered both task information.
Thirdly, some devices are not powerful enough to train both
tasks.

The overall procedures are illustrated in Fig. 1(b). Firstly,
the local training for Task 1 or/and Task 2 are executed.

VOLUME 10, 2022 115933

Y. J. Wong et al.: Optimized MTL Model for Disaster Classification and Victim Detection

FIGURE 2. Network architecture of Task 1 and Task 2. (a) Conventional model. (b) Task 1 splitting. (c) Proposed model.

Secondly, the local model weights are transmitted to the
server for model aggregation. Thirdly, the global fine-tuned
model is sent back to each device for another round of train-
ing. This process repeats until convergence. Fourthly, both
individual trained models are merged into a single unified
model. Fifthly, the multi-task model is optimized in a device
agnostic manner. Lastly, the optimized model is executed on
device k by setting the inference engine mode compatible
with their own hardware.

A. MTL MODEL
Since hard parameter sharing is the most frequently used
approach in MTL [45], our design follows this setting by

branching a disaster classification head model from the back-
bone of a selected object detection model.

In this work, we select MobileNetv2 [46] and YOLOv3 as
the model for Task 1 and Task 2, respectively. MobileNetv2
is one of the lightweight network architectures, which is
suitable for real-time disaster classification. Whereas for
YOLOv3, it is one of the most widely used object
detector [47], thanks to its superiority in achieving the trade-
off between accuracy and speed [48]. Note that our proposed
branching strategy is not limited to only these two CNNs
and can be expectably applicable to other CNNs such as
YOLOv7 [49].

Fig. 2 (a) depicts the ‘‘conventional approach’’ where
the same image serves as an input to two separate models,

115934 VOLUME 10, 2022

Y. J. Wong et al.: Optimized MTL Model for Disaster Classification and Victim Detection

which undergo transfer learning for accomplishing Task 1 and
Task 2, respectively. Specifically, Task 1 adopts a pre-trained
model on ImageNet and finetunes all Nori blocks for disaster
classification. This original model is denoted as θ1,ori, which
consists of one convolution layer, seven inverted residual
blocks (IRBs), one pointwise convolution layer followed by a
global average pooling, and one more pointwise convolution
layer for the classification.

On the other hand, Task 2 initially extracts all weights
learned from the MS-COCO pre-trained model. Then, the
backbone known as DarkNet-53 and Feature Pyramid Net-
work (FPN) are kept frozen. FPN takes three feature maps
from the 82nd, 94th and 106th of DarkNet-53 as its inputs.
Correspondingly, there are three head models which detect
object at different scales. To detect victim, the weights
belonging to three head models are fine-tuned. Given that an
object detector will likely predict more than one bounding
box for the same object, we apply the non-maximum suppres-
sion (NMS) technique for removing redundant object. Here,
we denote Task 2 model as θ2.
To merge these two CNNs into one unified model, the

following questions arise. Questions: How do we split θ1,ori
into one base model θ1,base and one head model θ1,head ,
as shown in Fig. 2 (b)? Where do we attach θ1,head among
three different depth of the shared DarkNet-53? Fig. 2 (c) pro-
vides the answers, where the optimized head model θ∗1,head
consists of two IRBs, followed by the remaining blocks, and
θ∗1,head is branched from the 94th location. Another question
arising is: How do we decide these optimal settings with
quantitative analysis? Hence, it is important to investigate the
relationship between Task 1 and Task 2.
The study in [50] demonstrates that representation simi-

larity analysis (RSA) can measure the task similarity using
the learned representations, without any subsequent training.
Their results show that a higher score of task similarity leads
to better model selection strategy for transfer learning. Here,
we adopt the RSA to decide the optimal branching location.
We enumerate the steps to compute the similarity score for a
different merging combinations of Task 1 and Task 2 in the
following paragraph.

Firstly, a subset of images is randomly selected from
CrisisIBD as the conditions for dissimilarity computation.
We can acquire the representation or feature map of each
image at any layers of a CNN by forward passing the image
until the target layer. The dissimilarity score of a pair of
images can be expressed as 1 − ρ, where ρ is the Pearson’s
correlation coefficient of the feature maps of the two images.
ρ is formulated as follows:

ρ (x, y) =
∑N

i=1 (xi − x̄) (yi − ȳ)√∑N
i=1 (xi − x̄)

2
√∑N

i=1 (yi − ȳ)
2

(1)

where N represents the feature map size. Then, a representa-
tion dissimilarity matrix (RDM) is populated by the dissimi-
larity scores for all pair of images in the subset. This process

FIGURE 3. RSA approach to quantify the similarity score between Task 1
and Task 2. (a) RDM computation. (b) rs computation.

is repeated six times for different CNN frameworks, as shown
in Fig. 3 (a).

Secondly, the similarity between the RDMs of two CNNs
can be computed with the Spearman’s correlation (rs)
between the upper or lower triangular part of the RDMs,
as shown in (2):

rs = 1−
6
∑M

i=1 di
M
(
M2 − 1

) (2)

where di denotes the difference between the ranks of ith

elements of the lower triangular part of the two RDMs in
Fig. 3 (b), and M is the number of elements in the lower
triangular part of the RDM. This procedure is repeated nine
times for various combinations of two CNNs, as shown in
Fig. 3 (b). Intuitively, the combination pair with the highest
rs yield the best multitasking performance, which will be
validated in Section IV.

The unified model in Fig. 2 (c) deserves further elabora-
tion. The frozen model weights from θ2,backbone and θ2,FPN
allows the training process of Task 1 θ∗1,head and Task 2 θ2,head
to be decoupled. This indicates that solutions can be found
in a per-task fashion before merging them into one unified
model. Such lightweight network architecture facilitates both
bandwidth-sensitive FL training and cost-limited inference.
On top of being lightweight, the proposed model can even
produce better classification-related accuracy while preserv-
ing the same detection-related AP. This is accomplished
by transferring feature representations from denser network
θ2,backbone to learn Task 1.

Overall, the benefits of using the model are flexibility,
speed, and accuracy. The training procedures of Task 1

VOLUME 10, 2022 115935

Y. J. Wong et al.: Optimized MTL Model for Disaster Classification and Victim Detection

Algorithm 1 Training Strategy for Task 1
Input: Labeled Dataset, L

Number of Epoch, Nt1
Learning rate, α
Task 1 Head Model, θ∗1,head
Categorical Cross-Entropy Loss Function,
ICCE

Output: Trained Task 1 Head Model, θ∗1,head
01 L is divided into mini batches of data, l
02 Obtain and freeze pre-trained θ2,backbone

(until 94th Layer)
03 // Train Task 1 Head Model, θ∗1,head
04 for t = 1 : Nt1 do
05 for l in L do
06 // Use θ2,backbone to extract l’s feature maps, f
07 f ← θ2,backbone (l)
08 // Compute gradients and update model
09 ∇ ←

δ
δx JCCE (θ

∗

1,head , f)
10 θ∗t+11,head ← θ∗t1,head − α∇

11 end for
12 end for

and Task 2 are described in Algorithm 1 and Algorithm 2,
respectively.

B. ACTIVE LEARNING (AL)
There exist two pool-based strategies, namely uncertainty
sampling and query by committee. We choose the former
since it is one of the most popular approaches [22] and
consumes lesser computational power [51]. The category
of uncertainty sampling can be further divided into three
subgroups namely least confidence, entropy sampling, and
margin sampling. Here, we focus on only the third technique
since these three methods perform equally well in a disaster
classification scenario [8].

Fig. 4 visualizes the t-SNE results for the test images from
CrisisIBD [16]. From the figure, it is observed that most of
the images, regardless of the classes, are clustered near to
the centre. These samples, labelled as ‘‘hard’’, would always
be prioritized by margin sampling in terms of selection.
Table 1 illustrates some sample images from the CrisisIBD
[16] with high ambiguity.

A better strategy is to incorporate diversity into the query
process [43]. To this end, we design a simple heuristic by
combining both uncertainty and diversity samplings. Apart
from the hard samples, our modified sampling process as
shown in Algorithm 3 considers two additional categories
namely ‘‘easy’’ and ‘‘moderately-hard (mod)’’. These sam-
ples represent those that are far away from the centre and
have clear classification boundaries. Specifically, for each
round of query selection in Phase 2, all available unlabelled
samples are ranked in terms of uncertainty and sorted in a
descending order. Hard, moderately-hard and easy samples
are then picked according to the lines 9, 10, 11 of Algorithm
3. These selected samples are removed from the unlabelled

Algorithm 2 Training Strategy for Task 2
Input: Labeled Dataset, L

Number of Epoch, Nt2
Mini Batch Gradient Accumulation Round,B
Learning Rate, α
Task 2 Head Model, θ2,head
YOLOv3 Loss Function, JY3

Output: Trained Task 2 Head Model, θ2,head
01 L is divided into mini batches of data, l
02 Obtain and freeze both pre-trained θ2,backbone and θ2,FPN
03 // Train Task 2 Head Model, θ2,head
04 for t = 1 : Nt2 do
05 Counter: c← 0
06 Accumulated Gradients: ∇accumulate← 0
07 for l in L do
08 // Compute & accumulate gradients
09 ∇ ←

δ
δx JY3(θ

t
2,head , l)

10 ∇accumulate← ∇accumulate +∇

11 // Update model
12 if c mod B = 0 then
13 ∇accumulate← ∇accumulate/B
14 θ t+12,head ← θ t2,head − α∇

15 ∇accumulate← 0
16 end if
17 // Increase α after 10 epochs of warm up training
18 if t mod10 = 0 then
19 α← α × 10
20 end if
21 end for
22 end for

FIGURE 4. t-SNE results for the test dataset. Bold color corresponds to
33% of hard samples.

dataset pool and the process repeats until the communication
epoch Na is reached.

C. FEDERATED LEARNING (FL)
Tominimize the effort of implementation, we choose the sim-
ple Federated Averaging (FedAvg) algorithm as in [52], [53],
and [54]. FedAvg combines the model parameters collected
from each local device via averaging. Algorithm 4 describes
the overall process. Firstly, a FL server is initialized with a
global model. Secondly, it will share the global copy with

115936 VOLUME 10, 2022

Y. J. Wong et al.: Optimized MTL Model for Disaster Classification and Victim Detection

TABLE 1. Examples of high-similarity images in CrisisIBD [16].

Algorithm 3 The Proposed Active Learning Process
Input: Initial Model, θ∗1,head

Number of Active Learning Epoch, Na
Small Labeled Dataset (seed), L0
Unlabeled Dataset, Ut
Uncertainty Function, Func
Query Batch Size,

(
Keasy,Kmod ,Khard

)
Output: Labeled Dataset, Lt
01 Each Client executes:
02 // Phase 1: Warm Up the Model
03 θ∗01,head ← train θ∗1,head for 5 epochs using L0
04 for t = 1: Na do
05 // Phase 2: Query Selection
06 Q← Func (Ut , θt); Rank the uncertainty of

each data point in Ut
07 Arrange Q in descending order based on uncertainty
08 Q

easy
t ←

{
Ut,i|inci ∈ argbtmK

(
Q,Keasy

)}
; Pick

the last correspondingKeasy samples from Q

09 Qmodt ←
{
Ut,i|inci ∈ argmidK (Q,Kmod)};

Pick the corresponding(
1+ |Ut |

/
2 to Kmod + |Ut |

/
2
)
samples from Q

10 Qhardt ←
{
Ut,i|unci ∈ argtopK (Q,Khard)};

Pick the first corresponding Khard samples
from Q

11 Qt = Q
easy
t ∪ Qmodt ∪ Qhardt

12 // Phase 3: Sample Annotation
13 Yt ← annotate Qt
14 Lt ← Lt−1 ∪ {(X,Y) |X ∈ Qt ,Y ∈ Yt }

15 // Phase 4: Update Model
16 θ∗t+11,head ← fine-tuning θ∗t1,head using Lt
17 Ut+1← UtQt
18 if |Ut+1| = 0
19 break
20 end for
21 return Lt+1

a group of selected clients participating in the local model
training. Thirdly, the trained model parameters are collected
and averaged at the FL server. Lastly, this process repeats
until it reaches the threshold ofNe. The entire FL framework

Algorithm 4 Train Task 1 or Task 2 using Federated Learning
Input: Initial Model, θ∗1,head or θ2,head

Number of Communication Round, Nc
Total Number of Clients, K

Output: Trained Model, θ∗1,head or θ2,head
1 If Task 1, set θ = θ∗1,head ; else, set θ = θ2,head
2 Server executes:
3 Initialize a global model, θglobal

4 for t = 1 : Nc do
5 Operations on the server side:
6 // Select a fraction of Clients, C
7 m← max (C · K , 1)
8 St ←{random set of m clients}
9 // Train each selected client, θk

10 for each client k ∈ St in parallel do
11 θ

global
t+1 ←ClientUpdate(θglobalt)

12 end for
13 θ

global
t+1 ←

∑K
k=1

nk
n θ

k
t+1

14 end for
15 ClientUpdate(θglobal):
16 // Train the client model using local dataset
17 θ ← θglobal

18 update θ using any preferred strategy
19 return θ

is implemented using the OpenFL [55]. It is a Python 3 open-
source FL framework that supports many real world applica-
tions such as medical imaging [39], [56], [57].

D. INFERENCE OPTIMIZATION
Once the individual head models for Task 1 and Task 2 are
trained, they are merged into a unified model. Given the
heterogeneity of IoT devices, it is favourable to accelerate
the inference in such a way that the same optimized model
can be executed across different hardware. OpenVINO is a
promising candidate to meet these portability requirements.
It calibrates the model for execution on several hardware
types including Intel CPU, Intel Integrated GPU, Intel FPGA,
and Intel Movidius Neural Compute Stick 2 (NCS2). Overall,
OpenVINO involves two major steps as follows.

1. Model Optimizer: It converts the trained model into an
OpenVINO format, known as intermediate representa-
tion (IR). IR consists of two files (∗.xml +∗.bin). The
former and the latter contain the network topology and
model weights, respectively.

2. Inference Engine: It is a C++ librarywith a set of C++
classes to infer input data (images) and obtain a result.
The C++ library provides an API to read the IR, set
the input and output formats, and execute the model on
target devices.

IV. EXPERIMENT, RESULTS, AND DISCUSSIONS
A. DATASETS
The datasets used in Task 1 and Task 2 are listed in
Tables 2 and 3, respectively. All images are extracted from
CrisisIBD [16]. For Task 1 dataset, those events related to

VOLUME 10, 2022 115937

Y. J. Wong et al.: Optimized MTL Model for Disaster Classification and Victim Detection

TABLE 2. Data split for disaster types.

TABLE 3. Data split for victim detection.

FIGURE 5. Experimental setup.

road accident, plane crash, explosion, and war are classified
as ‘‘other disaster’’. For Task 2 dataset, additional annotation
efforts are required since there is a lack of publicly avail-
able victim detection datasets. Specifically, we identify those
images containing victims from [16] and generate bound-
ing boxes via a combination of automatic [58] and manual
annotations.

B. EXPERIMENTAL SETUP
Fig. 5 depicts the experiment with following setup.

1. Training phase: A maximum of three FL clients
(K = 3) can be instantiated by OpenFL. A workstation
consists of an Intel core i7 processor with 2.30GHz, 64
GB of DDR4 RAM memory and NVIDIA RTX 2070
SUPER. The workstation hosts two FL clients whereas

the remaining client is executed at an Intel NUC with
an Intel core i7 processor with 4.70GHz and 64 GB
of DDR4 RAM memory. This yields a sum of one
Tensorflow GPU and two Tensorflow CPU operators.
During the FL training, these two hardware are con-
nected via Wi-Fi and model weights are shared for
each communication epoch. Clearly, the local training
completion time differs for each FL client and model
aggregation can be initiated once all participating FL
clients finish their tasks. Without loss of generality,
we made the following assumptions:
• All FL clients always participate in each round
• All FL clients train Task 1 and Task 2
• The workstation concurrently acts as the FL server

2. Inference phase: We calibrate the model to a variety
of IR format, ranging from single-precision floating-
point (FP32), through half-precision floating-point
(FP16) to unsigned integer value (INT8). Obviously,
the lower the quantization bits, the higher the through-
put capacity. These models are benchmarked over
three hardware: CPU 1, NCS2 and Raspberry Pi 4
(RP4) via OpenVINO DLWorkbench. NCS2 is a dedi-
cated hardware accelerator for inference with ultra-low
power consumption. The great power savings, how-
ever, is accompanied by two limitations: (i) it can run
only FP16 mode and (ii) it does not support the NMS
feature.

C. TRAINING STAGE
θ∗1,head is trained using the Cosine Decay strategy. Different
from Task 2, we train FL model of Task 1 in combination
with offline AL technique, as proposed in Algorithm 3. This
implies that the FL phase will only commence after the
completion of AL at each client. We do not use the online AL
mode in order to bypass the time-consuming round-by-round
sample selection in FL [8].

For Task 2, we adopt the gradient accumulation strategy to
facilitate the training at edge level. The hyperparameter for
both Task 1 and Task 2 are tabulated in Table 4.

D. RESULTS AND DISCUSSIONS
1) RSA SIMILARITY
Firstly, we validate our hypothesis that the optimized head
model θ∗1,hea consists of two IRBs, followed by the remain-
ing blocks, and its optimal branching location is at the 94th

location of θ2,backbone. To do so, we select 200 images from
CrisisIBD and use equation (2) to compute the rs for each
possible combination of θ1,base (where NIRB = 1, 2, 3) and
θ2,backbone (82nd, 94th and 106th Layer), as shown in Table 5.
It can be observed that all the rs score at 82nd layer has the
lowest value. This makes sense as the feature maps produced
at this level are considerably too low-level. On the other hand,
the highest score can be identified at 94th layer, instead of
106th layer. One possible reason is that the feature maps
generated by this deepest layer are highly specialized for
victim detection.

115938 VOLUME 10, 2022

Y. J. Wong et al.: Optimized MTL Model for Disaster Classification and Victim Detection

TABLE 4. Important hyperparameter for Task 1 and Task 2.

These explanations are justified by using Grad-CAM [59]
to visualize the activation maps as shown in Fig. 6. We limit
our analysis to NIRB = 2 since this configuration gives the
best result in Table 5. A direct inspection suggests that among
all three layers, θ2,backbone (94th Layer) at Fig. 6 (b) yields
the highest similarity with θ1,head (NIRB = 2) at Fig. 6 (d).
This indicates that θ2,backbone at this layer still preserves
the meaningful semantic background knowledge needed for
disaster scene classification.

To prove that higher task similarity leads to better branch-
ing selection, we first attach θ1,head to θ2,backbone for a total
of nine combinations as shown in Table 5 and retrain θ1,head
for Task 1. Then, the computed F1 score is displayed in
Table 6. It can be observed that the performance of F1 score is
generally consistent with that of rs, where both optimal points
lie at the same location.

2) TASK 1: DISASTER CLASSIFICATION
The performance of the CL-trained θ∗1,head is compared to the
benchmarks provided by [17]. Note that their reported results
stem from several single-task CNN models that are trained
exclusively for Task 1. Also, for fair comparisons, we retrain
the entire MobileNetv2 in our environment (labelled as
MobileNetv2∗). Table 7 compares the performance from four
perspectives.

Among all models, the most closely related model is the
MobileNetv2∗ since θ∗1,head inherits similar network struc-
ture. Interestingly, the ability to distinguish disasters on top
of a victim-detection model does not jeopardize the classifi-
cation performance. In fact, it achieves 1-2% of performance
gain, in terms of accuracy, precision, recall and F1 score. The
rationale behind this is that θ2,backbone has a denser network
than MobileNetv2∗ to learn Task 1. Quantitatively speaking,

FIGURE 6. Grad-CAM visualization of activation maps. (a) θ2,backbone
(82nd Layer.) (a) θ2,backbone (94th Layer.) (c) θ2,backbone (106th Layer.)
(d) θ2,base (NIRB = 2.)

TABLE 5. Similarity (rs) between each θ1,base and θ2,backbone.

TABLE 6. F1 Score of θ1,head on top of each θ2,backbone after retraining.

the total parameters of θ2,backbone is 6.6x more than that of
θ1,base (NIRB = 2).

A direct comparison from Table 7 suggests that Efficient-
Netb1 [60] will be always the best choice. However, another
important factor in model selection is the computational

VOLUME 10, 2022 115939

Y. J. Wong et al.: Optimized MTL Model for Disaster Classification and Victim Detection

TABLE 7. CL-Trained head model (θ∗1,head) Vs. Benchmarks in [17].
MobileNetv2∗ was Retrained in the same environment as θ∗1,head to
ensure fair comparisons.

TABLE 8. Comparison between the disaster classification head models
trained via CL, FL and AL-FL. Methods labelled with an Asterisk (∗) are
trained using 3 FL clients.

TABLE 9. Average precision (AP) comparison for Task 2.

efficiency, which is ignored in [17]. In fact, MobileNetv2
has less than doubled the parameters required by Efficient-
Netb1 [61]. Nevertheless, there exist some state-of-the-art
models with high accuracy and yet fast processing such as
CustomNet [62]. We argue that our proposed branching strat-
egy is also applicable to these models, provided that the task
similarity between two merging candidate networks is good
enough. Overall, our solution is considered robust given that
it can handle two tasks.

So far, θ∗1,head as tabulated in Table 7 is a CL-trainedmodel.
In Table 8, we will use this as the benchmark (labelled as
‘‘CL (all data)’’) with respect to the FL and AL-FL perfor-
mance. We also consider two scenarios (‘‘CL (1/2 data)’’ and
‘‘CL (1/3 data)’’) where IoT devices individually train the

TABLE 10. Network model size comparison.

TABLE 11. Model inference speed (FPS) before and after model
optimization via OpenVINO toolkit.

model without sharing their model weights. As expected, the
individual training of each device yields inferior results due
to limited dataset.

Surprisingly, it can be noticed that FL outperforms CL
in both 2-client and 3-client settings. For instance, FL with
2-client and 3-client outperform CL by 1.13% and 0.50% in
precision, respectively. This is a very encouraging result from
a system design point of view and such performance trend is
aligned with the findings in [44] and [63].

Among all the AL-FL variations, the best performer is
the proposed heuristic, which picks a combination of easy,
mod, and hard samples. It approximates the CL model within
3.40% F1 score gap while using 36.57% less labelled dataset.

3) TASK 2: VICTIM DETECTION
Since θ2,head is trained with a custom dataset, there is no
benchmark to compare the results with. We consider similar
settings as in Task 1, except for theAL approach. Table 9 com-
pares the results of θ2,head trained on each setting. This time,
it can be observed that the FL approach is weaker than the CL
method for Task 2. The performance loss is likely attributed to
the scarcity of training dataset [8]. In FL mode, Task 2 clients
has a maximum of 2997 images, which is less than half of the
6423 images used in Task 1. Nevertheless, the FL approaches
outperform their distributed learning counterparts by up to

115940 VOLUME 10, 2022

Y. J. Wong et al.: Optimized MTL Model for Disaster Classification and Victim Detection

TABLE 12. Model accuracy and AP before and after model optimization
via OpenVINO toolkit.

35%. These results again highlight the importance of sharing
model weights for better performance.

4) BENEFITS OF USING PROPOSED MODEL IN
FL ENVIRONMENT
Table 10 compares the actual parameter size between conven-
tional and proposed methods. It can be observed that the pro-
posed model saves about 11.3% of the transmission payload
for every communication round Nc. To train a specific task
in an FL environment, the total size of model weights w1/2
needed to exchange with a FL server can be calculated as
follows:

w1/2 = Nc × K × s1/2 (3)

5) INFERENCE RESULTS VIA DL WORKBENCH
To ensure reusability, interoperability, and scalability,
we measure the inference results via the DL workbench tool.
Table 11 compares the speed in terms of FPS among three
hardware as mentioned Fig. 5.

As expected, the highest inference speed is attained by
the powerful GPU mode. A direct deployment in the CPU 1
will drastically drop from 20.31 to 6.55 FPS. This unveils
the need of using OpenVINO models. Under the same hard-
ware and data format, the optimized model achieves 43% of
FPS gain. The speed can be further boosted to 151 % by
using INT8 IR model. For NCS2, the performance tradeoff
is visible through the reported FPS value of 2.50. The FPS
stemming from plugging the NCS2 into less powerful RP4
further drops to 1.8. However, this is acceptable since NCS2
consumes power of only 1.5 W [64], which is important
in establishing sustainable IoT solutions. To reveal more
insight, we also convert the models in conventional approach
into two separate OpenVINO models. A sequential execu-
tion of these two models on RP4 results in another FPS
slowdown of 18%.

At this point, it is important to determine how much
is the accuracy and precision drop. Since the inference
model is multi-tasking, Table 12 compares both classifica-
tion (accuracy) and detection (AP) related metrics. At first
glance, all the accuracy accrued by OpenVINO models
surprisingly outperforms the original TensorFlow model.
An in-depth analyse reveals that such trend conforms to
the OpenVINO mechanism. In fact, the OpenVINO model
optimizer uses 20% of the test dataset during the model
calibration. Similar performance trend can be observed for

FIGURE 7. Inference output of the multi-task model at different area.
(a) Flood. (b) Earthquake. The joint disaster classification and victim
count prediction are labeled at the top left corner of the input images.

AP of Task 2. Overall, the MTL model performance is
retained after optimization and such encouraging results will
promote the IoT deployment. Note that we wrote a custom
Python 3 NMS code to complement the OpenVINO IR For-
mat without NMS.

V. CONCLUSION
In this paper, we have devised a MTL model that performs
joint disaster classification and victim detection. Our two
merging CNN networks are MobileNetv2 and YOLOv3,
which can be trained separately. Through rigorous math-
ematical analysis, we proved that optimal branching loca-
tion and the number of IRBs are 94th layer and two,
respectively. As compared to the conventional approach, the
proposed model has lesser memory requirements and bet-
ter classification-related results, while preserving the same
detection-related performance. The first advantage would be
very useful in IoT environment, where the data (e.g., net-
work weights) are exchanged. We showed that AL and FL
can complement each other to bring positive impact to the
IoT scenario, where massive data is generated within dif-
ferent devices and requires exhaustive human annotation
efforts. As a proof of concept, we implemented our solu-
tion onto different hardware by utilizing several open-source
and production-ready tools. Even for the low-cost and low-
powered Raspberry Pi 4, the proposed method can still reach
up to 1.8 FPS, which is 18% faster than the conventional
method.

VOLUME 10, 2022 115941

Y. J. Wong et al.: Optimized MTL Model for Disaster Classification and Victim Detection

Three potential directions have been identified as our
future works. Firstly, the communication between each FL
client and server is based on Wi-Fi technology, which has
transmission distance limitation. An alternative of long-
distance wireless technology such as LoRa and NB-IOT can
be considered. Secondly, the existing Wi-Fi implementation
operates in star topology, which is vulnerable to disaster
damage. Therefore, we need to explore a disaster-resilient
mesh network. Thirdly, the FL approach always requires all
clients to train their own models for every communication
round. In practice, some devices may have limited compu-
tational capacity, scarce dataset and poor channel conditions.
Therefore, we need to select a subset of FL clients in each
round more efficiently.

ACKNOWLEDGMENT
TheASEAN IVO (http://www.nict.go.jp/en/asean_ivo/index.
html) project, Context-Aware Disaster Mitigation using
Mobile Edge Computing and Wireless Mesh Network, was
involved in the production of the contents of this work
and financially supported byNICT (http://www.nict.go.jp/en/
index.html).

REFERENCES

[1] S. Evans. (2021). Claims Paid for Japan’s M7 Quake in Feb. 2021
Nearing 900 m. Accessed: Oct. 14, 2021. [Online]. Available:
https://www.artemis.bm/news/claims-paid-for-japans-m7-quake-in-
feb-2021-nearing-900m/

[2] (2017). United Nations Office for the Coordination of Humani-
tarian Affair. Five Essentials for the First 72 Hours of Disas-
ter Response. OCHA. Accessed: Aug. 20, 2021. [Online]. Avail-
able: https://www.unocha.org/story/five-essentials-first-72-hours-disaster-
response

[3] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for
large-scale image recognition,’’ 2014, arXiv:1409.1556.

[4] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, ‘‘MobileNets: Efficient convolutional neural
networks for mobile vision applications,’’ 2017, arXiv:1704.04861.

[5] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, ‘‘You only look once:
Unified, real-time object detection,’’ 2015, arXiv:1506.02640.

[6] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and
A. C. Berg, ‘‘SSD: Single shot multibox detector,’’ in Proc. Eur. Conf.
Comput. Vis., 2016, pp. 21–37, doi: 10.1007/978-3-319-46448-0_2.

[7] A. Saeed, F. D. Salim, T. Ozcelebi, and J. Lukkien, ‘‘Federated self-
supervised learning of multisensor representations for embedded intelli-
gence,’’ IEEE Internet Things J., vol. 8, no. 2, pp. 1030–1040, Jan. 2021,
doi: 10.1109/JIOT.2020.3009358.

[8] L. Ahmed, K. Ahmad, N. Said, B. Qolomany, J. Qadir, and A. Al-Fuqaha,
‘‘Active learning based federated learning for waste and natural disaster
image classification,’’ IEEE Access, vol. 8, pp. 208518–208531, 2020, doi:
10.1109/ACCESS.2020.3038676.

[9] P. Chhikara, R. Tekchandani, N. Kumar, M. Guizani, and M. M. Hassan,
‘‘Federated learning and autonomous UAVs for hazardous zone detec-
tion and AQI prediction in IoT environment,’’ IEEE Internet Things J.,
vol. 8, no. 20, pp. 15456–15467, Oct. 2021, doi: 10.1109/JIOT.2021.
3074523.

[10] Intel. Intel Distribution of OpenVINOTMToolkit. Accessed:Mar. 15, 2022.
[Online]. Available: https://www.intel.com/content/www/us/en/developer
/tools/openvino-toolkit/overview.html

[11] A. Demidovskij, A. Tugaryov, A. Suvorov, Y. Tarkan, M. Fatekhov,
I. Salnikov, A. Kashchikhin, V. Golubenko, G. Dedyukhina, A. Alborova,
R. Palmer, M. Fedorov, and Y. Gorbachev, ‘‘OpenVINO deep learning
workbench: A platform for model optimization, analysis and deployment,’’
in Proc. IEEE 32nd Int. Conf. Tools with Artif. Intell. (ICTAI), Nov. 2020,
pp. 661–668, doi: 10.1109/ICTAI50040.2020.00106.

[12] M.-L. Tham, Y. J. Wong, B. H. Kwan, Y. Owada, M. M. Sein, and
Y. C. Chang, ‘‘Joint disaster classification and victim detection using
multi-task learning,’’ in Proc. IEEE 12th Annu. Ubiquitous Comput.,
Electron. Mobile Commun. Conf. (UEMCON), Dec. 2021, pp. 407–412,
doi: 10.1109/UEMCON53757.2021.9666576.

[13] H. Mouzannar, Y. Rizk, and M. Awad, ‘‘Damage identification in social
media posts using multimodal deep learning,’’ in Proc. Int. ISCRAMConf.,
May 2018, pp. 529–543.

[14] F. Alam, F. Ofli, and M. Imran, ‘‘CrisisMMD: Multimodal Twitter
datasets from natural disasters,’’ in Proc. 12th Int. AAAI Conf. Web
Social Media (ICWSM), 2018, pp. 465–473, [Online]. Available: https://
www.scopus.com/inward/record.uri?eid=2-s2.0-85050637466&partnerID
=40&md5=0fb528332fb3182d641214df5e854665

[15] M. Imran, C. Castillo, J. Lucas, P. Meier, and S. Vieweg, ‘‘AIDR: Artificial
intelligence for disaster response,’’ in Proc. 23rd Int. Conf. World Wide
Web, Apr. 2014, pp. 159–162, doi: 10.1145/2567948.2577034.

[16] F. Alam, F. Ofli, M. Imran, T. Alam, and U. Qazi, ‘‘Deep learn-
ing benchmarks and datasets for social media image classifica-
tion for disaster response,’’ in Proc. IEEE/ACM Int. Conf. Adv.
Social Netw. Anal. Mining (ASONAM), Dec. 2020, pp. 151–158, doi:
10.1109/ASONAM49781.2020.9381294.

[17] F. Alam, T. Alam, M. Imran, and F. Ofli, ‘‘Robust training of social
media image classification models for rapid disaster response,’’ 2021,
arXiv:2104.04184.

[18] D. R. Hartawan, T. W. Purboyo, and C. Setianingsih, ‘‘Disaster
victims detection system using convolutional neural network (CNN)
method,’’ in Proc. IEEE Int. Conf. Ind. 4.0, Artif. Intell., Commun.
Technol. (IAICT), Jul. 2019, pp. 105–111, doi: 10.1109/ICIAICT.2019.
8784782.

[19] M. I. Perdana, A. Risnumawan, and I. A. Sulistijono, ‘‘Automatic aerial
victim detection on low-cost thermal camera using convolutional neural
network,’’ in Proc. Int. Symp. Community-Centric Syst. (CcS), Sep. 2020,
pp. 1–5, doi: 10.1109/CCS49175.2020.9231433.

[20] F. B. Jaradat and D. Valles, ‘‘A victims detection approach for burning
building sites using convolutional neural networks,’’ in Proc. 10th Annu.
Comput. Commun. Workshop Conf. (CCWC), Jan. 2020, pp. 280–286, doi:
10.1109/CCWC47524.2020.9031275.

[21] K. Naveen, K. N. Lokesh, K. PM, M. SC, and K. Prachetha, ‘‘Early
Flood Detection and Disaster Victim Detection,’’ Int. J. Sci. Tech-
nol. Eng., vol. 7, no. 1, pp. 11–17, Aug. 2020. [Online]. Available:
http://ijste.org/Article.php?manuscript=IJSTEV7I1003

[22] V. L. Nguyen, M. H. Shaker, and E. Hüllermeier, ‘‘How
to measure uncertainty in uncertainty sampling for active
learning,’’ Mach. Learn., vol. 111, no. 1, pp. 89–122, Jan. 2022,
doi: 10.1007/S10994-021-06003-9/FIGURES/13.

[23] M.-L. Tham and W. K. Tan, ‘‘IoT based license plate recognition system
using deep learning and OpenVINO,’’ in Proc. 4th Int. Conf. Sensors, Sig-
nal Image Process., Oct. 2021, pp. 7–14, doi: 10.1145/3502814.3502816.

[24] E. Izutov, ‘‘Fast and accurate person re-identification with RMNet,’’ 2018,
arXiv:1812.02465.

[25] D. Brown, ‘‘Mobile attendance based on face detection and recognition
using OpenVINO,’’ in Proc. Int. Conf. Artif. Intell. Smart Syst. (ICAIS),
Mar. 2021, pp. 1152–1157, doi: 10.1109/ICAIS50930.2021.9395836.

[26] S. Bernabe, C. Gonzalez, A. Fernandez, and U. Bhangale, ‘‘Portability and
acceleration of deep learning inferences to detect rapid earthquake damage
from VHR remote sensing images using Intel OpenVINO toolkit,’’ IEEE
J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 14, pp. 6906–6915,
2021, doi: 10.1109/JSTARS.2021.3075961.

[27] D. T. Nguyen, F. Ofli, M. Imran, and P. Mitra, ‘‘Damage assessment from
social media imagery data during disasters,’’ in Proc. IEEE/ACM Int. Conf.
Adv. Social Netw. Anal. Mining, Jul. 2017, pp. 569–576.

[28] A. Sharma and U. Verma, ‘‘Flood magnitude assessment from UAV
aerial videos based on image segmentation and similarity,’’ in
Proc. IEEE Region 10th Conf. (TENCON), Dec. 2021, pp. 476–481,
doi: 10.1109/TENCON54134.2021.9707250.

[29] M. Rahnemoonfar, T. Chowdhury, A. Sarkar, D. Varshney, M. Yari, and
R. R. Murphy, ‘‘FloodNet: A high resolution aerial imagery dataset for
post flood scene understanding,’’ IEEE Access, vol. 9, pp. 89644–89654,
2021, doi: 10.1109/ACCESS.2021.3090981.

[30] M. Hong and R. Akerkar, ‘‘Victim detection platform in IoT paradigm,’’
Concurrency Comput., Pract. Exper., vol. 33, no. 3, pp. 1–14, Feb. 2021,
doi: 10.1002/CPE.5254.

[31] Y. Yamazaki, C. Premachandra, and C. J. Perea, ‘‘Audio-Processing-
Based human detection at disaster sites with unmanned aerial
vehicle,’’ IEEE Access, vol. 8, pp. 101398–101405, 2020, doi:
10.1109/ACCESS.2020.2998776.

115942 VOLUME 10, 2022

http://dx.doi.org/10.1007/978-3-319-46448-0_2
http://dx.doi.org/10.1109/JIOT.2020.3009358
http://dx.doi.org/10.1109/ACCESS.2020.3038676
http://dx.doi.org/10.1109/JIOT.2021.3074523
http://dx.doi.org/10.1109/JIOT.2021.3074523
http://dx.doi.org/10.1109/ICTAI50040.2020.00106
http://dx.doi.org/10.1109/UEMCON53757.2021.9666576
http://dx.doi.org/10.1145/2567948.2577034
http://dx.doi.org/10.1109/ASONAM49781.2020.9381294
http://dx.doi.org/10.1109/ICIAICT.2019.8784782
http://dx.doi.org/10.1109/ICIAICT.2019.8784782
http://dx.doi.org/10.1109/CCS49175.2020.9231433
http://dx.doi.org/10.1109/CCWC47524.2020.9031275
http://dx.doi.org/10.1007/S10994-021-06003-9/FIGURES/13
http://dx.doi.org/10.1145/3502814.3502816
http://dx.doi.org/10.1109/ICAIS50930.2021.9395836
http://dx.doi.org/10.1109/JSTARS.2021.3075961
http://dx.doi.org/10.1109/TENCON54134.2021.9707250
http://dx.doi.org/10.1109/ACCESS.2021.3090981
http://dx.doi.org/10.1002/CPE.5254
http://dx.doi.org/10.1109/ACCESS.2020.2998776

Y. J. Wong et al.: Optimized MTL Model for Disaster Classification and Victim Detection

[32] R. Avanzato and F. Beritelli, ‘‘A smart UAV-femtocell data sensing sys-
tem for post-earthquake localization of people,’’ IEEE Access, vol. 8,
pp. 30262–30270, 2020, doi: 10.1109/ACCESS.2020.2972699.

[33] C. Dorn, A. Depold, F. Lurz, S. Erhardt, and A. Hagelauer, ‘‘UAV-based
localization of mobile phones for search and rescue applications,’’ in
Proc. IEEE 22nd Annu. Wireless Microw. Technol. Conf. (WAMICON),
Apr. 2022, pp. 1–4, doi: 10.1109/WAMICON53991.2022.9786189.

[34] Y. Qian, J. M. Dolan, and M. Yang, ‘‘DLT-Net: Joint detection of
drivable areas, lane lines, and traffic objects,’’ IEEE Trans. Intell.
Transp. Syst., vol. 21, no. 11, pp. 4670–4679, Nov. 2020, doi:
10.1109/TITS.2019.2943777.

[35] C. Wen, H. Zhang, H. Li, H. Li, J. Chen, H. Guo, and S. Cheng, ‘‘Multi-
scene citrus detection based on multi-task deep learning network,’’ in Proc.
IEEE Int. Conf. Syst., Man, Cybern. (SMC), Oct. 2020, pp. 912–919, doi:
10.1109/SMC42975.2020.9282909.

[36] W. Zhang, K. Wang, Y. Wang, L. Yan, and F.-Y. Wang, ‘‘A loss-
balanced multi-task model for simultaneous detection and
segmentation,’’ Neurocomputing, vol. 428, pp. 65–78, Mar. 2021,
doi: https://doi.org/10.1016/j.neucom.2020.11.024.

[37] Y. Chen, D. Zhao, L. Lv, and Q. Zhang, ‘‘Multi-task learning for dangerous
object detection in autonomous driving,’’ Inf. Sci., vol. 432, pp. 559–571,
Mar. 2018, doi: 10.1016/j.ins.2017.08.035.

[38] W. Lee, J. Na, and G. Kim, ‘‘Multi-task self-supervised object detection
via recycling of bounding box annotations,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 4979–4988, doi:
10.1109/CVPR.2019.00512.

[39] E. Isik-Polat, G. Polat, A. Kocyigit, and A. Temizel, ‘‘Evaluation and
analysis of different aggregation and hyperparameter selection methods for
federated brain tumor segmentation,’’ 2022, arXiv:2202.08261.

[40] J. Konečný, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
D. Bacon, ‘‘Federated learning: Strategies for improving communication
efficiency,’’ Oct. 2016, arXiv:1610.05492.

[41] H. Xiao, J. Zhao, Q. Pei, J. Feng, L. Liu, and W. Shi, ‘‘Vehicle selection
and resource optimization for federated learning in vehicular edge com-
puting,’’ IEEE Trans. Intell. Transp. Syst., vol. 23, no. 8, pp. 11073–11087,
Aug. 2022, doi: 10.1109/TITS.2021.3099597.

[42] L. U. Khan, M. Alsenwi, I. Yaqoob, M. Imran, Z. Han, and C. S. Hong,
‘‘Resource optimized federated learning-enabled cognitive Internet of
Things for smart industries,’’ IEEE Access, vol. 8, pp. 168854–168864,
2020, doi: 10.1109/ACCESS.2020.3023940.

[43] G. Wang, J. N. Hwang, C. Rose, and F. Wallace, ‘‘Uncertainty
sampling based active learning with diversity constraint by sparse
selection,’’ in Proc. IEEE 19th Int. Workshop Multimedia Signal
Process. (MMSP), Nov. 2017, pp. 1–6, doi: 10.1109/MMSP.2017.
8122269.

[44] Z. Xiong, Z. Cheng, C. Xu, X. Lin, X. Liu, D. Wang, X. Luo, Y. Zhang,
N. Qiao, M. Zheng, and H. Jiang, ‘‘Facing small and biased data dilemma
in drug discovery with federated learning,’’ BioRxiv, vol. 2020, pp. 1–18,
Jan. 2020, doi: 10.1101/2020.03.19.998898.

[45] S. Ruder, ‘‘An overview of multi-task learning in deep neural networks,’’
2017, arXiv:1706.05098.

[46] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
‘‘MobileNetV2: Inverted residuals and linear bottlenecks,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 4510–4520, doi: 10.1109/CVPR.2018.00474.

[47] K. Cai, X. Miao, W. Wang, H. Pang, Y. Liu, and J. Song, ‘‘A modi-
fied YOLOv3 model for fish detection based on MobileNetv1 as back-
bone,’’ Aquacultural Eng., vol. 91, Nov. 2020, Art. no. 102117, doi:
10.1016/j.aquaeng.2020.102117.

[48] J.-A. Kim, J.-Y. Sung, and S.-H. Park, ‘‘Comparison of faster-RCNN,
YOLO, and SSD for real-time vehicle type recognition,’’ in Proc. IEEE
Int. Conf. Consum. Electron. Asia (ICCE-Asia), Nov. 2020, pp. 1–4, doi:
10.1109/ICCE-ASIA49877.2020.9277040.

[49] C.-Y. Wang, A. Bochkovskiy, and H.-Y. Mark Liao, ‘‘YOLOv7: Trainable
bag-of-freebies sets new state-of-the-art for real-time object detectors,’’
2022, arXiv:2207.02696.

[50] K. Dwivedi and G. Roig, ‘‘Representation similarity analysis for efficient
task taxonomy & transfer learning,’’ in Proc. IEEE/CVF Conf. Com-
put. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 12379–12388, doi:
10.1109/CVPR.2019.01267.

[51] N. Grimova and M. Macas, ‘‘Query-by-committee framework used
for semi-automatic sleep stages classification,’’ Multidisciplinary
Digit. Publishing Inst. Proc., vol. 31, p. 80, Nov. 2019,
doi: 10.3390/PROCEEDINGS2019031080.

[52] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and
K. Chan, ‘‘Adaptive federated learning in resource constrained
edge computing systems,’’ IEEE J. Sel. Areas Commun., vol. 37,
no. 6, pp. 1205–1221, Jun. 2019, doi: 10.1109/JSAC.2019.
2904348.

[53] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, ‘‘Federated
learning with non-IID data,’’ 2018, arXiv:1806.00582.

[54] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and
V. Smith, ‘‘Federated optimization in heterogeneous networks,’’ 2018,
arXiv:1812.06127.

[55] G. A. Reina, A. Gruzdev, P. Foley, O. Perepelkina,M. Sharma, I. Davidyuk,
I. Trushkin, M. Radionov, A. Mokrov, D. Agapov, J. Martin, B. Edwards,
M. J. Sheller, S. Pati, P. N. Moorthy, S.-H. Wang, P. Shah, and S. Bakas,
‘‘OpenFL: An open-source framework for federated learning,’’ 2021,
arXiv:2105.06413.

[56] M. J. Sheller, G. A. Reina, B. Edwards, J. Martin, and S. Bakas,
‘‘Multi-institutional deep learning modeling without sharing
patient data: A feasibility study on brain tumor segmentation,’’
in Brainlesion: Glioma, Multiple Sclerosis, Stroke and Trau-
matic Brain Injuries (Lecture Notes in Computer Science),
vol. 11383. Cham, Switzerland: Springer, 2019, pp. 92–104,
doi: 10.1007/978-3-030-11723-8_9.

[57] M. J. Sheller, B. Edwards, G. A. Reina, J. Martin, S. Pati, A. Kotrotsou,
M. Milchenko, W. Xu, D. Marcus, R. R. Colen, and S. Bakas, ‘‘Federated
learning inmedicine: Facilitatingmulti-institutional collaborationswithout
sharing patient data,’’ Sci. Rep., vol. 10, no. 1, pp. 1–12, Jul. 2020, doi:
10.1038/s41598-020-69250-1.

[58] M. Hamzah. (2020). Auto-Annotate: Automatically Annotate Your Entire
Image Directory by a Single Command,’’ GitHub Repository. [Online].
Available: https://github.com/mdhmz1/Auto-Annotate

[59] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra, ‘‘Grad-CAM: Visual explanations from deep networks via
gradient-based localization,’’ in Proc. IEEE Int. Conf. Comput. Vis.
(ICCV), Oct. 2017, pp. 618–626, doi: 10.1109/ICCV.2017.74.

[60] M. Tan and Q. V. Le, ‘‘EfficientNet: Rethinking model scaling for convo-
lutional neural networks,’’ in Proc. 36th Int. Conf. Mach. Learn. (ICML),
May 2019, pp. 10691–10700.

[61] R. Chaganti, V. Ravi, and T. D. Pham, ‘‘Image-based malware repre-
sentation approach with EfficientNet convolutional neural networks for
effective malware classification,’’ J. Inf. Secur. Appl., vol. 69, Sep. 2022,
Art. no. 103306, doi: 10.1016/J.JISA.2022.103306.

[62] A. S. Winoto, M. Kristianus, and C. Premachandra, ‘‘Small and
slim deep convolutional neural network for mobile device,’’ IEEE
Access, vol. 8, pp. 125210–125222, 2020, doi: 10.1109/ACCESS.2020.
3005161.

[63] M. Asad, A. Moustafa, and T. Ito, ‘‘Federated learning versus classical
machine learning: A convergence comparison,’’ 2021, arXiv:2107.10976.

[64] L. Libutti, F. Igual, L. Piñuel, L. C. De Giusti, and M. Naiouf, ‘‘Bench-
marking performance and power of USB accelerators for inference with
MLPerf,’’ in Proc. 2nd Workshop Accelerated Mach. Learn. (AccML),
2020, pp. 1–15.

YI JIE WONG received the B.Eng. degree (Hons.)
in biomedical engineering from the Universiti
Tunku Abdul Rahman, Sungai Long, Malaysia,
in 2022, where he is currently pursuing the Ph.D.
degree in digital technology with specialization
of reinforcement learning-based federated learn-
ing. His research interests include the Internet of
Things (IoT), machine learning, federated learn-
ing, deep reinforcement learning, and resource
allocation optimization.

VOLUME 10, 2022 115943

http://dx.doi.org/10.1109/ACCESS.2020.2972699
http://dx.doi.org/10.1109/WAMICON53991.2022.9786189
http://dx.doi.org/10.1109/TITS.2019.2943777
http://dx.doi.org/10.1109/SMC42975.2020.9282909
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2020.11.024
http://dx.doi.org/10.1016/j.ins.2017.08.035
http://dx.doi.org/10.1109/CVPR.2019.00512
http://dx.doi.org/10.1109/TITS.2021.3099597
http://dx.doi.org/10.1109/ACCESS.2020.3023940
http://dx.doi.org/10.1109/MMSP.2017.8122269
http://dx.doi.org/10.1109/MMSP.2017.8122269
http://dx.doi.org/10.1101/2020.03.19.998898
http://dx.doi.org/10.1109/CVPR.2018.00474
http://dx.doi.org/10.1016/j.aquaeng.2020.102117
http://dx.doi.org/10.1109/ICCE-ASIA49877.2020.9277040
http://dx.doi.org/10.1109/CVPR.2019.01267
http://dx.doi.org/10.3390/PROCEEDINGS2019031080
http://dx.doi.org/10.1109/JSAC.2019.2904348
http://dx.doi.org/10.1109/JSAC.2019.2904348
http://dx.doi.org/10.1007/978-3-030-11723-8_9
http://dx.doi.org/10.1038/s41598-020-69250-1
http://dx.doi.org/10.1109/ICCV.2017.74
http://dx.doi.org/10.1016/J.JISA.2022.103306
http://dx.doi.org/10.1109/ACCESS.2020.3005161
http://dx.doi.org/10.1109/ACCESS.2020.3005161

Y. J. Wong et al.: Optimized MTL Model for Disaster Classification and Victim Detection

MAU-LUEN THAM received the Bachelor of
Engineering and Doctor of Philosophy degrees
in telecommunication engineering from the Uni-
versity of Malaya. He is currently an Assistant
Professor with Universiti Tunku Abdul Rahman.
He has been a principal investigator (PI) and a
co-investigator ofmore than 15 research and devel-
opment projects. This includes five international
grants, two of which are simultaneously led by
him as the PI/Co-PI under the support of ASEAN

IVO and the British Council. He has published two IEEE Transactions
papers as a principal author. His research interests include the IoT, machine
learning/deep learning/deep reinforcement learning, and beyond-5G
communications.

BAN-HOE KWAN received the Bachelor of Engi-
neering (Electrical) degree, the Master of Engi-
neering Science degree, and the Ph.D. degree in
engineering from the University of Malaya (UM).
He is currently working at Universiti Tunku Abdul
Rahman (UTAR) as an Assistant Professor. His
research interests include image processing, arti-
ficial intelligence, medical signal processing, the
Internet of Things, and robotics.

EZRA MORRIS ABRAHAM GNANAMUTHU
received the B.Eng. degree from Bharathiar
University, India, the M.E. degree from Anna Uni-
versity, India, and the Ph.D. degree fromMultime-
dia University, Malaysia. He joined the Karunya
Institute of Technology as a Lecturer, in 1993,
before moving to Malaysia, in 1998. In 2008,
he joined as an Assistant Professor with University
Tunku Abdul Rahman (UTAR), Kuala Lumpur,
Malaysia, and became an Associate Professor,

in 2014. He has published over 40 papers in international journals and
conferences. His research interests include digital signal processing, wire-
less ad hoc networks, optimization using PSO, GA/IGA, and mobile
communication.

YASUNORI OWADA (Member, IEEE) received
the Ph.D. degree from Niigata University. He is
currently a Senior Researcher with the Resilient
ICT Research Center, National Institute of Infor-
mation and Communications Technology (NICT).
He has been engaged in the research and devel-
opment of resilient, distributed wireless, and
mobile access network systems called NerveNet
at NICT, since 2010. He was previously the
President of Space-Time Engineering Japan Inc.,

from 2008 to 2010, and an Assistant Professor with Niigata University,
from 2007 to 2008. He was awarded with Prizes for Science and Technol-
ogy; and FY2019 the Commendation for Science and Technology by the
Ministry of Education, Culture, Sports, Science and Technology (MEXT),
Japan.

115944 VOLUME 10, 2022

Citation: Wong, Y.J.; Tham, M.-L.;

Kwan, B.-H.; Owada, Y. FedDdrl:

Federated Double Deep

Reinforcement Learning for

Heterogeneous IoT with Adaptive

Early Client Termination and Local

Epoch Adjustment. Sensors 2023, 23,

2494. https://doi.org/10.3390/

s23052494

Academic Editors: Raffaele Montella,

José Luis González Compeán and

Sokol Kosta

Received: 30 December 2022

Revised: 3 February 2023

Accepted: 7 February 2023

Published: 23 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

FedDdrl: Federated Double Deep Reinforcement Learning for
Heterogeneous IoT with Adaptive Early Client Termination and
Local Epoch Adjustment
Yi Jie Wong 1 , Mau-Luen Tham 1,* , Ban-Hoe Kwan 2 and Yasunori Owada 3

1 Department of Electrical and Electronic Engineering, Lee Kong Chian Faculty of Engineering and Science,
Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia

2 Department of Mechatronics and Biomedical Engineering, Lee Kong Chian Faculty of Engineering and
Science, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia

3 Resilient ICT Research Center, Network Research Institute, National Institute of Information and
Communications Technology (NICT), Tokyo 184-8795, Japan

* Correspondence: thamml@utar.edu.my

Abstract: Federated learning (FL) is a technique that allows multiple clients to collaboratively train
a global model without sharing their sensitive and bandwidth-hungry data. This paper presents
a joint early client termination and local epoch adjustment for FL. We consider the challenges of
heterogeneous Internet of Things (IoT) environments including non-independent and identically
distributed (non-IID) data as well as diverse computing and communication capabilities. The goal is
to strike the best tradeoff among three conflicting objectives, namely global model accuracy, training
latency and communication cost. We first leverage the balanced-MixUp technique to mitigate the
influence of non-IID data on the FL convergence rate. A weighted sum optimization problem is
then formulated and solved via our proposed FL double deep reinforcement learning (FedDdrl)
framework, which outputs a dual action. The former indicates whether a participating FL client
is dropped, whereas the latter specifies how long each remaining client needs to complete its local
training task. Simulation results show that FedDdrl outperforms the existing FL scheme in terms of
overall tradeoff. Specifically, FedDdrl achieves higher model accuracy by about 4% while incurring
30% less latency and communication costs.

Keywords: federated learning; client selection; local epoch adjustment; deep reinforcement learning;
Internet of Things

1. Introduction

In the Internet of Things (IoT), each device can collect massive amounts of data
(i.e., measurements and location information) [1]. It is estimated that IoT devices will
generate over 90 zettabytes of data globally by 2025 [2]. These data can be uploaded to a
centralized server, where a new model can be retrained or fine-tuned using the collected
dataset. This method is called centralized learning (CL) since the data must be centralized
at one location for model training. However, privacy concerns make it inconvenient for
devices to share potentially sensitive data with a centralized server (or any other party). For
example, medical images may contain sensitive and private information about patients [3],
which prohibits the collection of such data from multiple healthcare institutions for CL.
Additionally, uploading bandwidth-hungry data requires a high communication cost,
which is not feasible for most IoT devices with network resource constraints [1,4]. In fact,
the data collected by IoT devices could be larger than the model size [4], especially when
dealing with image data.

Federated learning (FL) has emerged as one of the promising candidates to address
this challenge. FL is a technique that trains an algorithm across multiple edge devices

Sensors 2023, 23, 2494. https://doi.org/10.3390/s23052494 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23052494
https://doi.org/10.3390/s23052494
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-4598-2653
https://orcid.org/0000-0003-4600-9839
https://orcid.org/0000-0001-7094-8612
https://doi.org/10.3390/s23052494
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23052494?type=check_update&version=1

Sensors 2023, 23, 2494 2 of 26

holding individual local datasets without sharing or exchanging them. First, each IoT
device (client) uses its locally collected data to train a local model. After training, each
IoT device uploads its locally trained models to an FL server for aggregation. A new
global model is generated, which is trained using data from all participating clients without
actually sharing the sensitive and bandwidth-hungry data. Thus, FL addresses data privacy
concerns by training a global model in distributed environments. FL has since been applied
in various applications, ranging from mobile keyboard prediction [5] to natural disaster
classification [6,7] and medical image segmentation [3]. Using FL, Google trained its mobile
keyboard prediction using 600 million sentences from a surprising amount of 1.5 million
clients [5]. In addition, Intel released its production-ready and open-source FL (OpenFL)
framework [8]. OpenFL is used in the Federated Tumor Segmentation (FeTS) initiative,
which is a program participated in by 56 clinical sites around the globe to train tumor
segmentation models via FL. Experiments show that FL models can reach 99% of CL model
without sharing the sensitive data [3]. These large-scale real-life applications proved the
huge economic value of FL.

FL coupled with the IoT has huge potential for real-world application. For instance,
research works [9–11] combined FL with industrial IoT (IIoT), creating an industrial-grade
hierarchical FL framework. Hierarchical FL is a three-layer architecture FL framework
composed of clients, edge servers and a cloud server. Regular FL is performed between
the edge server and its corresponding client device. Upon model aggregation at the edge
servers, the aggregated models are then uploaded to the cloud for global model aggregation.
Experiments show hierarchical FL to be superior to a regular FL, with lower training latency
and better convergence [12]. This is because the model aggregation at the client edge before
global model aggregation can significantly reduce the training divergence. Due to the
robustness of hierarchical FL, it has also been exploited to empower digital twins [10,13].
In this study, we only focus on regular FL, which is the fundamental building block for any
sophisticated FL framework.

Despite huge potential, FL still faces several challenges from practical implementation:
(1) model convergence in the presence of a non-independent and identically distributed
(non-IID) dataset, (2) computing efficiency and (3) communication efficiency [14,15]. First,
data is usually not uniformly distributed across IoT devices. Realistically, each IoT device
has a unique data distribution and can be considered non-IID, whereas the global popula-
tion (if the data is centralized) would be IID. According to [16], the earth mover’s distance
(EMD) between the local client data distribution and the global population is the main
reason the FL model diverges from the global optima solution. This is also termed weight
divergence between FL and CL models, which greatly reduces the convergence rate of FL
models [16]. Additionally, the heterogeneity of computing and communication resources
in IoT networks hinders resource utilization efficiency. In most studies, except [17,18], the
local epoch number is set to be the same for all client devices disregarding their computing
constraints. As a result, devices with stronger computing power often have to wait for the
straggler devices to complete their training, which drastically increases the overall training
latency. Moreover, some clients may not have access to high-speed networks, making local
model uploading slow or unrealistic.

Many previous studies aimed to tackle the three challenges from different viewpoints.
However, optimizing one of the objectives might deteriorate the other objectives [14]. Deep
reinforcement learning (DRL) has recently been exploited for FL resource optimization.
However, to the best of our knowledge, none of the DRL-based FL frameworks allows
dynamic local epoch adjustment. Past studies [9,10,14,19–21] only exploited DRL to select
clients that fulfil the resource constraints without introducing a tuning mechanism to adjust
the local training epoch for clients with limited computing power.

To this end, we present federated double deep reinforcement learning (FedDdrl).
FedDdrl exploits the double DRL (DDRL) framework, which uses two DRL agents to find
the optimal client selection and local epoch adjustment policies. Our objective was to
maximize the global model’s accuracy while minimizing the FL system’s training latency

Sensors 2023, 23, 2494 3 of 26

and communication cost. We first formulated the FL protocol as a Markov Decision Process
(MDP). We then adopted two DRLs based on Value Decomposition Networks (VDNs) as
the policy networks. To speed up the convergence speed, we adopted the recently proposed
balanced-MixUp [22] augmentation technique to mitigate weight divergence. Simulation
results showed that our FedDdrl algorithm improved model accuracy with lower training
latency and communication cost. Note that FL facilitates edge computing, which is one
of the goals of the ASEAN IVO project titled “Context-Aware Disaster Mitigation using
Mobile Edge Computing and Wireless Mesh Network”.

We summarize our contributions as follows.

1. We modeled the FL system as an MDP. Then, we proposed to use a DDRL frame-
work for adaptive early client termination and local epoch adjustment, to maximize
the global model accuracy while minimizing the training latency and communica-
tion costs.

2. We demonstrated our proposed algorithm in a non-IID setting on MNIST, CIFAR-10
and CrisisIBD datasets. We showed that our solution could outperform existing
methods in terms of global model accuracy with shorter training latency and lower
communication costs.

3. We explored the influence of balanced-MixUp in the FL system. In most settings,
balanced-MixUp could mitigate weight divergence and improve convergence speed.

The rest of the paper is organized as follows. Section 2 describes the related work.
Section 3 discusses the system model and problem formulation. Section 4 presents the pro-
posed solution. Section 5 shows the experimental setup, followed by the simulation results
and discussion. Section 6 concludes the paper and outlines future research directions.

2. Related Work

This section reviews existing works on FL and DRL-based FL to provide insights into
the current trend in FL. Then, we discuss the limitation of each algorithm. Lastly, we also
elaborate on the weight divergence problem in FL, which is a common problem faced by
all FL algorithms.

2.1. Federated Learning and Deep Reinforcement Learning

Some of the commonly used FL algorithms include FedAvg [4], FedProx [23] and
FedNova [17]. FedAvg was the first practical implementation of FL. In each communication
round, the server sends the global model to N randomly selected clients. Each client trains
the model using its local dataset. Then, each client uploads its locally trained model to
the server, where the server averages the received local models’ weights as the new global
model. It has since become the de facto approach for FL and is widely used in various
applications [3,5–7]. FedProx presents a reparameterization of FedAvg by introducing an
additional L2 regularization term in the local objective function. The regularization term
limits the distance between the local and global models, preventing local updates from
diverging from global optima. A hyperparameter µ controls the weight of the regularization
term. Overall, the modification can be easily performed on the existing FedAvg algorithm
while improving model accuracy on non-IID datasets. However, it introduces additional
computing overhead, leading to longer training latency. On the other hand, FedNova
improves FedAvg in the aggregation stage. It allows each n ∈ N client to conduct a
different number of local steps. This allows clients with higher computing resources to
conduct more training while waiting for others to complete training. To ensure that the
global updates are not biased, each local update is normalized and scaled according to
the number of local steps conducted before they are averaged into the new global model.
FedNova introduces negligible computation overhead compared to FedAvg while handling
computing resources heterogeneity in FL systems. However, all the above algorithms are
limited to handling statistical heterogeneity (non-IID dataset) and computing resources
heterogeneity. Other heuristic algorithms have been proposed to optimize client selection
in FL systems with heterogeneous network and/or energy resources [24,25]. However,

Sensors 2023, 23, 2494 4 of 26

heuristic solutions could only deliver sub-optimal performance since they often rely on
qualitative analysis without exploring the optimal performance [14].

DRL has been widely applied to solve optimization problems involving complex
sequential decision-making, such as playing Atari games [26], multiplayer games [27] and
chess [28]. Since an FL procedure can be modelled as an MDP, it can also be optimized
using DRL. FAVOR is one of the first research works to optimize FL using DRL [21]. They
observed an implicit connection between the distribution of a local client dataset and
the model weights trained on those data. Using the model weights collected from each
participating client, a DRL agent can learn to select suitable clients for the next round of
training. After proving DRL success in FL optimization, multiple studies [9,10,14,19,20,29]
have exploited DRL in FL resource allocation problems. For instance, [9,10,14,19] used DRL
to jointly optimize computing and network resources in an FL framework while retaining
the global model’s accuracy. These studies employed a DRL-based client selection policy
or early client termination policy. Such a policy is responsible for selecting the best subset
of clients for each round of training by optimizing the tradeoff between model accuracy
and resource allocation. On the other hand, [29] optimized only the network resources by
quantizing the model weights before uploading them to the FL server. However, none of
the DRL-based FL frameworks described above allow dynamic local epoch adjustment.
These frameworks fixed the same local epochs for all clients, disregarding their computing
cost and training latency. With dynamic local epoch adjustment, clients with higher
computing resources can conduct more training epochs. On the contrary, clients with
limited computing power can train with fewer epochs.

Table 1 summarizes the key features of the aforementioned FL and DRL-based FL
algorithms. In short, we noticed an ongoing trend of utilizing DRL to optimize the com-
puting and network resources in the FL framework. Most of them relied only on client
selection or early client termination techniques. As a result, such a method often rejects
clients with limited computing power to prevent these devices from dragging the overall
FL training latency. Even when such devices are selected, those with stronger computing
power will finish training earlier and remain idle while waiting for the slower ones to
complete training. However, these devices may contain crucial training data that is essential
for FL convergence. Ideally, these devices should participate in FL training but with a
lower local training epoch and vice versa. To the best of our knowledge, no DRL-based
FL algorithms adopt DRL for automated local epoch adjustment. On the other hand,
existing FL algorithms such as FedNova rely on manual adjustment to set devices with
stronger computing power with a higher local epoch. Hence, an exciting potential exists
for incorporating DRL-based dynamic local epoch adjustments for automated calibration.

Table 1. Features of existing FL and DRL-based FL algorithms.

Method Resource Optimization Client
Selection

Local Epoch
Adjustment

FedAvg [4] - Random Fixed

FedProx [23] - Random Fixed

FedNova [17] Computing Random Flexible

FAVOR [21] Computing DRL Agent Fixed

TP-DDPG [9] Computing + Communication DRL Agent Fixed

Research work [10] Computing + Communication DRL Agent Fixed

FedMarl [14] Computing + Communication DRL Agent Fixed

Research work [19] Computing + Communication DRL Agent Fixed

Research work [20] Computing + Communication Random Fixed

Research work [29] Communication Random Fixed

Proposed FedDdrl Computing + Communication DRL Agent DRL Agent

Sensors 2023, 23, 2494 5 of 26

2.2. Weight Divergence in Federated Learning

Weight divergence is the difference between FL model weights wFL
t and CL model

weights wCL
t . An ideal level of weight divergence in FL could exploit the rich decentralized

data, resulting in a better performance. For instance, FL outperforms its CL counterpart
in various applications, including drug discovery [30], disaster classification [7] and au-
tonomous driving object detection [31]. However, in extreme non-IID cases where the local
client data distribution pk is far from the global data distribution p, the highly diverged
local weight updates could lead to bad aggregated solutions which are far from the global
optimum solution. This is especially true in IoT networks, where each IoT device has a
unique data distribution and can be considered non-IID [1]. According to [16], the main
source of weight divergence is the earth mover’s distance (EMD) between pk and p, de-
noted as ∑nc

i=1 ‖ pk(y = i)− p(y = i) ‖, where nc denotes the total number of classes. In
general, weight divergence is inevitable since pk and p are almost guaranteed to be different
in a real-life setting. Figure 1 shows an example of weight divergence between FedAvg and
CL models.

Sensors 2023, 23, x FOR PEER REVIEW 5 of 27

Research work [20] Computing + Communication Random Fixed
Research work [29] Communication Random Fixed
Proposed FedDdrl Computing + Communication DRL Agent DRL Agent

2.2. Weight Divergence in Federated Learning
Weight divergence is the difference between FL model weights 𝒘௧ி and CL model

weights 𝒘௧. An ideal level of weight divergence in FL could exploit the rich decentral-
ized data, resulting in a better performance. For instance, FL outperforms its CL counter-
part in various applications, including drug discovery[30], disaster classification [7] and
autonomous driving object detection [31]. However, in extreme non-IID cases where the
local client data distribution 𝑝 is far from the global data distribution 𝑝, the highly di-
verged local weight updates could lead to bad aggregated solutions which are far from
the global optimum solution. This is especially true in IoT networks, where each IoT de-
vice has a unique data distribution and can be considered non-IID [1]. According to [16],
the main source of weight divergence is the earth mover’s distance (EMD) between 𝑝
and 𝑝, denoted as ∑ ‖𝑝(𝑦 = 𝑖) − 𝑝(𝑦 = 𝑖)‖ୀଵ , where 𝑛 denotes the total number of
classes. In general, weight divergence is inevitable since 𝑝 and 𝑝 are almost guaranteed
to be different in a real-life setting. Figure 1 shows an example of weight divergence be-
tween FedAvg and CL models.

Figure 1. Weight divergence between 𝒘௧ி and 𝒘௧ is inevitable even if both models have the same
initialization weights.

Generally, only a fraction of the total clients is selected for training per communica-
tion round, 𝑡, to reduce the total communication cost in FL. Let 𝐶 denote the total num-
ber of participating clients per round. When 𝐶 is low, it is difficult to ensure the sampled
data resemble the global data distribution. This also leads to high EMD between 𝑝 and 𝑝, which again contributes to the divergence of 𝒘௧ி from 𝒘௧. Let 𝐴௧ be the accuracy of
the global model at communication round 𝑡 ∈ 𝑇. Figure 2 shows the accuracy curve of
FedAvg models trained on a non-IID CIFAR-10 dataset using 𝐶 = 5 and 𝐶 = 10. First,
the average accuracy of the global model after 𝑡 = 15 communication round was 62.73%
and 72.79% for 𝐶 = 5 and 𝐶 = 10, respectively. Additionally, the fluctuation and stand-
ard deviation of the accuracy curve were higher when 𝐶 = 5 as compared to 𝐶 = 10. It
is shown that FedAvg (or FL in general) had inferior performance when the number of
participating clients per round is low.

Figure 1. Weight divergence between wFL
t and wCL

t is inevitable even if both models have the same
initialization weights.

Generally, only a fraction of the total clients is selected for training per communication
round, t, to reduce the total communication cost in FL. Let C denote the total number of
participating clients per round. When C is low, it is difficult to ensure the sampled data
resemble the global data distribution. This also leads to high EMD between pk and p,
which again contributes to the divergence of wFL

t from wCL
t . Let At be the accuracy of the

global model at communication round t ∈ T. Figure 2 shows the accuracy curve of FedAvg
models trained on a non-IID CIFAR-10 dataset using C = 5 and C = 10. First, the average
accuracy of the global model after t = 15 communication round was 62.73% and 72.79% for
C = 5 and C = 10, respectively. Additionally, the fluctuation and standard deviation of the
accuracy curve were higher when C = 5 as compared to C = 10. It is shown that FedAvg
(or FL in general) had inferior performance when the number of participating clients per
round is low.

Recent studies have contributed various solutions to mitigate weight divergence.
For instance, the FedProx [23] mentioned earlier adds a regularization term to the local
subproblem to prevent the local updates from diverging away from the global FL model.
This method, in turn, hopes to ensure the aggregated global FL model weights wFL

t are close
to wCL

t . Albeit effective, FedProx requires higher computing costs and a longer training
time [32]. On the other hand, [16] proposed partial global sharing of local data to reduce
EMD between client data distribution and the global populations. However, this induces
high communication costs for data sharing and raises privacy concerns.

Sensors 2023, 23, 2494 6 of 26Sensors 2023, 23, x FOR PEER REVIEW 6 of 27

Figure 2. The global model’s accuracy curve for 𝐶 = 5 and 𝐶 = 10.

Recent studies have contributed various solutions to mitigate weight divergence. For
instance, the FedProx [23] mentioned earlier adds a regularization term to the local sub-
problem to prevent the local updates from diverging away from the global FL model. This
method, in turn, hopes to ensure the aggregated global FL model weights 𝒘௧ி are close
to 𝒘௧. Albeit effective, FedProx requires higher computing costs and a longer training
time [32]. On the other hand, [16] proposed partial global sharing of local data to reduce EMD between client data distribution and the global populations. However, this induces
high communication costs for data sharing and raises privacy concerns.

Meanwhile, methods that employ adaptive client selection or early client termination
(i.e., FedMarl) aim to tackle weight divergence via careful client selection. For each com-
munication round, FedMarl will only select a subset of the 𝐶 clients for training. Ideally,
only the selected clients are useful for training, while the rest are not. Effectively, this
means that 𝐶 is not constant for each communication round 𝑡. However, a lower 𝐶 may
lead to less steady convergence based on Figure 2. Thus, FedMarl is expected to handle
the careful dropping of clients considering the EMD between global and local popula-
tions while taking care of other optimizing objectives, such as the training latency and
communication cost of each client. Dropping the wrong clients may lead to large weight
divergence, as shown in Figure 3.

Figure 3. Ineffective client dropping by FedMarl will lead to large weight divergence. Client 3 (de-
noted by peach) is dropped from training at communication round 𝑇 − 2. This causes the aggre-
gated FL weights 𝒘ி் (denoted by green) to converge toward Client 1 and 2 while diverging away
from the 𝒘்.

Figure 2. The global model’s accuracy curve for C = 5 and C = 10.

Meanwhile, methods that employ adaptive client selection or early client termination
(i.e., FedMarl) aim to tackle weight divergence via careful client selection. For each commu-
nication round, FedMarl will only select a subset of the C clients for training. Ideally, only
the selected clients are useful for training, while the rest are not. Effectively, this means that
C is not constant for each communication round t. However, a lower C may lead to less
steady convergence based on Figure 2. Thus, FedMarl is expected to handle the careful
dropping of clients considering the EMD between global and local populations while taking
care of other optimizing objectives, such as the training latency and communication cost of
each client. Dropping the wrong clients may lead to large weight divergence, as shown in
Figure 3.

Sensors 2023, 23, x FOR PEER REVIEW 6 of 27

Figure 2. The global model’s accuracy curve for 𝐶 = 5 and 𝐶 = 10.

Recent studies have contributed various solutions to mitigate weight divergence. For
instance, the FedProx [23] mentioned earlier adds a regularization term to the local sub-
problem to prevent the local updates from diverging away from the global FL model. This
method, in turn, hopes to ensure the aggregated global FL model weights 𝒘௧ி are close
to 𝒘௧. Albeit effective, FedProx requires higher computing costs and a longer training
time [32]. On the other hand, [16] proposed partial global sharing of local data to reduce EMD between client data distribution and the global populations. However, this induces
high communication costs for data sharing and raises privacy concerns.

Meanwhile, methods that employ adaptive client selection or early client termination
(i.e., FedMarl) aim to tackle weight divergence via careful client selection. For each com-
munication round, FedMarl will only select a subset of the 𝐶 clients for training. Ideally,
only the selected clients are useful for training, while the rest are not. Effectively, this
means that 𝐶 is not constant for each communication round 𝑡. However, a lower 𝐶 may
lead to less steady convergence based on Figure 2. Thus, FedMarl is expected to handle
the careful dropping of clients considering the EMD between global and local popula-
tions while taking care of other optimizing objectives, such as the training latency and
communication cost of each client. Dropping the wrong clients may lead to large weight
divergence, as shown in Figure 3.

Figure 3. Ineffective client dropping by FedMarl will lead to large weight divergence. Client 3 (de-
noted by peach) is dropped from training at communication round 𝑇 − 2. This causes the aggre-
gated FL weights 𝒘ி் (denoted by green) to converge toward Client 1 and 2 while diverging away
from the 𝒘்.

Figure 3. Ineffective client dropping by FedMarl will lead to large weight divergence. Client
3 (denoted by peach) is dropped from training at communication round T − 2. This causes the
aggregated FL weights wFL

t (denoted by green) to converge toward Client 1 and 2 while diverging
away from the wCL

t .

3. System Model and Problem Formulation

In this section, we present the system model for our FL system and discuss the problem
formulation. Our commonly used symbols are listed in Table 2 for ease of reference.

Sensors 2023, 23, 2494 7 of 26

Table 2. List of key variables defined in the system model.

Notation Definition

t Index of communication round
K The total number of client devices (IoT devices)
N The total number of client devices selected at each communication round
n Index of selected IoT devices at communication round t

Hb
t,n Model broadcasting latency from server to client n

Hp
t,n Probing training latency for client n

Hm
t,n Metadata uploading latency from client n to server

Hu
t,n Model uploading latency from client n to server

Ht Complete training latency for communication round t
Bt

n Communication cost of client n
Bt Total communication cost for communication round t
At Accuracy of the global model at communication round t

∆At Global model’s accuracy improvement
φt Client selection matrix at communication round t
Et Local epoch count matrix at communication round t

3.1. System Model

We considered an FL system with K number of client devices. At communication
round t ∈ T, N number of clients were randomly selected from the K number of clients.
Each communication round consisted of four phases, which are: (1) model broadcasting,
(2) probing training, (3) client dropping and (4) completion of training.

1. Model broadcasting: If t = 1, the FL server will initialize a global model, whereas at
t ≥ 2, the FL server will collect the client models trained at round t− 1 and aggregate
them into a new global model. Then, the FL server will broadcast the global model to
N randomly selected clients.

2. Probing training: Each selected client n ∈ N will perform one epoch of local training
called probing training. The purpose of probing training is to acquire the metadata of
each client. The metadata consist of the client’s states, which will be fed to the DRL
agents for adaptive early client termination and local epoch adjustment. The details of
the client states will be defined later together with the specification of the DRL agents.
After probing training, each client will upload its metadata to the server and proceed
to the next phase.

3. Early client termination: Based on the collected client states, the DRL agents at
the FL server will drop non-essential clients to reduce total latency Ht and total
communication cost Bt for round t. The decision made by DRL agents will be sent to
each client.

4. Completion of training: Only the remaining C clients that are not dropped by the DRL
agent will resume training. Each client n will complete the remaining local training
until Et

n epochs are reached. Each locally trained model will be uploaded to the FL
server for model aggregation.

Let Hp
t,n denote the probing training latency for client n ∈ N at round t ∈ T. Let Hc

t,n
be the complete local training latency for client n at round t, while Hu

t,n denotes the time
taken for client n to upload its local model to the FL server. Let φt

n ∈ {0, 1} denote if client
n is selected by the DRL agent to complete full local training. The total processing latency
Ht and the total communication cost Bt at communication round t can be expressed by
Equations (1) and (2):

Ht = max
1≤n≤N

(
Hc

t,n + Hu
t,n
)
at

n (1)

Bt =
N

∑
n=1

Bt
nφt

n (2)

Sensors 2023, 23, 2494 8 of 26

Figure 4 depicts the system model for the proposed FL protocol. Note that the model
broadcasting latency Hb

t,n was not included into Ht since it is not part of the FL optimization
problem. Additionally, the time latency to upload client metadata to the server, Hm

t,n, was
ignored. This is because the metadata file size was only 278 bytes, while even a lightweight
MobileNetV2 file is 24.5 megabytes. Thus, Hm

t,n is negligible since Hm
t,n � Hu

t,n.

Sensors 2023, 23, x FOR PEER REVIEW 8 of 27

latency 𝐻௧ and the total communication cost 𝐵௧ at communication round 𝑡 can be ex-
pressed by Equations (1) and (2): 𝐻௧ = 𝑚𝑎𝑥ଵஸஸே൫𝐻௧, + 𝐻௧,௨ ൯ 𝑎௧ (1)

𝐵௧ = 𝐵௧𝜙௧ே
ୀଵ (2)

Figure 4 depicts the system model for the proposed FL protocol. Note that the model
broadcasting latency 𝐻௧, was not included into 𝐻௧ since it is not part of the FL optimi-
zation problem. Additionally, the time latency to upload client metadata to the server, 𝐻௧, , was ignored. This is because the metadata file size was only 278 bytes, while even a
lightweight MobileNetV2 file is 24.5 megabytes. Thus, 𝐻௧, is negligible since 𝐻௧, ≪ 𝐻௧,௨ .

Figure 4. The proposed FL protocol’s system model consists of four phases in each communication
round: (1) model broadcasting, (2) probing training, (3) early client termination and (4) completion
of training.

3.2. Problem Formulation
Our objective was to maximize the cumulative 𝐴௧ improvement while minimizing

the 𝐻௧ and 𝐵௧ . Let 𝝓௧ = [𝜙௧] and 𝑬௧ = [𝐸௧] be a 𝑇 × 𝑁 matrix for client termination
and local epoch adjustment decided by the DRL agents, respectively. We formulated the
problem as a weighted sum optimization problem, as formulated below:

max𝝓,𝑬 𝔼 𝑤ଵ[𝑈(𝐴௧) − 𝑈(𝐴௧ିଵ)] − (𝑤ଶ𝐵௧ + 𝑤ଷ𝐻௧)்
௧ୀଵ ൩ (3)

where 𝑤ଵ, 𝑤ଶ and 𝑤ଷ are the weights to control the importance of each objective. To en-
sure 𝐴௧ can improve even if it is small near the end of the FL process, a utility function
denoted as 𝑈(∙) was used to reshape the 𝐴௧ of the global model. In FedMarl, 𝑈(𝐴௧) is
defined in Equation (4): 𝑈(𝐴௧) = 201 + 𝑒.ଷହ(ଵି) − 10 (4)

One problem with the original 𝑈(𝐴௧) is that it only tells us the transformed value of 𝐴௧ . The entire 𝑤ଵ[𝑈(𝐴௧) − 𝑈(𝐴௧ିଵ)] can be reparametrized into a single 𝑤ଵ𝑈(∆𝐴௧) ex-
pression, which could directly tell us the gain/penalty for ∆𝐴௧. First, the 𝑈(𝐴௧) equation

Figure 4. The proposed FL protocol’s system model consists of four phases in each communication
round: (1) model broadcasting, (2) probing training, (3) early client termination and (4) completion
of training.

3.2. Problem Formulation

Our objective was to maximize the cumulative At improvement while minimizing the
Ht and Bt. Let φt =

[
φt

n
]

and Et =
[
Et

n
]

be a T × N matrix for client termination and local
epoch adjustment decided by the DRL agents, respectively. We formulated the problem as
a weighted sum optimization problem, as formulated below:

max
φt ,Et

E
[

T

∑
t=1

w1[U(At)−U(At−1)]− (w2Bt + w3Ht)

]
(3)

where w1, w2 and w3 are the weights to control the importance of each objective. To ensure
At can improve even if it is small near the end of the FL process, a utility function denoted
as U(·) was used to reshape the At of the global model. In FedMarl, U(At) is defined in
Equation (4):

U(At) =
20

1 + e0.35(1−At)
− 10 (4)

One problem with the original U(At) is that it only tells us the transformed value
of At. The entire w1[U(At)−U(At−1)] can be reparametrized into a single w1U(∆At)
expression, which could directly tell us the gain/penalty for ∆At. First, the U(At) equation
is simplified in the given range 0 ≤ At ≤ 1 since At is bounded between 0 and 100%. In
this range, U(At) can be approximated as a straight line, as shown in Figure 5.

Sensors 2023, 23, 2494 9 of 26

Sensors 2023, 23, x FOR PEER REVIEW 9 of 27

is simplified in the given range 0 ≤ 𝐴௧ ≤ 1 since 𝐴௧ is bounded between 0 and 100%. In
this range, 𝑈(𝐴௧) can be approximated as a straight line, as shown in Figure 5.

Figure 5. The original utility function 𝑈(𝐴௧) can be approximated as a straight line when 𝐴௧ falls
in the range [0, 1].

To approximate 𝑈(𝐴௧) as a straight line in the given range, the gradient and y-inter-
cept of the graph are required. The gradient is denoted as 𝑈ᇱ(𝐴௧), which is the first deriv-
ative of the 𝑈(𝐴௧) function. 𝑈ᇱ(𝐴௧) can be written as in Equation (5): 𝑈ᇱ(𝐴௧) = 7𝑒.ଷହ(ଵି)(1 + 𝑒.ଷହ(ଵି))ଶ (5)

The mean of the gradient, 𝑈ᇱ(𝐴௧)തതതതതതതതത, within the range can be formulated as in Equation
(6): 𝑈ᇱ(𝐴௧)തതതതതതതതത = 11 − 0 න 𝑈ᇱ(𝐴௧)ଵ

 𝑑𝑡 = න 7𝑒.ଷହ(ଵି)(1 + 𝑒.ଷହ(ଵି))ଶଵ
 𝑑𝑡 = 1.732

(6)

The y-intercept of 𝑈(𝐴௧), denoted as 𝑈(𝐴௧ = 0), can be written as: 𝑈(𝐴௧ = 0) = 201 + 𝑒.ଷହ(ଵି) − 10 = −1.732

(7)

Hence, 𝑈(𝐴௧) can be simplified into: (𝐴௧) = 𝑈ᇱ(𝐴௧)തതതതതതതതത 𝐴௧ + 𝑈(𝐴௧ = 0) = 1.732 𝐴௧ − 1.732
(8)

Figure 5. The original utility function U(At) can be approximated as a straight line when At falls in
the range [0, 1].

To approximate U(At) as a straight line in the given range, the gradient and y-intercept
of the graph are required. The gradient is denoted as U′(At), which is the first derivative
of the U(At) function. U′(At) can be written as in Equation (5):

U′(At) =
7e0.35(1−At)(

1 + e0.35(1−At)
)2 (5)

The mean of the gradient, U′(At), within the range can be formulated as in Equation (6):

U′(At)

= 1
1−0

∫ 1
0 U′(At)dt

=
∫ 1

0
7e0.35(1−At)

(1+e0.35(1−At))
2 dt

= 1.732

(6)

The y-intercept of U(At), denoted as U(At = 0), can be written as:

U(At = 0)
= 20

1+e0.35(1−0) − 10
= −1.732

(7)

Hence, U(At) can be simplified into:

(At)

= U′(At) At + U(At = 0)
= 1.732 At − 1.732

(8)

Sensors 2023, 23, 2494 10 of 26

Thus, U(∆At) can be defined as:

U(∆At)
∼= U(At)−U(At−1)
= (1.732 At − 1.732)− (1.732 At−1 − 1.732)
= 1.732(At − At−1)
= 1.732 ∆At

(9)

U(∆At) is more analyzable than U(At)−U(At−1) since the two expressions have
been collapsed into one equation. At this end, we can define our optimization problem as:

max
φt ,Et

E
[

T

∑
t=1

w1U(∆At)− (w2Bt + w3Ht)

]
(10a)

s.t. w1, w2, w3 > 0
(10b)

E
(

w3

T

∑
t=1

Ht

)
> Ω1E

(
w2

T

∑
t=1

Bt

)
(10c)

w1U(∆At = 0.01) > Ω2E(w2Bt + w3Ht) (10d)

E
(

w1

T

∑
t=1

U(∆At)

)
> Ω3

(
w2

T

∑
t=1

Bt + w3

T

∑
t=1

Ht

)
(10e)

where (10b–e) are the constraints for our optimization problem. Constraint (10b) is to
make sure the sign of U(∆At), Bt and Ht are not inverted. Meanwhile, constraint (10c) is
to control the ratio of ∑T

t=1 Bt to ∑T
t=1 Ht. Furthermore, constraint (10d) is to make sure

w1U(∆At) gain will not be outweighed (w2Bt + w3Ht) penalties when ∆At is as small as
0.01. Lastly, constraint (10e) makes sure ∑T

t=1 w1U(∆At) is at least Ω3 greater than the
penalty terms. Note that (10c-e) are additional constraints that are not imposed on the
original FedMarl optimization problem.

In FedMarl, the w1, w2 and w3 are treated as hyperparameters. FL engineers have
to manually adjust the weightage of each objective until the desired outcome is achieved.
However, the weightage w1, w2 and w3 does not directly translate to the weightage of each
objective ∑T

t=1 U(∆At), ∑T
t=1 Bt and ∑T

t=1 Ht. For instance, the ratio of w2Bt to w3Ht does
not directly equate to the ratio of w2 ∑T

t=1 Bt to w3 ∑T
t=1 Ht. This is because the values of Ht

and Bt are instantaneous and stochastic, which means that the ratio of w3Ht to w2Bt at two
different t is most likely different. On the other hand, E

(
∑T

t=1 Ht

)
and E

(
w2 ∑T

t=1 Bt

)
are

more consistent. Taking the ratio of these two components is more reliable.
We can find the best w1, w2 and w3 by setting the desired Ω1, Ω2 and Ω3. We set

Ω1 = 0.2, Ω2 = 0.3 and Ω3 = 1.0. We needed to run one iteration of FL using FedAvg
to get the traces value of ∆At, Bt and Ht for t ∈ T since these values are dependant on
the target IoT environment setup. Based on the traces value, we could follow Algorithm
1 to acquire the suitable w1, w2 and w3. In our experiment setup, we found the desired
hyperparameters to be (w1 = 2.9, w2 = 0.1 and w3 = 0.2).

Sensors 2023, 23, 2494 11 of 26

Algorithm 1 Search for the best w1, w2 and w3

1. Input: Set Ω1 = 0.2, Ω2 = 0.3, Ω3 = 1.0
2. Output: The best w1, w2, w3

3:
Run one complete iteration of FedAvg with T = 15 communication rounds and record the
traces value of ∆At, Bt and Ht for t ∈ T.

4:
Initialize an empty set cache = {} to store all ((w1, w2, w3), R) that satisfied constraints
(10c-e)R is the weighted-sum optimization goal w1U(∆At)− (w2Bt + w3Ht)

5: for w1 = 0, 0.1, . . . 3.0 do
6: for w2 = 0, 0.1, . . . 1.0 do
7: for w3 = 0, 0.1, . . . 1.0 do

8:
Compute E

[
w1

T
∑

t=1
U(∆At)

]
, E
[

w2
T
∑

t=1
Bt

]
, E
[

w3
T
∑

t=1
Ht

]
,

E(w2Bt + w3Ht) based on the recorded traces value, where
we assume E(x) , x

9: if (10c-e) are satisfied:

10:

Compute

R =
T
∑

t=1
w1U(∆At)− (w2Bt + w3Ht)

from the traces value
11: Record ((w1, w2, w3), R) in cache
12: end if
13: end for
14: end for
15. end for

16:
From cache, find out which combination of (w1, w2, w3) results in the smallest R. This can be
treated as finding the worse-case max E[R].

17: returnw1, w2, w3

4. Proposed Method

We propose FedDdrl, which exploits two DRL policy networks for FL optimization.
Specifically, we adopted VDNs as the DRL policy networks for FedDdrl. We elaborate in
detail on how we formulated the problem as MDP, including the design of state space,
action space and reward of the algorithm. In addition, we also exploited the recently
proposed balanced-MixUp to mitigate the impact of weight divergence and speed up the
FL convergence speed.

4.1. Deep Reinforcement Learning for Federated Learning Optimization

The proposed optimization problem in Equation (10a–e) is a 0–1 Multidimensional
Knapsack Problem (MKP). The items to be put in knapsacks are the client devices n with
complete training latency Hc

t,n, model uploading latency Hu
t,n, communication cost Bt

n and
data size Dn. The total capacity of the knapsack equals the total communication cost
Bt = ∑N

n Bt
nat

n, where at
n is the binary indicator of item (client) n. When at

n is set to 1, item
(client) n is selected. Otherwise, at

n is set to 0. The total weight of the knapsack has a lower
bound which has to fulfil the minimum requirement of accuracy constraint(10d). Our goal
is to select a subset of clients C (1 < C ≤ N) for complete training in each communication
round to maximize the total accuracy gain ∑T

t=1 ∆At while minimizing the total latency
∑T

t=1 Ht and total communication cost ∑T
t=1 Bt of the entire FL training. Thus, the proposed

optimization is NP-hard.
To solve problem (10), our FedDdrl algorithm adopted a double DRL framework for

our optimization problem. Specifically, we formulated the DRL policy network for both
tasks using a multi-agent reinforcement learning (MARL) approach. In particular, VDN has
proven itself in the recent literature [33] to be a promising candidate for MARL problems. A
VDN network consists of N agents, in which each agent n ∈ N uses a deep neural network
(DNN) parametrized with θ to implement the Q-function Qθ

n(s, a) = E[Rt
∣∣s = st

n, a = at
n] .

At each timestep t, each agent n observes its states st
n and selects the optimal action at

n
with the maximum Q-value. Let st =

{
st

n
}

and at =
{

at
n
}

represent the states and actions

Sensors 2023, 23, 2494 12 of 26

collected from all agents n ∈ N at timestep t, respectively. The joint Q-function Qtot(·)
for the multi-agent VDN system can be represented by the elementwise summation of
all the individual Q-functions, where Qtot(st, at) = ∑n Qθ

n
(
st

n, at
n
)
. In FedDdrl, we set

each agent in both VDN as a simple two-layer multi-layer perceptron (MLP), which is
cheap to implement. All MLPs in each VDN share their weights to prevent the lazy
agent problem [33].

As illustrated in Figure 6, the first VDN network takes the client states st (which will be
detailed later) to obtain the optimal client termination matrix φt. The second VDN network
takes the same client states st to obtain the optimal local training epoch per client Et.

Sensors 2023, 23, x FOR PEER REVIEW 12 of 27

Q-function 𝑄௧௧(∙) for the multi-agent VDN system can be represented by the ele-
mentwise summation of all the individual Q-functions, where 𝑄௧௧(𝒔௧, 𝒂௧) =∑ 𝑄ఏ(𝑠௧ , 𝑎௧) . In FedDdrl, we set each agent in both VDN as a simple two-layer multi-
layer perceptron (MLP), which is cheap to implement. All MLPs in each VDN share their
weights to prevent the lazy agent problem [33].

As illustrated in Figure 6, the first VDN network takes the client states 𝒔௧ (which will
be detailed later) to obtain the optimal client termination matrix 𝝓௧. The second VDN
network takes the same client states 𝒔௧ to obtain the optimal local training epoch per cli-
ent 𝑬௧.

Figure 6. Structure of the proposed FedDdrl algorithm.

4.1.1. Early Client Termination
Inspired by the work of FedMarl [14], the first VDN network was employed to learn

the optimal policy for early client termination matrix 𝝓௧ at round 𝑡. We reformulated the
problem as an MDP with the following state, action and reward to train a VDN network
with 𝑁 = 10 agents.
1. State 𝒔௧: State 𝒔௧ = {𝒔௧ } consisted of the client states for each VDN agent. Each agent 𝑛 consisted of six components: (i) the probing loss 𝐿௧ , (ii) probing training latencies 𝑯௧, , (iii) model uploading latencies 𝑯௧,௨ , (iv) communication cost from client to

server 𝐵௧ , (v) local training dataset size |𝐷| and (vi) current communication round
index 𝑡. The state vector for agent 𝑐 can be written as Equation (11): 𝒔௧ = ൣ𝐿௧ , 𝑯௧, , 𝑯௧,௨ , 𝐵௧, |𝐷|, 𝑡 ൧ (11)

It is noteworthy that since each agent in the VDN only has access to its own local
observation instead of the full observed environment, the policy has to incorporate
past agent observations from history [33]. Thus, the historical values of probing la-
tencies 𝑯௧, = [𝐻௧ି∆ ், , … , 𝐻௧,] and model uploading latencies 𝑯௧,௨ =[𝐻௧ି∆ ೠ்ିଵ,௨ , … , 𝐻௧ିଵ,௨] were included in the state vector to mitigate the limitation of
local observation. Note that ∆𝑇 and ∆𝑇௨ are the sizes of the historical information
of probing latencies and model uploading latencies, respectively.

Figure 6. Structure of the proposed FedDdrl algorithm.

4.1.1. Early Client Termination

Inspired by the work of FedMarl [14], the first VDN network was employed to learn
the optimal policy for early client termination matrix φt at round t. We reformulated the
problem as an MDP with the following state, action and reward to train a VDN network
with N = 10 agents.

1. State st State st =
{

st
n
}

consisted of the client states for each VDN agent. Each agent
n consisted of six components: (i) the probing loss Lt

n, (ii) probing training latencies
Hp

t,n, (iii) model uploading latencies Hu
t,n, (iv) communication cost from client to server

Bt
n, (v) local training dataset size |Dn| and (vi) current communication round index t.

The state vector for agent c can be written as Equation (11):

st
n =

[
Lt

n, Hp
t,n, Hu

t,n, Bt
n, |Dn|, t

]
(11)

It is noteworthy that since each agent in the VDN only has access to its own local ob-
servation instead of the full observed environment, the policy has to incorporate past
agent observations from history [33]. Thus, the historical values of probing latencies
Hp

t,n =
[

Hp
t−∆Tp ,n, . . . , Hp

t,n

]
and model uploading latencies

Hu
t,n =

[
Hu

t−∆Tu−1,n, . . . , Hu
t−1,n

]
were included in the state vector to mitigate the

limitation of local observation. Note that ∆Tp and ∆Tu are the sizes of the historical
information of probing latencies and model uploading latencies, respectively.

Sensors 2023, 23, 2494 13 of 26

2. Action φt: Action φt =
{

φt
n
}

comprised the client termination decision for each VDN
agent. The action space for client termination was φt

n = {0, 1}, where 0 indicates the
termination of the client and 1 indicates the client is selected for complete training.

3. Reward r1
t : A vanilla reward for VDN 1, denoted as r1

t , can be adopted from the FL
optimization problem as described in Equation (12):

r1
t = w1U(∆At)− (w2Bt + w3Ht) (12)

where the system is rewarded with accuracy improvement ∆At and penalties for
Bt and Ht. However, Equation (12) has one obvious limitation. When ∆At → 0 ,
the lim

∆At→0
w1U(∆At) = 0, regardless of the magnitude of w1. If w1U(∆At)→ 0 , the

reward r1
t ≈ −

(
w2Bt + w3Ht

)
. This causes the optimization problem to diverge from

improving accuracy with the constraint of Bt and Ht to merely the reduction of Bt
and Ht. To show the severeness of this problem, we trained the VDN agents using
the r1

t as defined by Equation (12). Let E[w1U(∆At)] and E[w2Bt + w3Ht] denote
the expected values of accuracy improvement ∆At and penalties (w2Bt + w3Ht),
respectively. For MNIST dataset, the expected values of both components for the last
R = 5 communication rounds can be computed in Equations (13) and (14):

E[w1U(∆At)]|t={T−R, T−R−1, ...T}

= 1
5

T
∑

t=T−5
w1U(∆At)

= 0.0273

(13)

E[w2Bt + w3Ht]|t={T−R, T−R−1, ...T}

= 1
5

T
∑

t=T−5
(w2Bt + w3Ht)

= 0.279

(14)

It is observed that E[w1U(∆At)]� E[w2Bt + w3Ht] for the last five communication
rounds. This is because as training approach the end, the accuracy improvement is
often smaller compared to the earlier stage. Consequently, the VDN agents start to
terminate more clients from complete training, giving way to the reduction of Bt and
Ht. To make sure the agents are motivated to learn even when ∆At → 0 , we can
introduce a bias term b to r1

t . Let b = 3
10 E[w2Bt + w3Ht]. Hence, the reward function

r1
t can be reformulated as shown in Equation (15):

r1
t =

{
rt + b, ∆At > 0

rt, ∆At ≤ 0
, rt = w1U(∆At)− (w2Bt + w3Ht) (15)

Note that we only added the bias term b to the reward rt when ∆At > 0 since it is
intended to encourage accuracy improvement. We did not subtract the bias term b
from the reward rt when ∆At ≤ 0 since the penalty terms are sufficient to penalize
the inferior actions.

4.1.2. Local Epoch Adjustments

The second DRL network was employed to learn the optimal policy for local epoch
adjustments Et at round t. A VDN algorithm with N = 10 agents can be formulated by
defining the state, action and reward as follows:

1. State st: The second VDN shared the same state in Equation (11) since both VDNs
required the same local observation for decision making.

2. Action Et: Action Et =
{

Et
n
}

comprises the local epoch counts for each VDN agent.
The action space is Et

n = {3, 5, 7}. This action aims to exploit client devices with
stronger computation power for more training epochs and vice versa.

Sensors 2023, 23, 2494 14 of 26

3. Reward r2
t : We adopted Equation (15) as the starting point for the reward function for

VDN 2. However, the communication cost Bt was not part of the optimizing objectives
of VDN 2 since local epoch adjustment is only bounded by the Ht constraint. Hence,
the reward function r2

t for this VDN networks can ignore the Bt penalty. As such, the
r2

t can be defined in Equation (16):

r2
t =

{
rt + b, ∆At > 0

rt, ∆At ≤ 0
, where rt = w1U(∆At)− w3Ht (16)

where we used the same bias term b from (15) for the simplicity’s sake.

As the training converges, VDN 1 will deliver the optimal client selection, and VDN
2 will impart the optimal local epoch number for each client. The overall algorithm for
solving the problem in Equation (10a–e) is summarized in Algorithm 2.

Algorithm 2 FedDdrl Algorithm

1: Input: Initialize VDN 1 Q1
tot and its target network Q1

tot
′

for client selection
φt policy
Initialize VDN 2 Q2

tot and its target network Q2
tot
′

for local epoch
adjustment Et policy

2: Output: Trained Q1
tot and Q2

tot networks
3: Set ε = 1.0
4: for Episode nep = 1, 2, . . . , Nep do
5: Reset the FL environment
6: Initialize a global model w0
7: for communication round t = 1, 2, . . . , T do
8: Randomly select N clients from all K clients
9: Broadcast the global model wt to each selected client
10: for each client n ∈ N in parallel do

11: wn
t ← wt ; Copy the global model as

each client model

12: Update the client model wn
t using the

local training dataset Dn
13: Upload client states st

n to the FL server
14: end for

15: Each agent n in VDN 1 selects the optimal action φ∗t,n= argmax Q1
n
(
st

n, φt
n
)

with a (1− ε) ×
100% probability, else randomly output actions

16: Each agent n in VDN 2 selects the optimal action E∗t,n= argmax Q2
n
(
st

n, Et
n
)

with a (1− ε) ×
100% probability, else randomly output actions

17: Send action φ∗t,n and E∗t,n to each client n ∈ N
18: for each client n ∈ N in parallel do
19: if φ∗t,n = 1:

20:

Continue
updating wn

t
using Dn until
E∗t,n is reached

21: Return
updated wn

t
22: end if
23: end for
24: Aggregate global model wt+1 ← ∑N

i=1
|Di |

∑N
i=1 |Di |

wn
t where i ∈

{
n
∣∣φ∗t,n = 1

}
25: Reward r1

t and r2
t are given to Q1

tot and Q2
tot based on ∆At, Bt, Ht

26: st =
{

st
n
}

, φt =
{

φt
n
}

, Et =
{

Et
n
}

27: Store transitions 1
[
st, φt, r1

t
]

for Q1
tot into memory buffer 1

28: Store transitions 2
[
st, Et, r2

t
]

for Q2
tot into memory buffer 2

29: Sample mini-batches with size nb from memory buffer to train Q1
tot, Q2

tot and Q1
tot
′
, Q2

tot
′

30: Decay ε gradually from 1.0 to 0.1
31: end for
32: end for

4.2. Balanced-MixUp to Mitigate Weight Divergence

In this study, we focused on the non-IID label shift, where the client dataset is heavily
skewed to one of the label classes. The huge EMD between the client data distribution
pk and the global distribution p will contribute to weight divergence, deteriorating the
training efficiency of FL. Thus, the highly imbalanced client dataset has to be handled
wisely. MixUp [34] is a simple yet effective data augmentation technique that could shed
some light on this problem.

Sensors 2023, 23, 2494 15 of 26

MixUp extends the training data distribution by linearly interpolating between existing
data points, filling the underpopulated areas in the data space. It generates synthetic

training data
(

ˆ
x,

ˆ
y
)

by simply taking the weighted combination of two random data pairs,

(xi, yi) and
(

xj, yj
)
, as shown in Equations (17) and (18):

ˆ
x = λxi + (1− λ)xj (17)

ˆ
y = λyi + (1− λ)yj (18)

where λ ~ Beta(α, α), with α > 0. Despite its simplicity, MixUp has been proven to improve
model calibration and better generalization [35]. Thus, its application has expanded from
image and speech classification tasks [34] to other domains, including image segmenta-
tion [36] and natural language processing [37,38]. However, a vanilla MixUp works poorly
in highly imbalanced datasets [39]. In highly imbalanced datasets, MixUp would end up
sampling the data pairs (xi, yi) and

(
xj, yj

)
from the same class for most of the time since

the sampling is done randomly.
Some recent studies focused on solving the data imbalance problem for MixUp. In

Remix by [39], xi and xj are mixed in the same fashion as MixUp, but yi and yj are
mixed such that the minority class is assigned a higher weight. This method pushes
the decision boundaries away from the minority class, balancing the generalization error
between the majority and minority classes. Balanced-MixUp is another variation of MixUp,
where MixUp is combined with a data-resampling technique to achieve a balanced class
distribution [22]. Specifically, balanced-MixUp combines instance-based sampling and
class-based sampling for the majority and minority classes, respectively. This ensures that
each data pair (xi, yi) and

(
xj, yj

)
always consists of instances from both the majority and

minority classes.
We adopted balanced-MixUp as the augmentation into the formulation of our solution

to address the class imbalanced problem. To the best of our knowledge, we are the first
to integrate balanced-MixUp into FL for weight divergence mitigation. Let (xM, yM)
and (xm, ym) denote the instance pair sampled from the majority and minority classes,
respectively. Balanced-MixUp can be expressed as shown in Equations (19) and (20):

ˆ
x = λxM + (1− λ)xm (19)

ˆ
y = λyM + (1− λ)ym (20)

Balanced-MixUp guarantees that each data pair mixing consists of instances from both
the majority and minority class. Unlike the original balanced-MixUp where λ ~ Beta(1, α),
we adopted λ ~ Beta(α, α) and found it to work better in our study. The best α value may
be different depending on the datasets, which will be detailed in the results section.

5. Simulation Results

This study adopted TensorFlow as the deep learning platform. We adopted three
datasets for FL benchmarking: MNIST, CIFAR-10 and CrisisIBD [40]. First, MNIST is
a relatively simple task under most non-IID settings. It is mainly used to prove that a
novel FL algorithm is at least working. In contrast, CIFAR-10 is a challenging dataset
in non-IID settings, which is strongly encouraged to be included in FL benchmarking
experiments [32]. On the other hand, the CrisisIBD dataset is the benchmark dataset for
various real-world disaster-related image classification tasks. In this study, we adopted the
disaster classification dataset from the dataset (hereinafter referred to as CrisisIBD) as one
of our benchmark datasets. We adopted balanced-MixUp to augment all three datasets.
We found the best α value used by balanced-MixUp was 0.05, 0.4 and 0.2 for MNIST,
CIFAR-10 and CrisisIBD, respectively. We used all three datasets to train a lightweight

Sensors 2023, 23, 2494 16 of 26

MobileNetV2 [41], which aligned with our goal of developing the FL framework for low-
powered IoT devices. All clients adopted Bt

n = 1∀n, t, similar to the setting in [14].
In this study, we focused on the non-IID label shift as demonstrated in [14,21]. Similarly,

we divided each dataset into K clients. For each client, a fraction σ = 0.8 of the local training
dataset was sampled from one random label (which is the majority label), while the rest
of the training data were sampled uniformly from the remaining labels (which are the
minority labels). We compared our proposed method with FedAvg, FedProx and FedMarl.
The first two algorithms were shown to be robust baselines in non-IID label shift [32] and
are prebuilt in many existing FL frameworks, including Tensorflow Federated [42] and Intel
OpenFL [8]. On the other hand, FedMarl is one of the state-of-the-art FL algorithms [14].
Our FedDdrl aims to outperform all three of the algorithms. The hyperparameters are
listed in Table 3.

Table 3. List of hyperparameters.

Parameters Values

Number of agents in each VDN network, N 10
Total number of clients, K 100

Local training dataset distribution, σ 0.8
Learning rate for VDN network 1 × 10−3

Target network update interval 5
Number of episodes, Nep 40

Number of clients selected for training in each round, C 10
Default number of local epochs (before adjustment by FedDdrl), Et 5

Number of communication rounds, T 15
Batch size to update VDN agents, Nb 32

Initial ε-greedy exploration value 1
Final ε-greedy exploration value 0.1

Replay memory size 300
VDN 1 agent (MLP) size 10 × 256 × 256 × 2
VDN 2 agent (MLP) size 10 × 256 × 256 × 3

Due to limited resources, we only had two hardware devices: (i) an Intel NUC with
an Intel core i7-10710U processor with 4.70 GHz and (ii) a workstation equipped with an
Intel core i7-10875H processor with 2.30 GHz and NVIDIA RTX 2070 SUPER. In total, this
yielded two TensorFlow CPU operators and one TensorFlow GPU operator. However, this
was far from enough to simulate a heterogeneous FL environment with K = 100 clients
if each operator only represents one client. Thus, we carefully devised our experimental
setup, as shown in Figure 7.

To simulate an FL environment with K = 100 clients (IoT devices) and C = 10 selected
clients (before early termination), we set up the experiment as shown below:

1. We created K = 100 client configurations, each consisting of the (i) client’s computing
latency per data, (ii) model upload latency and (iii) local dataset identity (ID) number.
To closely simulate the heterogeneity of resources in an IoT network as in [14], the com-
puting latency per data in each client configuration can be any of {0.25, 0.50, 0.75} sec-
onds, while the model upload latency can be any of {1.00, 1.25, 1.75, 2.00} seconds.

2. CPU 1, CPU 2 and GPU simulated three, three and four clients, respectively. The
simulated clients represent the C = 10 randomly selected clients from the total
K = 100 clients in each communication round t.

3. In each communication round t, 10 client configurations were randomly sampled out
from the configuration pools. The 10 simulated clients (in CPU 1, CPU 2 and GPU)
were configured according to the selected client configuration. This entire process
(3) is equivalent to the FL process of randomly selected 10 clients with unique local
datasets and resources.

4. After step (3), each simulated client proceeded with its training. If the FL algorithm
was FedAvg or FedProx, all 10 simulated clients underwent complete training of

Sensors 2023, 23, 2494 17 of 26

Et = 5 local epochs. On the contrary, if the FL algorithm was FedMarl or FedDdrl, only
the simulated clients that were not terminated by the FedMarl/FedDdrl completed
their local training based on E∗t,n= argmax Q2

n
(
st

n, Et
n
)

by VDN 2.

Sensors 2023, 23, x FOR PEER REVIEW 17 of 27

Figure 7. Experiment setup.

To simulate an FL environment with 𝐾 = 100 clients (IoT devices) and 𝐶 = 10 se-
lected clients (before early termination), we set up the experiment as shown below:
1. We created 𝐾 = 100 client configurations, each consisting of the (i) client’s compu-

ting latency per data, (ii) model upload latency and (iii) local dataset identity (ID)
number. To closely simulate the heterogeneity of resources in an IoT network as in
[14], the computing latency per data in each client configuration can be any of {0.25, 0.50, 0.75} seconds, while the model upload latency can be any of {1.00, 1.25, 1.75, 2.00} seconds.

2. CPU 1, CPU 2 and GPU simulated three, three and four clients, respectively. The
simulated clients represent the 𝐶 = 10 randomly selected clients from the total 𝐾 =100 clients in each communication round 𝑡.

3. In each communication round 𝑡, 10 client configurations were randomly sampled
out from the configuration pools. The 10 simulated clients (in CPU 1, CPU 2 and
GPU) were configured according to the selected client configuration. This entire pro-
cess (3) is equivalent to the FL process of randomly selected 10 clients with unique
local datasets and resources.

4. After step (3), each simulated client proceeded with its training. If the FL algorithm
was FedAvg or FedProx, all 10 simulated clients underwent complete training of 𝐸௧ = 5 local epochs. On the contrary, if the FL algorithm was FedMarl or FedDdrl,
only the simulated clients that were not terminated by the FedMarl/FedDdrl com-
pleted their local training based on 𝐸௧,∗ = argmax 𝑄ଶ(𝒔௧ , 𝐸௧) by VDN 2.

5.1. Results and Ablation Study
We compared the performance of FedDdrl with other baselines in all three objectives

of the optimization problem, which are the (i) model accuracy, (ii) training latency and
(iii) communication efficiency.

5.1.1. Model Accuracy
Table 4 shows the model accuracy trained using each FL setting after 𝑇 = 15 com-

munication rounds. We also conducted an ablation study showing how FedDdrl improves
beyond FedMarl.

Figure 7. Experiment setup.

5.1. Results and Ablation Study

We compared the performance of FedDdrl with other baselines in all three objectives
of the optimization problem, which are the (i) model accuracy, (ii) training latency and
(iii) communication efficiency.

5.1.1. Model Accuracy

Table 4 shows the model accuracy trained using each FL setting after T = 15 commu-
nication rounds. We also conducted an ablation study showing how FedDdrl improves
beyond FedMarl.

Table 4. Model accuracy for each FL setting. Bolded indicates the best score, while underlined
indicates the second-best score.

Method MNIST
(K=100)

CIFAR-10
(K=100)

CrisisIBD
(K=98)

FedAvg 94.6% ± 2.1% 72.8% ± 3.9% 43.2% ± 5.5%

FedAvg with Balanced-MixUp 93.2% ± 2.0% 76.5% ± 1.7% 60.2% ± 1.5%

FedProx (µ = 0.01) 95.6% ± 0.5% 74.5% ± 0.2% 48.1% ± 2.9%

FedProx (µ = 0.01) with Balanced-MixUp 95.4% ± 0.7% 77.8% ± 0.5% 60.7% ± 2.0%

A: FedMarl (w1=1.0,
w2=0.1, w3=0.2) 91.5% ± 1.1% 65.5% ± 2.3% 42.4% ± 3.6%

B: A + Optimized (w1=2.9,
w2=0.1, w3=0.2) 93.2% ± 1.4% 71.7% ± 2.9% 44.4% ± 3.9%

C: B + Balanced-MixUp 93.3% ± 1.2% 75.0% ± 2.6% 63.3% ± 2.0%

D: C + Local Epoch
Adjustment (FedDdrl) 94.9% ± 1.1% 78.2% ± 2.4% 64.2% ± 1.4%

Setting A in Table 4 was our implementation of FedMarl with the original hyperpa-
rameters (w1 = 1.0, w2 = 0.1, w3 = 0.2). In Setting B, we proved that FedMarl performance

Sensors 2023, 23, 2494 18 of 26

could be improved using our hyperparameters (w1 = 2.9, w2 = 0.1, w3 = 0.2). However,
we found that its accuracy was still far behind both FedAvg and FedProx. This is because
MobileNetV2 is a lightweight model which is easy to overfit [41]. In FedAvg and FedProx,
the total number of clients selected for training is always C = 10 in each communica-
tion round t. During aggregation, there is a sufficient amount of client models overfitted
for different classes, which, when aggregated, can generate a regularization effect, thus
mitigating the weight divergence caused by overfitting. This is not the case for FedMarl,
which does not have a fixed C for each round. We argue that since the original FedMarl
was not tested on MobileNetV2, it was able to perform better than FedAvg and FedProx.
Applying balanced-MixUp could significantly mitigate this problem, as shown in Setting
C. The reasoning on how balanced-MixUp helps weight divergence mitigation is detailed
in Section 5.5.

Setting D was our FedDdrl, where we added another VDN for local epoch adjustment.
FedDdrl allows client devices to train for more epochs when required and vice versa. This
allows FedDdrl to converge faster than FedAvg and FedProx for most cases, even when
it is not utilizing all clients at each communication round. FedDdrl outperformed other
FL algorithms in both the challenging CIFAR-10 and CrisisIBD datasets, and it was the
second-best for MNIST. We suspect FedDdrl is slightly overengineered for an easy task like
MNIST. Nevertheless, it was still very robust considering that real-world data is often not as
simple as MNIST and is instead more challenging like the CIFAR-10 and CrisisIBD datasets.

5.1.2. Training Latency

Figure 8 shows the normalized training latency for each FL algorithm (with balanced-
MixUp) on all three datasets. Our FedDdrl outperformed all three other algorithms in all
datasets. This is promising since FedDdrl allows dynamic local adjustment. The FedDdrl
will sometimes increase the local epoch from five to seven. However, the extra training
latency is balanced when FedDdrl decreases the local epoch from five to three, especially in
the early communication round when the MobileNetV2 is still learning lower-level features.
FedMarl followed closely behind FedDdrl. This is mainly because both FedDdrl and
FedMarl can terminate clients with longer probing latencies. On the other hand, FedAvg
had a moderate performance in terms of training latency. It was not as fast as FedMarl
and FedDdrl, but it was still significantly faster than FedProx. As expected, FedProx had
the longest training latency compared to other FL algorithms, which is aligned with the
observation by [32]. This is mainly due to the extra computing cost required to compute
the L2 distance between the client and the global model. Hence, applying FedProx in
low-powered devices (i.e., IoT devices) with limited computation power is not feasible.

Sensors 2023, 23, x FOR PEER REVIEW 19 of 27

Figure 8. Normalized training latency of each FL algorithm.

5.1.3. Communication Efficiency
Figure 9 shows the normalized communication costs of all FL algorithms in the three

datasets. FedDdrl and FedMarl were significantly more efficient than FedAvg and
FedProx in total communication costs. There was no clear winner between FedDdrl and
FedMarl regarding communication efficiency. However, FedDdrl outperformed FedMarl
in CIFAR-10 and CrisisIBD datasets, which are significantly harder tasks compared to
MNIST. Thus, we argue that FedDdrl is the best algorithm. On the other hand, FedAvg
and FedProx have a fixed number of clients selected in each round. Since we assume 𝐵௧ =1∀𝑛, 𝑡, both algorithms have the same total communication costs.

Figure 9. Normalized communication cost of each FL algorithm.

5.2. Strategy Learned by FedDdrl
In this section, we analyze the strategies learned by the FedDdrl algorithm to fully

utilized its computing resources while reducing communication costs. Figures 10 and 11
show the early client termination strategy learned by FedDdrl. Blue dots indicate that the
client was chosen for complete training, while red dots indicate early client termination.

Figure 8. Normalized training latency of each FL algorithm.

Sensors 2023, 23, 2494 19 of 26

5.1.3. Communication Efficiency

Figure 9 shows the normalized communication costs of all FL algorithms in the three
datasets. FedDdrl and FedMarl were significantly more efficient than FedAvg and FedProx
in total communication costs. There was no clear winner between FedDdrl and FedMarl
regarding communication efficiency. However, FedDdrl outperformed FedMarl in CIFAR-
10 and CrisisIBD datasets, which are significantly harder tasks compared to MNIST. Thus,
we argue that FedDdrl is the best algorithm. On the other hand, FedAvg and FedProx
have a fixed number of clients selected in each round. Since we assume Bt

n = 1∀n, t, both
algorithms have the same total communication costs.

Sensors 2023, 23, x FOR PEER REVIEW 19 of 27

Figure 8. Normalized training latency of each FL algorithm.

5.1.3. Communication Efficiency
Figure 9 shows the normalized communication costs of all FL algorithms in the three

datasets. FedDdrl and FedMarl were significantly more efficient than FedAvg and
FedProx in total communication costs. There was no clear winner between FedDdrl and
FedMarl regarding communication efficiency. However, FedDdrl outperformed FedMarl
in CIFAR-10 and CrisisIBD datasets, which are significantly harder tasks compared to
MNIST. Thus, we argue that FedDdrl is the best algorithm. On the other hand, FedAvg
and FedProx have a fixed number of clients selected in each round. Since we assume 𝐵௧ =1∀𝑛, 𝑡, both algorithms have the same total communication costs.

Figure 9. Normalized communication cost of each FL algorithm.

5.2. Strategy Learned by FedDdrl
In this section, we analyze the strategies learned by the FedDdrl algorithm to fully

utilized its computing resources while reducing communication costs. Figures 10 and 11
show the early client termination strategy learned by FedDdrl. Blue dots indicate that the
client was chosen for complete training, while red dots indicate early client termination.

Figure 9. Normalized communication cost of each FL algorithm.

5.2. Strategy Learned by FedDdrl

In this section, we analyze the strategies learned by the FedDdrl algorithm to fully
utilized its computing resources while reducing communication costs. Figures 10 and 11
show the early client termination strategy learned by FedDdrl. Blue dots indicate that the
client was chosen for complete training, while red dots indicate early client termination.

First, FedDdrl generally picked lesser clients for complete training in the early phase
of FL training. From Figures 10 and 11, it is noticed that only three clients were selected for
complete training in the first two communication rounds t = {1, 2}. This is because DNNs
usually learn the low-complexity features before learning the higher-complexity features.
The former is more robust to noises [43] and can be learned with fewer data [14]. This
allows FedDdrl to reduce communication costs by terminating most clients from training
in the early phase, where the MobileNetV2 is still learning low-level features. Starting from
round t = 3 to t = 6, the number of clients that underwent complete training increased
from 6 to 10. This indicates that MobileNetV2 was beginning to learn higher-level features
that require more training data. For the remaining rounds, the number of selected clients
was roughly five. Second, FedDdrl preferred clients with a lower probing loss for complete
training, which is aligned with the findings in FedMarl [14]. Third, FedDdrl tended to pick
clients with shorter probing latency for complete training to reduce the total latency of
FL training.

As mentioned earlier, conventional FL training sets the same local epoch En
t for all

clients, disregarding their computing resources. Hence, one of the contributions of FedDdrl
is to learn the optimal strategy to adjust the local epoch count for each client dynamically.
In Figure 12, we plotted the local epoch count corresponding to each selected client from
the scenario in Figure 11. Bigger dots indicate that a higher local epoch count was assigned
for the corresponding clients. It was found that FedDdrl tended to set a lower epoch count

Sensors 2023, 23, 2494 20 of 26

(smaller dots) for clients with higher probing latency. This method could reduce the total
training latency since clients with limited computing power did not have to participate
in long training epochs. On the other hand, clients with lower probing latency tended
to have a higher epoch count. This strategy can fully utilize the computing resource of
clients with stronger computing power since they can continue training while waiting for
other clients to finish. However, this was not always the case, as shown in Figure 13. On
certain occasions, FedDdrl set a high epoch count for clients with long probing latency if
the data in these clients were crucial for FL convergence. In any case, FedDdrl was superior
to FedMarl, where the FedMarl could either select or terminate a client without the third
option of selecting the clients and dynamically tuning the local epoch.

Sensors 2023, 23, x FOR PEER REVIEW 20 of 27

Figure 10. Decisions made by FedDdrl based on probing loss.

Figure 11. Decisions made by FedDdrl based on probing latency.

First, FedDdrl generally picked lesser clients for complete training in the early phase
of FL training. From Figures 10 and 11, it is noticed that only three clients were selected
for complete training in the first two communication rounds 𝑡 = {1,2}. This is because
DNNs usually learn the low-complexity features before learning the higher-complexity
features. The former is more robust to noises [43] and can be learned with fewer data [14].
This allows FedDdrl to reduce communication costs by terminating most clients from
training in the early phase, where the MobileNetV2 is still learning low-level features.

Figure 10. Decisions made by Fiddly based on probing loss.

Sensors 2023, 23, x FOR PEER REVIEW 20 of 27

Figure 10. Decisions made by FedDdrl based on probing loss.

Figure 11. Decisions made by FedDdrl based on probing latency.

First, FedDdrl generally picked lesser clients for complete training in the early phase
of FL training. From Figures 10 and 11, it is noticed that only three clients were selected
for complete training in the first two communication rounds 𝑡 = {1,2}. This is because
DNNs usually learn the low-complexity features before learning the higher-complexity
features. The former is more robust to noises [43] and can be learned with fewer data [14].
This allows FedDdrl to reduce communication costs by terminating most clients from
training in the early phase, where the MobileNetV2 is still learning low-level features.

Figure 11. Decisions made by FedDdrl based on probing latency.

Sensors 2023, 23, 2494 21 of 26

Sensors 2023, 23, x FOR PEER REVIEW 21 of 27

Starting from round 𝑡 = 3 to 𝑡 = 6, the number of clients that underwent complete train-
ing increased from 6 to 10. This indicates that MobileNetV2 was beginning to learn higher-
level features that require more training data. For the remaining rounds, the number of
selected clients was roughly five. Second, FedDdrl preferred clients with a lower probing
loss for complete training, which is aligned with the findings in FedMarl [14]. Third,
FedDdrl tended to pick clients with shorter probing latency for complete training to re-
duce the total latency of FL training.

As mentioned earlier, conventional FL training sets the same local epoch 𝐸௧ for all
clients, disregarding their computing resources. Hence, one of the contributions of
FedDdrl is to learn the optimal strategy to adjust the local epoch count for each client
dynamically. In Figure 12, we plotted the local epoch count corresponding to each selected
client from the scenario in Figure 11. Bigger dots indicate that a higher local epoch count
was assigned for the corresponding clients. It was found that FedDdrl tended to set a
lower epoch count (smaller dots) for clients with higher probing latency. This method
could reduce the total training latency since clients with limited computing power did not
have to participate in long training epochs. On the other hand, clients with lower probing
latency tended to have a higher epoch count. This strategy can fully utilize the computing
resource of clients with stronger computing power since they can continue training while
waiting for other clients to finish. However, this was not always the case, as shown in
Figure 13. On certain occasions, FedDdrl set a high epoch count for clients with long prob-
ing latency if the data in these clients were crucial for FL convergence. In any case,
FedDdrl was superior to FedMarl, where the FedMarl could either select or terminate a
client without the third option of selecting the clients and dynamically tuning the local
epoch.

Figure 12. Local epoch count for each selected client in Figure 10. Clients with high probing latency
were assigned smaller epoch counts so that the clients could finish local training earlier.

Figure 12. Local epoch count for each selected client in Figure 10. Clients with high probing latency
were assigned smaller epoch counts so that the clients could finish local training earlier.

Sensors 2023, 23, x FOR PEER REVIEW 22 of 27

Figure 13. Another example of local epoch adjustment strategy learned by FedDdrl. Selected clients
with high probing latency were occasionally assigned large epoch counts to assist the FL conver-
gence.

5.3. How FedDdrl Optimizes the Three Objectives Simultaneously
The objectives of FedDdrl are to (i) maximize the global model’s accuracy while min-

imizing the (ii) FL system’s training latency and (iii) communication cost. First, VDN 1
will perform early client termination to terminate clients who are not essential for training.
By doing so, we can reduce the total communication cost. Additionally, VDN 1 prefers
clients with lower probing latency (which also translates to lower training latency). Thus,
VDN 1 plays a huge role in reducing both communication costs and training latency. Sec-
ond, VDN 2 will dynamically adjust the local epoch count. Clients with limited computing
power only have to train with a lesser epoch, so they can finish training earlier. Mean-
while, VDN 2 assigns a higher epoch count to clients with stronger computing power, so
they can continue training while waiting for the slower clients. Hence, VDN 2 reduces the
training latency and fully utilizes clients with stronger computing power.

Lastly, the global model’s accuracy must be retained. When VDN 1 performs client
termination, it is essentially reducing C. Intuitively, reducing C seems counter-produc-
tive since it reduces the total number of clients participating in training for each commu-
nication round t. Fewer clients translate to fewer training data. However, [44] showed
that in a non-IID setup, the convergence rate of FedAvg had a weak dependence on C.
This makes sense, as some clients may have local datasets with a huge EMD distance from
the global distribution. Training the FL model using these clients may hinder the conver-
gence rate. Additionally, [14] showed that using DRL in client selection (or early client
termination) can positively affect the convergence rate. This is because selecting useful
clients (with useful data) can improve the quality of the overall FL data, which is more
crucial than increasing the quantity of data.

In short, FedDdrl can reduce communication cost and training latency without sac-
rificing model accuracy via early client termination due to the weak correlation between
convergence rate and C.

Figure 13. Another example of local epoch adjustment strategy learned by FedDdrl. Selected clients
with high probing latency were occasionally assigned large epoch counts to assist the FL convergence.

5.3. How FedDdrl Optimizes the Three Objectives Simultaneously

The objectives of FedDdrl are to (i) maximize the global model’s accuracy while
minimizing the (ii) FL system’s training latency and (iii) communication cost. First, VDN 1
will perform early client termination to terminate clients who are not essential for training.
By doing so, we can reduce the total communication cost. Additionally, VDN 1 prefers
clients with lower probing latency (which also translates to lower training latency). Thus,
VDN 1 plays a huge role in reducing both communication costs and training latency. Second,

Sensors 2023, 23, 2494 22 of 26

VDN 2 will dynamically adjust the local epoch count. Clients with limited computing
power only have to train with a lesser epoch, so they can finish training earlier. Meanwhile,
VDN 2 assigns a higher epoch count to clients with stronger computing power, so they can
continue training while waiting for the slower clients. Hence, VDN 2 reduces the training
latency and fully utilizes clients with stronger computing power.

Lastly, the global model’s accuracy must be retained. When VDN 1 performs client
termination, it is essentially reducing C. Intuitively, reducing C seems counter-productive
since it reduces the total number of clients participating in training for each communication
round t. Fewer clients translate to fewer training data. However, [44] showed that in a
non-IID setup, the convergence rate of FedAvg had a weak dependence on C. This makes
sense, as some clients may have local datasets with a huge EMD distance from the global
distribution. Training the FL model using these clients may hinder the convergence rate.
Additionally, [14] showed that using DRL in client selection (or early client termination)
can positively affect the convergence rate. This is because selecting useful clients (with
useful data) can improve the quality of the overall FL data, which is more crucial than
increasing the quantity of data.

In short, FedDdrl can reduce communication cost and training latency without sac-
rificing model accuracy via early client termination due to the weak correlation between
convergence rate and C.

5.4. Computational Complexity Analysis

FedDdrl is composed of a finite number of MLPs. In MLP, let L, n0 and ni denote
the layer numbers, the size of the input layer (which corresponds to the client state’s
size) and the number of neurons in i-th layer, respectively. During training mode, the
computational complexity for an MLP to update its weight in each step can be expressed
as O(Nb(n0n1 + ∑L−1

i=1 nini+1)) [45]. In total, it takes Nep × T steps for the FedDdrl al-
gorithm to finish training. Hence, the total training computational complexity of Fed-
Ddrl is O(NepTNb(n0n1 + ∑L−1

i=1 nini+1)). The high computation complexity of the MLP
can be performed offline using a powerful device (i.e., the FL server). In the online de-
ployment mode, the computational complexity in each step is dramatically reduced to
O(n0n1 + ∑L−1

i=1 nini+1). This is done by cutting off the training procedure, which requires
feedforward and backpropagation of Nb data points. Thus, the computational complexity
is retained at a favorable level.

5.5. Why Balanced-MixUp Helps in Federated Learning

Without loss of generality, we explored how balanced-MixUp mitigates weight diver-
gence in FL assuming the amount of training data for each class is uniform in the global
population. Under this setting, we can express the global distribution p(y = i) for all labels
i = {1, 2, 3, . . . , nc} as shown in Equation (21):

p(y = i) =
1
nc

(21)

In this study, a fraction σ of the local training dataset is sampled from one random label,
while the remaining 1− σ fraction is sampled uniformly from the remaining labels. Fol-
lowing this assumption, let i = 1 be the majority class in each client and i = {2, 3, . . . , nc}
be the minority classes (whichever i can be the majority class since the ordering does not
affect the approximation of client distribution). Without balanced-MixUp, we can express
the client dataset distribution pk(y = i) as Equation (22):

pk(y = i) =
{

σ, i = 1
1−σ
nc−1 , i = {2, 3, . . . , nc }

(22)

Sensors 2023, 23, 2494 23 of 26

Based on Equations (21) and (22), the EMD between local and global distribution for
FedAvg without balanced-MixUp, denoted as EMDori, can be written as Equation (23):

EMDori
= ∑nc

i=1 ‖ pk(y = i)− p(y = i) ‖
=‖ σ− 1

nc
‖ +(nc − 1) ‖ 1−σ

nc−1 −
1
nc
‖

(23)

On the other hand, the client dataset distribution with balanced-MixUp pk
MixUp(y = i)

can be expressed as shown in Equation (24):

pk
MixUp(y = i) =

{
E(λ), i = 1

1−E(λ)
nc−1 , i = {2, 3, . . . , nc }

(24)

where E(λ) is the expected value of λ ~ Beta(α, β). E(λ) can be written as Equation (25):

E(λ) = α

α + β
(25)

Based on Equations (21) and (24), the EMD between FedAvg with balanced-MixUp
denoted as EMDMixUp can be written as Equation (26):

EMDMixUp
=‖ ∑nc

i=1 pk
MixUp(y = i)− p(y = i) ‖

=‖ E(λ)− 1
nc
‖ +(nc − 1) ‖ 1−E(λ)

nc−1 −
1
nc
‖

(26)

Take our experiments using CIFAR-10 as example, where σ = 0.8, nc = 10, λ ~ Beta(0.4,
0.4) and E(λ) = 0.5. Based on Equations (23) and (26), the EMDori and EMDMixUp can
be computed as 0.777 and 0.444, respectively. This shows that balanced-MixUp could
significantly reduce the weight divergence caused by the EMD between pk and p.

The above proposition is aligned with our experiments. Table 5 shows the performance
of FedAvg with and without balanced-MixUp in different C. Balanced-MixUp provided
a drastic accuracy boost to FedAvg in all datasets. The accuracy improvement was as
high as 17.0% for the CrisisIBD dataset when C = 10. This shows that balanced-MixUp
can effectively mitigate the weight divergence caused by the EMD, especially when a
low number of clients participate in a communication round t. Note that for the MNIST
dataset (C = 10), the accuracy of FedAvg with balanced-MixUp was slightly poorer
than its counterpart, lagging behind by merely 1.4%. This is reasonable, as MNIST is
considered a simple task [32] in which FedAvg could perform similarly in certain non-IID
settings. Another notable observation is that FedAvg with balanced-MixUp significantly
outperformed its counterpart in both the challenging CIFAR-10 and CrisisIBD datasets.
The observation is consistent in both C = 5 and C = 10 experiments. This is encouraging
because it proves that balanced-MixUp is useful in mitigating non-IID label shifts, especially
for algorithms like FedMarl and FedDdrl which do not have a fixed value of C.

Table 5. Performance of FedAvg with and without Balanced-MixUp.

Method MNIST
(K=100)

CIFAR-10
(K=100)

CrisisIBD
(K=98)

C = 5

FedAvg 78.9% ± 9.3% 62.7% ± 2.9% 42.0% ± 3.4%

FedAvg with
Balanced-MixUp 88.1% ± 3.6% 69.4% ± 2.4% 52.9% ± 4.2%

C = 10

FedAvg 94.6% ± 2.1% 72.8% ± 3.9% 43.2% ± 5.5%

FedAvg with
Balanced-MixUp 93.2% ± 2.0% 76.5% ± 1.7% 60.2% ± 1.5%

Sensors 2023, 23, 2494 24 of 26

6. Conclusions

In this paper, we proposed a DDRL-based FL framework (FedDdrl) for adaptive
early client termination and local epoch adjustment. FedDdrl can terminate clients with
high probing latency to reduce total training latency and communication costs, and it can
automatically adjust the local epoch to fully utilize clients’ computing resources. We also
showed that balanced-MixUp is a useful augmentation technique to mitigate the impact of
weight divergence arising from non-IID label shifts in FL. The simulation results on MNIST,
CIFAR-10 and CrisisIBD confirmed that FedDdrl outperformed the comparison schemes
in terms of the model’s accuracy, training latency and communication costs of FL under
extreme non-IID settings. As a future work, we would explore the performance of FedDdrl
on other types of non-IID settings, such as feature distribution skew and quantity skew.

Author Contributions: Conceptualization, Y.J.W. and M.-L.T.; methodology, Y.J.W.; software, Y.J.W.;
validation, Y.J.W., M.-L.T., B.-H.K. and Y.O.; formal analysis, Y.J.W. and M.-L.T.; resources, M.-
L.T.; writing—original draft preparation, Y.J.W.; writing—review and editing, M.-L.T., B.-H.K. and
Y.O.; visualization, Y.J.W. and M.-L.T.; supervision, M.-L.T. and B.-H.K.; project administration,
M.-L.T.; funding acquisition, M.-L.T. All authors have read and agreed to the published version of
the manuscript.

Funding: National Institute of Information and Communications Technology (NICT): ICT Virtual
Organization of ASEAN Institutes and NICT (ASEAN IVO).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The ASEAN IVO (http://www.nict.go.jp/en/asean_ivo/index.html) (accessed
on 22 December 2022) project, Context-Aware Disaster Mitigation using Mobile Edge Computing and
Wireless Mesh Network, was involved in the production of the contents of this work and financially
supported by NICT (http://www.nict.go.jp/en/ index.html) (accessed on 22 December 2022). Also,
we gratefully appreciate the anonymous reviewers’ valuable reviews and comments.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Al-Maslamani, N.; Abdallah, M.; Ciftler, B.S. Secure Federated Learning for IoT Using DRL-Based Trust Mechanism. In

Proceedings of the 2022 International Wireless Communications and Mobile Computing, IWCMC 2022, Dubrovnik, Croatia,
30 May–3 June 2022; pp. 1101–1106. [CrossRef]

2. Reinsel, D.; Gantz, J.; Rydning, J. The Digitization of the World from Edge to Core. Fram. Int. Data Corp. 2018, 16, 16–44.
3. Sheller, M.J.; Edwards, B.; Reina, G.A.; Martin, J.; Pati, S.; Kotrotsou, A.; Milchenko, M.; Xu, W.; Marcus, D.; Colen, R.R.; et al. Federated

Learning in Medicine: Facilitating Multi-Institutional Collaborations without Sharing Patient Data. Sci. Rep. 2020, 10, 12598. [CrossRef]
[PubMed]

4. McMahan, B.H.; Moore, E.; Ramage, D.; Hampson, S.; Agüera y Arcas, B. Communication-Efficient Learning of Deep Networks
from Decentralized Data. In Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, AISTATS
2017, Fort Lauderdale, FL, USA, 20–22 April 2017. [CrossRef]

5. Hard, A.; Rao, K.; Mathews, R.; Ramaswamy, S.; Beaufays, F.; Augenstein, S.; Eichner, H.; Kiddon, C.; Ramage, D. Federated
Learning for Mobile Keyboard Prediction. arXiv 2018, arXiv:1811.03604. [CrossRef]

6. Ahmed, L.; Ahmad, K.; Said, N.; Qolomany, B.; Qadir, J.; Al-Fuqaha, A. Active Learning Based Federated Learning for Waste and
Natural Disaster Image Classification. IEEE Access 2020, 8, 208518–208531. [CrossRef]

7. Wong, Y.J.; Tham, M.-L.; Kwan, B.-H.; Gnanamuthu, E.M.A.; Owada, Y. An Optimized Multi-Task Learning Model for Disaster
Classification and Victim Detection in Federated Learning Environments. IEEE Access 2022, 10, 115930–115944. [CrossRef]

8. Reina, G.A.; Gruzdev, A.; Foley, P.; Perepelkina, O.; Sharma, M.; Davidyuk, I.; Trushkin, I.; Radionov, M.; Mokrov, A.; Agapov,
D.; et al. OpenFL: An Open-Source Framework for Federated Learning. arXiv 2021, arXiv:2105.06413. [CrossRef]

9. Chen, X.; Li, Z.; Ni, W.; Wang, X.; Zhang, S.; Xu, S.; Pei, Q. Two-Phase Deep Reinforcement Learning of Dynamic Resource
Allocation and Client Selection for Hierarchical Federated Learning. In Proceedings of the 2022 IEEE/CIC International
Conference on Communications in China, ICCC 2022, Foshan, China, 11–13 August 2022; pp. 518–523. [CrossRef]

10. Yang, W.; Xiang, W.; Yang, Y.; Cheng, P. Optimizing Federated Learning with Deep Reinforcement Learning for Digital Twin
Empowered Industrial IoT. IEEE Trans. Industr. Inform. 2022, 19, 1884–1893. [CrossRef]

http://www.nict.go.jp/en/asean_ivo/index.html
http://www.nict.go.jp/en/
http://doi.org/10.1109/IWCMC55113.2022.9824672
http://doi.org/10.1038/s41598-020-69250-1
http://www.ncbi.nlm.nih.gov/pubmed/32724046
http://doi.org/10.48550/arxiv.1602.05629
http://doi.org/10.48550/arxiv.1811.03604
http://doi.org/10.1109/ACCESS.2020.3038676
http://doi.org/10.1109/ACCESS.2022.3218655
http://doi.org/10.48550/arXiv.2105.06413
http://doi.org/10.1109/ICCC55456.2022.9880724
http://doi.org/10.1109/TII.2022.3183465

Sensors 2023, 23, 2494 25 of 26

11. Zhang, W.; Yang, D.; Wu, W.; Peng, H.; Zhang, N.; Zhang, H.; Shen, X. Optimizing Federated Learning in Distributed Industrial
IoT: A Multi-Agent Approach. IEEE J. Sel. Areas Commun. 2021, 39, 3688–3703. [CrossRef]

12. Liu, L.; Zhang, J.; Song, S.H.; Letaief, K.B. Client-Edge-Cloud Hierarchical Federated Learning. In Proceedings of the IEEE
International Conference on Communications 2020, Dublin, Ireland, 7–11 June 2020. [CrossRef]

13. Song, Q.; Lei, S.; Sun, W.; Zhang, Y. Adaptive Federated Learning for Digital Twin Driven Industrial Internet of Things;
Adaptive Federated Learning for Digital Twin Driven Industrial Internet of Things. In Proceedings of the 2021 IEEE Wireless
Communications and Networking Conference (WCNC), Nanjing, China, 29 March–1 April 2021. [CrossRef]

14. Zhang, S.Q.; Lin, J.; Zhang, Q. A Multi-Agent Reinforcement Learning Approach for Efficient Client Selection in Federated
Learning. Proc. AAAI Conf. Artif. Intell. 2022, 36, 9091–9099. [CrossRef]

15. Abdulrahman, S.; Tout, H.; Ould-Slimane, H.; Mourad, A.; Talhi, C.; Guizani, M. A Survey on Federated Learning: The Journey
from Centralized to Distributed on-Site Learning and Beyond. IEEE Internet Things J. 2021, 8, 5476–5497. [CrossRef]

16. Zhao, Y.; Li, M.; Lai, L.; Suda, N.; Civin, D.; Chandra, V. Federated Learning with Non-IID Data. arXiv 2018, arXiv:1806.00582.
[CrossRef]

17. Wang, J.; Liu, Q.; Liang, H.; Joshi, G.; Vincent Poor, H. Tackling the Objective Inconsistency Problem in Heterogeneous Federated
Optimization. In Proceedings of the 34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, BC,
Canada, 6–12 December 2020. [CrossRef]

18. Park, J.; Yoon, D.; Yeo, S.; Oh, S. AMBLE: Adjusting Mini-Batch and Local Epoch for Federated Learning with Heterogeneous
Devices. J. Parallel. Distrib. Comput. 2022, 170, 13–23. [CrossRef]

19. Zhang, H.; Xie, Z.; Zarei, R.; Wu, T.; Chen, K. Adaptive Client Selection in Resource Constrained Federated Learning Systems:
A Deep Reinforcement Learning Approach. IEEE Access 2021, 9, 98423–98432. [CrossRef]

20. Zhang, P.; Wang, C.; Jiang, C.; Han, Z. Deep Reinforcement Learning Assisted Federated Learning Algorithm for Data Manage-
ment of IIoT. IEEE Trans. Industr. Inform. 2021, 17, 8475–8484. [CrossRef]

21. Wang, H.; Kaplan, Z.; Niu, D.; Li, B. Optimizing Federated Learning on Non-IID Data with Reinforcement Learning. In
Proceedings of the IEEE INFOCOM 2020-IEEE Conference on Computer Communications, Toronto, ON, Canada, 6–9 July 2020;
pp. 1698–1707. [CrossRef]

22. Galdran, A.; Carneiro, G.; González Ballester, M.A. Balanced-MixUp for Highly Imbalanced Medical Image Classification. In
Medical Image Computing and Computer Assisted Intervention–MICCAI 2021, Proceedings of the 24th International Conference, Strasbourg,
France, 27 September–1 October 2021; Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics); Springer: Cham, Switzerland, 2021; Volume 12905, pp. 323–333. [CrossRef]

23. Li, T.; Sahu, A.K.; Zaheer, M.; Sanjabi, M.; Talwalkar, A.; Smith, V. Federated Optimization in Heterogeneous Networks. arXiv
2018, arXiv:1812.06127. [CrossRef]

24. Nishio, T.; Yonetani, R. Client Selection for Federated Learning with Heterogeneous Resources in Mobile Edge. In Proceedings of
the ICC 2019—2019 IEEE International Conference on Communications (ICC), Shanghai, China, 20–24 May 2019. [CrossRef]

25. Zheng, J.; Li, K.; Tovar, E.; Guizani, M. Federated Learning for Energy-Balanced Client Selection in Mobile Edge Computing. In
Proceedings of the 2021 International Wireless Communications and Mobile Computing, IWCMC 2021, Harbin, China, 28 June–2
July 2021; pp. 1942–1947. [CrossRef]

26. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing Atari with Deep
Reinforcement Learning. arXiv 2013, arXiv:1312.5602. [CrossRef]

27. Vinyals, O.; Babuschkin, I.; Czarnecki, W.M.; Mathieu, M.; Dudzik, A.; Chung, J.; Choi, D.H.; Powell, R.; Ewalds, T.; Georgiev,
P.; et al. Grandmaster Level in StarCraft II Using Multi-Agent Reinforcement Learning. Nature 2019, 575, 350–354. [CrossRef]

28. Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai, M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel, T.; et al.
Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm. arXiv 2017, arXiv:1712.01815.
[CrossRef]

29. Han, M.; Sun, X.; Zheng, S.; Wang, X.; Tan, H. Resource Rationing for Federated Learning with Reinforcement Learning. In
Proceedings of the 2021 Computing, Communications and IoT Applications (ComComAp), Shenzhen, China, 26–28 November
2021; pp. 150–155. [CrossRef]

30. Xiong, Z.; Cheng, Z.; Xu, C.; Lin, X.; Liu, X.; Wang, D.; Luo, X.; Zhang, Y.; Qiao, N.; Zheng, M.; et al. Facing Small and Biased Data
Dilemma in Drug Discovery with Federated Learning. bioRxiv 2020. [CrossRef]

31. Jallepalli, D.; Ravikumar, N.C.; Badarinath, P.V.; Uchil, S.; Suresh, M.A. Federated Learning for Object Detection in Autonomous
Vehicles. In Proceedings of the IEEE 7th International Conference on Big Data Computing Service and Applications, BigDataSer-
vice, Oxford, UK, 23–26 August 2021; pp. 107–114. [CrossRef]

32. Li, Q.; Diao, Y.; Chen, Q.; He, B. Federated Learning on Non-IID Data Silos: An Experimental Study. In Proceedings of the 2022
IEEE 38th International Conference on Data Engineering (ICDE), Virtual, 9–12 May 2021; pp. 965–978. [CrossRef]

33. Sunehag, P.; Lever, G.; Gruslys, A.; Marian Czarnecki, W.; Zambaldi, V.; Jaderberg, M.; Lanctot, M.; Sonnerat, N.; Leibo, J.Z.; Tuyls,
K.; et al. Value-Decomposition Networks for Cooperative Multi-Agent Learning. arXiv 2017, arXiv:1706.05296. [CrossRef]

34. Zhang, H.; Cisse, M.; Dauphin, Y.N.; Lopez-Paz, D. Mixup: Beyond Empirical Risk Minimization. In Proceedings of the 6th
International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, 30 April–3 May 2018. Conference
Track Proceedings 2017. [CrossRef]

http://doi.org/10.1109/JSAC.2021.3118352
http://doi.org/10.1109/ICC40277.2020.9148862
http://doi.org/10.1109/WCNC49053.2021.9417370
http://doi.org/10.1609/aaai.v36i8.20894
http://doi.org/10.1109/JIOT.2020.3030072
http://doi.org/10.1016/j.neucom.2021.07.098
http://doi.org/10.48550/arxiv.2007.07481
http://doi.org/10.1016/j.jpdc.2022.07.009
http://doi.org/10.1109/ACCESS.2021.3095915
http://doi.org/10.1109/TII.2021.3064351
http://doi.org/10.1109/INFOCOM41043.2020.9155494
http://doi.org/10.1007/978-3-030-87240-3_31/COVER
http://doi.org/10.48550/arxiv.1812.06127
http://doi.org/10.1109/ICC.2019.8761315
http://doi.org/10.1109/IWCMC51323.2021.9498853
http://doi.org/10.48550/arxiv.1312.5602
http://doi.org/10.1038/s41586-019-1724-z
http://doi.org/10.48550/arxiv.1712.01815
http://doi.org/10.1109/COMCOMAP53641.2021.9653111
http://doi.org/10.1101/2020.03.19.998898
http://doi.org/10.1109/BIGDATASERVICE52369.2021.00018
http://doi.org/10.48550/arxiv.2102.02079
http://doi.org/10.48550/arxiv.1706.05296
http://doi.org/10.48550/arxiv.1710.09412

Sensors 2023, 23, 2494 26 of 26

35. Thulasidasan, S.; Chennupati, G.; Bilmes, J.A.; Bhattacharya, T.; Michalak, S. On Mixup Training: Improved Calibration and
Predictive Uncertainty for Deep Neural Networks. Adv. Neural. Inf. Process. Syst. 2019, 32.

36. Zhou, Z.; Qi, L.; Shi, Y. Generalizable Medical Image Segmentation via Random Amplitude Mixup and Domain-Specific Image
Restoration. In Proceedings of the 17th European Conference, Computer Vision–ECCV 2022, Tel Aviv, Israel, 23–27 October 2022;
Springer: Cham, Switzerland, 2020; pp. 420–436. [CrossRef]

37. Sun, L.; Xia, C.; Yin, W.; Liang, T.; Yu, P.S.; He, L. Mixup-Transformer: Dynamic Data Augmentation for NLP Tasks. In
Proceedings of the 28th International Conference on Computational Linguistics, Barcelona, Spain, 8–13 December 2020; pp.
3436–3440. [CrossRef]

38. Guo, H.; Mao, Y.; Zhang, R. Augmenting Data with Mixup for Sentence Classification: An Empirical Study. arXiv 2019,
arXiv:1905.08941. [CrossRef]

39. Chou, H.P.; Chang, S.C.; Pan, J.Y.; Wei, W.; Juan, D.C. Remix: Rebalanced Mixup. In Proceedings of the Computer Vision–ECCV
2020 Workshops, Glasgow, UK, 23–28 August 2020; Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics). Volume 12540, pp. 95–110. [CrossRef]

40. Alam, F.; Alam, T.; Ofli, F.; Imran, M. Social Media Images Classification Models for Real-Time Disaster Response. arXiv 2021,
arXiv:2104.04184v1. [CrossRef]

41. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.-C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In
Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June
2018; pp. 4510–4520.

42. Tensorflow Federated Using TFF for Federated Learning Research|TensorFlow Federated. Available online: https://www.
tensorflow.org/federated/tff_for_research (accessed on 25 December 2022).

43. Xu, Z.-Q.J.; Zhang, Y.; Luo, T.; Xiao, Y.; Ma, Z. Frequency Principle: Fourier Analysis Sheds Light on Deep Neural Networks.
Commun. Comput. Phys. 2019, 28, 1746–1767. [CrossRef]

44. Li, X.; Huang, K.; Yang, W.; Wang, S.; Zhang, Z. On the Convergence of FedAvg on Non-IID Data. arXiv 2019, arXiv:1907.02189.
[CrossRef]

45. Yang, H.; Xiong, Z.; Zhao, J.; Niyato, D.; Xiao, L.; Wu, Q. Deep Reinforcement Learning Based Intelligent Reflecting Surface for
Secure Wireless Communications. IEEE Trans. Wirel. Commun. 2020, 20, 375–388. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1007/978-3-031-19803-8_25
http://doi.org/10.18653/V1/2020.COLING-MAIN.305
http://doi.org/10.48550/arxiv.1905.08941
http://doi.org/10.1007/978-3-030-65414-6_9/COVER
http://doi.org/10.48550/arXiv.2104.04184
https://www.tensorflow.org/federated/tff_for_research
https://www.tensorflow.org/federated/tff_for_research
http://doi.org/10.4208/cicp.OA-2020-0085
http://doi.org/10.48550/arxiv.1907.02189
http://doi.org/10.1109/TWC.2020.3024860

Citation: Kabir, H.; Tham, M.-L.;

Chang, Y.C.; Chow, C.-O.; Owada, Y.

Mobility-Aware Resource Allocation

in IoRT Network for Post-Disaster

Communications with Parameterized

Reinforcement Learning. Sensors

2023, 23, 6448. https://doi.org/

10.3390/s23146448

Academic Editors: Jose Manuel

Molina López and Alessandra

Rizzardi

Received: 10 March 2023

Revised: 4 May 2023

Accepted: 15 June 2023

Published: 17 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Mobility-Aware Resource Allocation in IoRT Network for
Post-Disaster Communications with Parameterized
Reinforcement Learning
Homayun Kabir 1, Mau-Luen Tham 1,* , Yoong Choon Chang 1, Chee-Onn Chow 2 and Yasunori Owada 3

1 Department of Electrical and Electronic Engineering, Lee Kong Chian Faculty of Engineering and Science,
Universiti Tunku Abdul Rahman, Sungai Long Campus, Kajang 43000, Malaysia; homayun@1utar.my (H.K.)

2 Department of Electrical Engineering, Faculty of Engineering, Universiti Malaya, Lembah Pantai,
Kuala Lumpur 50603, Malaysia

3 Resilient ICT Research Center, Network Research Institute, National Institute of Information and
Communications Technology (NICT), Tokyo 184-8795, Japan

* Correspondence: thamml@utar.edu.my

Abstract: Natural disasters, including earthquakes, floods, landslides, tsunamis, wildfires, and
hurricanes, have become more common in recent years due to rapid climate change. For Post-Disaster
Management (PDM), authorities deploy various types of user equipment (UE) for the search and
rescue operation, for example, search and rescue robots, drones, medical robots, smartphones, etc., via
the Internet of Robotic Things (IoRT) supported by cellular 4G/LTE/5G and beyond or other wireless
technologies. For uninterrupted communication services, movable and deployable resource units
(MDRUs) have been utilized where the base stations are damaged due to the disaster. In addition,
power optimization of the networks by satisfying the quality of service (QoS) of each UE is a crucial
challenge because of the electricity crisis after the disaster. In order to optimize the energy efficiency,
UE throughput, and serving cell (SC) throughput by considering the stationary as well as movable
UE without knowing the environmental priori knowledge in MDRUs aided two-tier heterogeneous
networks (HetsNets) of IoRT, the optimization problem has been formulated based on emitting power
allocation and user association combinedly in this article. This optimization problem is nonconvex
and NP-hard where parameterized (discrete: user association and continuous: power allocation)
action space is deployed. The new model-free hybrid action space-based algorithm called multi-pass
deep Q network (MP-DQN) is developed to optimize this complex problem. Simulations results
demonstrate that the proposed MP-DQN outperforms the parameterized deep Q network (P-DQN)
approach, which is well known for solving parameterized action space, DQN, as well as traditional
algorithms in terms of reward, average energy efficiency, UE throughput, and SC throughput for
motionless as well as moveable UE.

Keywords: post disaster communication; internet of robotic things (IoRT); movable and deployable
resource units (MDRU); deep reinforcement learning (DRL); parameterized action space; multi-pass
deep Q network (MP-DQN)

1. Introduction

Due to rapid climate change, natural catastrophes, including earthquakes, floods,
landslides, tsunamis, wildfires, and hurricanes, have frequently occurred worldwide,
directly affecting humanity by direct and secondary deaths of human, economic, and
environmental losses [1,2]. Recently, authorities have deployed various types of robots
and drones such as unmanned ground vehicles (UGVs), unmanned aerial vehicles (UAVs),
unmanned underwater vehicles (UUVs), mobile robots, health care robots, etc. that can
be defined as user equipment (UE) for post-disaster management (PDM) because they
can be dispatched to locations which cannot be accessed or too risky to be accessed by

Sensors 2023, 23, 6448. https://doi.org/10.3390/s23146448 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23146448
https://doi.org/10.3390/s23146448
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-4600-9839
https://orcid.org/0000-0001-6044-2650
https://doi.org/10.3390/s23146448
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23146448?type=check_update&version=1

Sensors 2023, 23, 6448 2 of 21

human rescuers after a disaster has occurred and yet work nonstop [3–6]. Furthermore, the
Internet of Things (IoT) and robotic technologies have recently been combined in order
to expand the functional capabilities of these robots, commonly called the Internet of
Robotic Things (IoRT) [7–10]. The communication between IoRT devices can be provided
by 4G/LTE/5G and beyond cellular communication, which can be the heterogeneous
network (HetNet) [11]. Residents in the affected area are unable to express their demands
and circumstances when regular IoRT/IoT networks are substantially compromised due to
the disaster [12,13]. However, victims frequently require essential services, for example,
food, water, medical assistance, and shelter, which must be rapidly arranged within 72 h
after the disaster to save lives and mitigate losses. As a result, the immediate requirement
is for rapid and effective post-disaster network rebuilding [13].

In a post-disaster scenario, Movable and Deployable Resource Units (MDRUs) de-
veloped by Tohoku University (TU), Japan, and Nippon Telegraph and Telephone (NTT)
can be adopted as SBSs to restore the network coverage and capacity due to the rapid
deployment, flexibility, interoperability, and resilience [14]. On the other hand, the UAV-
aided cellular network has been regarded as a crucial solution for PDM; however, UAVs
can support a maximum of one hour due to the power limitation [15]. Due to the electric
power unavailability for a long time in disaster-affected areas, van-type MDRU has around
seven hours of battery life, similar to the battery backup of the small base station (SBS),
was conducted the field test for a comprehensive solution to satisfy the demands of UEs
in disaster areas [16]. In addition, the authors of [17] recommended deploying MDRUs to
provide communication services where few SBSs have been interrupted due to a small dis-
aster; in contrast, others are in working condition to reconstruct the whole cellular network.
Furthermore, MDRU has been deployed to provide communication services and process
the big data for minimizing the latency that is important to find injured people, animals,
and damaged infrastructure in the disaster-affected area [18]. It was also used to build
heterogeneous wireless IoT networks to sense, exchange, and monitor natural disasters
by humanitarian organizations [19]. The authors [20] reconstructed the communication
network deploying MDRU in the disaster area and found the best results in small coverage
and dense area. Furthermore, the intelligent post-disaster network was developed using big
crowd data. The authors deployed MDRUs connected with multiple still-alive base stations
by using the virtual vertex [21]. The author in [22] recommended building a resilient IoT
network by deploying MDRU, which is connected to a backbone network. In summary,
all still-alive SBSs and MDRUs (replacement of damaged SBSs) are generally associated
with MBS through wireless backhaul connection to handle the vast UE data generated for
PDM with the quality of service (QoS). The whole system can be called two-tier HetNet, as
illustrated in Figure 1.

Figure 1. MDRU aided wireless communication after disaster.

Sensors 2023, 23, 6448 3 of 21

The mobility of UEs is one of the critical points to collecting the data in the disaster-
affected area for PDM, which impacts channel conditions, path loss, shadow effect, etc.,
and is a more realistic phenomenon. Our impression is that only a few studies have been
conducted based on the mobility of UEs. In [23], we developed a twin delayed deep deter-
ministic policy gradient (TD3) based power allocation algorithm considering UE mobility in
one tier IoRT network; however, the major limitation of that research is UE association was
not considered. In [24], power allocation optimization is conducted by convex optimization.
However, most of the formulated problems, for example, dynamic PA, maximization of the
coverage area, traffic offloading, traffic load balancing with user association, maximization
of sum rate, etc., are strongly nonconvex as well as nondeterministic polynomial-time
hardness (NP-hard) [25]. In this research, we investigate optimizing the energy efficiency
and throughput of UE as well as serving cell (SC) of the MDRU-aided two-tier HetNet
scenario by ensuring the QoS of mobility-aware UEs where user association and power
allocation for each UE have been considered without knowing the environmental priori
knowledge. Hence, this optimization problem is strongly nonconvex as well as NP-hard.

Deep Reinforcement Learning (DRL) algorithms (one of the most potent AI algorithms)
can handle nonconvex and NP-hard optimization problems [25,26] by leveraging the power
of deep neural networks to learn a policy that maps states to actions. The reinforcement
learning framework provides a way to learn this policy by trial and error through inter-
action with the environment illustrated in Figure 2. By learning from experience, the
agent can gradually improve its performance and find suitable solutions to complex op-
timization problems. Consequently, DRL has been applied in wireless communication,
robots, computer vision, IoT, IoRT, etc. [27]. According to the action space, DRL is clas-
sified as discrete action space algorithms, for example, Deep Q network (DQN), Double
DQN (DDQN), Rainbow DQN, dueling DQN, etc., continuous action space algorithms; for
instance, Deep Deterministic Policy Gradient (DDPG), Twin delayed DDPG (TD3), Dis-
tributed Distributional DDPG (D4PG), Soft Actor-Critic (SAC), etc., that are based on policy
gradient and hybrid action space algorithms, such as Q-PAMDP, PA-DDPG, Parametrized
DQN (P-DQN), Multi-Pass DQN (MP-DQN), etc., that can handle discrete-continuous
combinedly [28].

Sensors 2023, 23, x FOR PEER REVIEW 3 of 21

Figure 1. MDRU aided wireless communication after disaster.

The mobility of UEs is one of the critical points to collecting the data in the disaster-
affected area for PDM, which impacts channel conditions, path loss, shadow effect, etc.,
and is a more realistic phenomenon. Our impression is that only a few studies have been
conducted based on the mobility of UEs. In [23], we developed a twin delayed deep
deterministic policy gradient (TD3) based power allocation algorithm considering UE
mobility in one tier IoRT network; however, the major limitation of that research is UE
association was not considered. In [24], power allocation optimization is conducted by
convex optimization. However, most of the formulated problems, for example, dynamic
PA, maximization of the coverage area, traffic offloading, traffic load balancing with user
association, maximization of sum rate, etc., are strongly nonconvex as well as
nondeterministic polynomial-time hardness (NP-hard) [25]. In this research, we
investigate optimizing the energy efficiency and throughput of UE as well as serving cell
(SC) of the MDRU-aided two-tier HetNet scenario by ensuring the QoS of mobility-aware
UEs where user association and power allocation for each UE have been considered
without knowing the environmental priori knowledge. Hence, this optimization problem
is strongly nonconvex as well as NP-hard.

Deep Reinforcement Learning (DRL) algorithms (one of the most potent AI
algorithms) can handle nonconvex and NP-hard optimization problems [25,26] by
leveraging the power of deep neural networks to learn a policy that maps states to actions.
The reinforcement learning framework provides a way to learn this policy by trial and
error through interaction with the environment illustrated in Figure 2. By learning from
experience, the agent can gradually improve its performance and find suitable solutions
to complex optimization problems. Consequently, DRL has been applied in wireless
communication, robots, computer vision, IoT, IoRT, etc. [27]. According to the action
space, DRL is classified as discrete action space algorithms, for example, Deep Q network
(DQN), Double DQN (DDQN), Rainbow DQN, dueling DQN, etc., continuous action
space algorithms; for instance, Deep Deterministic Policy Gradient (DDPG), Twin delayed
DDPG (TD3), Distributed Distributional DDPG (D4PG), Soft Actor-Critic (SAC), etc.,
that are based on policy gradient and hybrid action space algorithms, such as Q-PAMDP,
PA-DDPG, Parametrized DQN (P-DQN), Multi-Pass DQN (MP-DQN), etc., that can
handle discrete-continuous combinedly [28].

Figure 2. Architecture of deep reinforcement learning (DRL).

In [29], authors investigated a combined strategy for power allocation, which is
considered continuous action and user association that is discrete action to improve
downlink energy efficiency while ensuring QoS of stationary UEs under standard
backhaul connection in HetNet by implementing the hybrid action space-based DRL
called P-DQN. Furthermore, the architecture of P-DQN is similar to DDPG. However,
discrete action is produced from the Q network, while continuous action is generated from
the actor network. In P-DQN, the joint action parameter vector for all whole actions at a
one-time step is taken as the input of the Q network. As a result, the gradients concerning

Figure 2. Architecture of deep reinforcement learning (DRL).

In [29], authors investigated a combined strategy for power allocation, which is con-
sidered continuous action and user association that is discrete action to improve downlink
energy efficiency while ensuring QoS of stationary UEs under standard backhaul con-
nection in HetNet by implementing the hybrid action space-based DRL called P-DQN.
Furthermore, the architecture of P-DQN is similar to DDPG. However, discrete action
is produced from the Q network, while continuous action is generated from the actor
network. In P-DQN, the joint action parameter vector for all whole actions at a one-time
step is taken as the input of the Q network. As a result, the gradients concerning all action
parameters are calculated, which generates false gradients. In [30], the authors developed
MP-DQN (similar architecture as P-DQN) and tested it in well-known Robot Soccer Goal
and Half Field Offense games. They forwarded the continuous action parameter with

Sensors 2023, 23, 6448 4 of 21

a standard basis vector to the Q-network. Consequently, it mitigated the effects of false
gradients of P-DQN, converged the complex optimization problem, and outperformed
P-DQN regarding data efficiency and converged policy performance [28,30]. After that,
researchers are applying MP-DQN to solve hybrid action space-based optimization prob-
lems in various fields from robotics to communications. MP-DQN was implemented in
the Golf simulator to find the best action that consisted of shot selection with height, spin,
and speed [31]. In [32], the authors implemented MP-DQN to build a decision tree method
for the imbalanced binary classification where the continuous attributes represented the
discrete action, and the threshold values were continuous action. For intelligent traffic
signal control development, MP-DQN was deployed in [33], considering selecting traffic
lights (red, amber, and green) with on–off time intervals. In [34], the authors applied the
MP-DQN in an actual robot setup to primitive action (translation, rotation, and insertion)
with the end-effector velocity as well as the contact force limits. In wireless communication,
MP-DQN has been implemented for task scheduling of the Radio Access Network [35]
and joint task offloading and resource allocation in the Non-orthogonal multiple access
(NoMA) system [36].

This paper explores MDRU aided two-tier HetNet scenario considering the UE mobil-
ity for post-disaster communication. It aims to optimize resource allocation by deploying
the parameterized DRL called MP-DQN without knowing the environmental priori knowl-
edge. The main contributions of this article are summarized below:

1. We investigate UE association and power allocation for maximizing the energy ef-
ficiency of downlink in MDRUs-aided two-tier HetNet for post-disaster commu-
nications by considering the backhaul links of MDRUs/SBSs with MSB where UE
association as discrete action space and power allocation as continuous action space
combinedly called parameterized action space of DRL has been considered when UEs
are stationary.

2. Mobility-aware resource allocation (UE association and power allocation) has been
formulated for parameterized DRL to optimize the energy efficiency, the throughput
of SBSs/MDRUs, and the throughput of UEs in MDRUs aided two ties HetNet.

3. Model-free and parameterized action space-based MP-DQN algorithm, which utilizes
several concurrent batch processing to provide action parameters to the Q network,
has been proposed to maximize the energy efficiency, the throughput of SBSs/MDRUs
and throughput of UEs of MDRUs aided HetNet.

Note that the proposed framework improves network robustness, which is one of the
goals of the ASEAN IVO project titled “Context-Aware Disaster Mitigation using Mobile
Edge Computing and Wireless Mesh Network”.

2. Related Work

TU, Japan, and NTT are conducting research continuously to improve the MDRU
performance in terms of connectivity, serviceability, and coordination during PDM. They
deployed the channel allocation algorithm in MDRU and conducted the test successfully
in the Philippines and Nepal [37]. Due to the limited power after the disaster, emitting
power optimization of rapidly deployable resource units by satisfying the demand of
UEs (search and rescue robots, drones, smartphones, etc.) has paid great attention [38].
In [39], authors proposed radio access control based on DRL for selecting the van type
MDRUs/relay and optimizing the power of MDRUs. In [40], authors investigated spectrum
and energy-efficient methods for providing communication services to UE of MDRU-based
networks. The authors [41] analyzed the problem of UAV deployment as MDRU in both
standalone deployment scenarios to support fixed SBSs already in place where SBSs are
damaged due to malfunction or disaster in HetNeT. In addition, they considered that UAVs
were connected with remaining SBS or MBS by wireless backhauls, which was essential to
serve the UEs by fulfilling their demands.

In [24], we implemented DRL, consisting of two value-based networks for energy-
efficient radio resource allocation in IoRT that outperformed the DQN [42], where the UE

Sensors 2023, 23, 6448 5 of 21

demand and status (active or sleep) of BS are considered as state and action is to estimate
the status of each BS. In addition, emitting power of active BS to serve UEs was optimized
by a convex optimizer. In [43], value-based distributed DRL has been proposed to find user
association and resource allocation by ensuring UE QoS. After that, the simulation results
were improved by implementing the D3QN consisting of DDQN and dueling architecture
in [44], where the degree of satisfaction of UEs was state space, and the selection of BS
and transmission channels combinedly were action space. However, emitting power of
BS can be adequately optimized when emitting power is conserved as continuous action
of the DRL algorithm. In [23], continuous action-based DRL algorithms, TD3, have been
applied to estimate the optimal emitting power of BS in the IoRT network by considering
the interfering multiple access channel (IMAC). In [45], the authors developed a novel DRL
based on DDPG to optimize the joint issue user association and power allocation of BS in
HetNet that achieved the load balance and improved the energy efficiency of the network.
In [46], a transfer learning algorithm based on DDPG has been developed to optimize
the power allocation and ensure user association in HetNet. However, user association is
discrete and power allocation is continuous. Hence, to solve the joint optimization problem
combined with user association and power allocation, a hybrid action space-based DRL
algorithm is the most suitable. In [29], the author formulated the problem of combined
user association and power allocation, where user association considers as the discrete
action and power allocation is expressed as the continuous action. In addition, P-DQN
has been implemented to maximize energy efficiency by satisfying the QoS of each UE.
Simulation results of P-DQN outperformed compared to DQN in terms of overall efficiency
by satisfying the QoS of stationary UEs.

For PDM, UEs need to move in the vicinity to collect the appropriate information about
victims that movement directly affects communication channel quality and throughput.
This critical phenomenon has not been taken into account by many academics. The UE
mobility model in non-orthogonal multiple access (NOMA), where each UE moved from
one point to another with varied directions and speeds, was taken into consideration by
the authors [47]. Due to UE mobility, the authors [48] suggested a conventional dynamic
power allocation (DPA) method that took the channel circumstances into account and
asserted that UE mobility significantly influences NOMA’s performance, particularly for
downlink throughput. The authors of [49] created a power control method for a wireless
network where UE mobility causes changes in the communication channel. In [23], two
widespread UE mobility models, (a) modified Gauss–Markov and (b) random walk, have
been investigated to maximize the sum rate in dynamic power allocation problems where
the TD3-based DRL algorithm has been implemented; however, user association was not
considered. In [50], the authors implemented Genetic Algorithm (GA) to allocate the
UEs worked to share the information after the disaster in overlapping areas among the
appropriate MDRUs. The proposed GA algorithm outperformed greedy and random
algorithms as well as the nearest MDRU in terms of latency and QoS. In order to maximize
the expected achievable rate of UE in ultra-dense networks, the authors [51] developed
a matching game algorithm, where mobility-aware user association was considered by
minimizing the handovers number. The authors [52] deployed the DRL algorithm to
estimate the transmit timing, routing as well as power allocation for UEs from MDRU
deployed in disaster areas where UE mobility, channel states, and energy harvesting
were considered.

3. System Model

In this section, we consider two-tier HetNet that consists of one MBS with M active
SBSs and N deployed MDRUs (replacement of damaged SBSs due to disaster) where
M = {1, 2, . . . , M} and N = {1, 2, . . . , N} are the sets of active SBSs and deployed
MDRUs [17,20,50]. The total SCs for PDM is K = M + N where K = {1, 2, . . . , K} is
the set of SCs that serve U UEs considering U = {1, 2, . . . , U} is the set of UEs. In addition,
we assume two different bands that are 6 GHz and millimeter wave bands for MBS to

Sensors 2023, 23, 6448 6 of 21

SBSs/MDRUs (tier 1) and SCs to UEs (tier 2), respectively. As a result, interference between
tiers is not available in this network. For tier 1 downlinks, the antenna array of MBS is
larger than the total number of SCs. Furthermore, orthogonal frequency division multiple
access (OFDMA) is deployed to communicate from SBSs/MDRUs to UEs where the total
subchannels number is Nsub. To collect the data and survey the disaster-affected area,
UEs need to move from one place to another. Hence, the mobility model of UE has to be
considered for PDM. Modified Gauss–Markov is the well-known mobility model of UE,
especially for robots and drones that are considered in our research.

3.1. Modified Gauss-Markov Mobility Model

The Modified Gauss–Markov (MGM) mobility model improves past approaches by
including temporal dependence. Here, the speed and direction of a UE are updated in
line with the recorded values of earlier time periods. The degree of randomness used in
calculating these two figures can also be changed based on the features of the simulated
wireless network. The MGM mobility paradigm is not stateless since the memory of past
actions are retained. Nonetheless, the UE mobility continues to be distinct from that of
other mobile terminals linked to the same network [47,53]. According to Figure 3, UE
mobility makes possible uth UE to move randomly with average velocity that is indicated
as ∆αu(t− 1, t) and vu(t− 1, t), uth UE are xu(t) yu(t)t are presented below:

xu(t) = xu(t− 1) + vu(t− 1, t)∗ cos(αu(t− 1, t)) ∗∆t, (1)

yu(t) = yu(t− 1) + vu(t− 1, t)∗sing(αu(t− 1, t)) ∗∆t, (2)

αu(t) = αu(t− 1) + ∆αu(t− 1, t), (3)

where xu(t− 1), yu(t− 1), and αu(t− 1, t) are the x-axis, y-axis, and direction of uth UE at
t− 1 time slot. The distance traveled by uth within ∆t can be illustrated by

du(t− 1, t) =
√
(xu(t− 1)− xu(t))

2 + (yu(t− 1)− yu(t))
2. (4)

The distance between kth SC and uth UE at t time slot is presented as

dk,u(t) =
√
(xk − xu(t))

2 + (yk − yu(t))
2, (5)

where xk and yk are the coordinates of kth SC.

Sensors 2023, 23, x FOR PEER REVIEW 6 of 21

ℳ = {1, 2, … , 𝑀} and 𝒩 = {1, 2, … , 𝑁} are the sets of active SBSs and deployed MDRUs
[17,20,50]. The total SCs for PDM is 𝐾 = 𝑀 + 𝑁 where 𝒦 = {1,2, … . . , 𝐾} is the set of SCs
that serve 𝑈 UEs considering 𝒰 = {1, 2, … , 𝑈} is the set of UEs. In addition, we assume
two different bands that are 6 GHz and millimeter wave bands for MBS to SBSs/MDRUs
(tier 1) and SCs to UEs (tier 2), respectively. As a result, interference between tiers is not
available in this network. For tier 1 downlinks, the antenna array of MBS is larger than the
total number of SCs. Furthermore, orthogonal frequency division multiple access
(OFDMA) is deployed to communicate from SBSs/MDRUs to UEs where the total
subchannels number is 𝑁௦௨. To collect the data and survey the disaster-affected area, UEs
need to move from one place to another. Hence, the mobility model of UE has to be
considered for PDM. Modified Gauss–Markov is the well-known mobility model of UE,
especially for robots and drones that are considered in our research.

3.1. Modified Gauss-Markov Mobility Model
The Modified Gauss–Markov (MGM) mobility model improves past approaches by

including temporal dependence. Here, the speed and direction of a UE are updated in line
with the recorded values of earlier time periods. The degree of randomness used in
calculating these two figures can also be changed based on the features of the simulated
wireless network. The MGM mobility paradigm is not stateless since the memory of past
actions are retained. Nonetheless, the UE mobility continues to be distinct from that of
other mobile terminals linked to the same network [47,53]. According to Figure 3, UE
mobility makes possible 𝑢௧ UE to move randomly with average velocity that is indicated
as Δ𝛼௨(𝑡 − 1, 𝑡) and 𝑣௨(𝑡 − 1, 𝑡), 𝑢௧ UE are 𝑥௨(𝑡) 𝑦௨(𝑡)𝑡 are presented below: 𝑥௨(𝑡) = 𝑥௨(𝑡 − 1) + 𝑣௨(𝑡 − 1, 𝑡) ∗ cos(𝛼௨(t − 1, t)) ∗ 𝛥𝑡, (1)𝑦௨(𝑡) = 𝑦௨(𝑡 − 1) + 𝑣௨(𝑡 − 1, 𝑡) ∗ sing(𝛼௨(t − 1, t)) ∗ 𝛥𝑡, (2)𝛼௨(𝑡) = 𝛼௨(𝑡 − 1) + Δ𝛼௨(𝑡 − 1, 𝑡), (3)

where 𝑥௨(𝑡 − 1) , 𝑦௨(𝑡 − 1), and 𝛼௨(𝑡 − 1, 𝑡) are the x-axis, y-axis, and direction of 𝑢௧
UE at 𝑡 − 1 time slot. The distance traveled by 𝑢௧ within 𝛥𝑡 can be illustrated by 𝑑௨(𝑡 − 1, 𝑡) = ඥ(𝑥௨(𝑡 − 1) − 𝑥௨(𝑡))ଶ + (𝑦௨(𝑡 − 1) − 𝑦௨(𝑡))ଶ. (4)

The distance between 𝑘௧ SC and 𝑢௧ UE at 𝑡 time slot is presented as 𝑑,௨(𝑡) = ට൫𝑥 − 𝑥௨(𝑡)൯ଶ + ൫𝑦 − 𝑦௨(𝑡)൯ଶ, (5)

where 𝑥and 𝑦 are the coordinates of 𝑘௧ SC.

Figure 3. UE Mobility model for UE with random direction and average velocity.

Figure 3. UE Mobility model for UE with random direction and average velocity.

3.2. Network Model

Even though each SBS/MDRU are using OFDMA to serve UEs that construct a cluster
of UEs, each UE can only be connected to a single SC. Let’s consider kth serving cell serves to
uth UE byFr frequency subchannel. Here, cku(t) = {0, 1} is represented as the status of user
association where cku(t) = 1 denotes the uth UE is associated with kth SC and cku(t) = 0
otherwise. After that, the set of UEs in the cluster k is assumed by Ck(t) = {u : cku(t) = 1,
uεU}. The SBS serves the uth UE can be illustrated by Su(t) = {k : cku(t) = 1, mεM}

Sensors 2023, 23, 6448 7 of 21

where |Su(t)| is one. The set of active SC is at t time slot Kactive(t) = {k||Ck(t)| > 0}. The
channel gain between from kth SC to uth UE can be defined as

gk,u, f (t) =
∣∣∣hk,u, f (t)

∣∣∣2, (6)

where hk,u, f (t) is the channel coefficient when subchannel frequency is f . The signal to
interference plus noise ratio (SINR) from kth serving cell to uth UE can be illustrated as
follows:

SINRu f (t) =
∑K

k=1 ck,u(t)gk,u, f (t)pk,u, f (t)
σ2 + Iu, f (t)

, (7)

where pk,u, f (t) is the allocated power of kth SC for uth UE which must be satisfied the
0 ≤ ∑u∈Ck ∑ f∈FR

pk,u, f (t) ≤ PSCk ,max. PSCk ,max is the maximum emitting power from kth

SC. The observed interference and noise power by uth UE is Iu, f (t) and σ2 respectively. To
ensure no intra-cluster interference in each cluster, we investigate the case in which each SC
allots orthogonal subchannels to various UEs within its serving area. Every UE can receive
a minimum of one subchannel to transmit the data for data transmission when the cluster
size does not exceed the total number of sub-channels. When intra-cluster interference is
absent, just inter-cluster interference makes up the interference term Iu, f which may be
represented as

Iu, f (t) = ∑
w/∈CSu

∑
f∈Fu∩Fw

gk,u, f (t)pk,w, f (t). (8)

The spectral efficiency of the uth UE is illustrated as

ρu(t) = ∑
f∈Fk

log2(1 + SINRu, f (t)). (9)

The user sum-rate for the kth SC is calculated as

ρSC
k (t) = ∑u∈Ck

ρu(t) = ∑U
u=1 ck,u(t)ρu(t). (10)

The summation of data transmission power and the operating power that is defined as the
minimum power requirement to maintain the SC active is defined total consumed power
of our network that can be represented as

Ptotal(t) = |Kactive(t)|.Po,SC + ∑
k∈K

∑
u∈Ck

∑
f∈Fk

pk,u, f (t). (11)

where Po,SC is the operational power of SC. Detailed notation descriptions are summarized
in Table 1.

Table 1. Notation summary.

Notation Definition

M,N ,K and U set of SBSs, MRDUs, SCs and UEs
M, N, K and U Total number of SBSs, MDRUs, SCs, and UEs

Fw Set of subchannels allocated to uth UE
Sk(t) The SC serving the uth UE at time slot t
Bsub Subchannel bandwidth
NT The number of antennas on MBS

Ptotal(t) Total consumed power by active SCs
gk,u, f (t) The channel gain from kth SC to uth UE with f th subchannel at time slot t
hk,u, f (t) The channel coefficient from kth SC to uth UE in f th subchannel at time slot t
PSCk ,max The maximum power available of kth SC
pk,u, f (t) Emitting power from kth SC to uth UE in f th subchannel at time slot t

Sensors 2023, 23, 6448 8 of 21

Table 1. Cont.

Notation Definition

|Kactive(t)| Total quantity of active SCs at time slot t
σ2 Noise power

Iu, f (t) Interference observed by uth UE in subchannel f at time slot t
Ck(t) The set of UEs in cluster k at time slot t
cku(t) Link indicator between kth SC and uth UE at time slot t

SINRu f (t) SINR for uth UE in the f th subchannel at time slot t
υu Capacity threshold for uth UE

DSC
k Maximum downlink data rate for kth SC

We strive for a way that results in optimizing user association and emitting power
allocation to maximize the energy efficiency expressed as the achievable sum rate per
utilized power in our assumed network by considering the QoS guarantee, and wireless
backhaul link capacity constraints without knowing the environmental priori knowledge.
The problem can be formulated as

max
cku(t), pk,u, f (t)∑t=T

t=0
1

Ptotal(t)

U

∑
u=1

ρu(t), (12a)

Subject to C1 : ∑k ck,u(t) = 1, ck,u(t) ∈ {0, 1}, ∀k ∈ K, uεU , (12b)

C2 : 0 ≤∑u∈Ck
∑ f∈FR

pk,u, f (t) ≤ PSCk ,max, ∀k ∈ K, uεU , (12c)

C3 : ρu(t) ≥ vu, ∀uεU , (12d)

C4 : |Ck(t)| ≤ |Ck|max, ∀k ∈ M, (12e)

C5 : ρSC
k (t) ≤ DSC

k , ∀m ∈ M. (12f)

Each UE is presumed to be serviced by a single SC in C1 in (12b), and the transmit
power limit at the kth SC is discussed in C2 in (12c), where PSCk ,max is the maximum
power that is used at the kth SC. C3 in (12d), where υu is the capacity threshold for uth UE
denotes the QoS requirement for each UE. The cluster size limitation in (12e) is C4, and the
maximum number of users in k cluster is |Ck|max. To prevent intra-cluster interference,
this makes sure that UEs in the same cluster are given distinct subchannels. DSC

k is the
highest feasible downlink data rate for kth SC, while C5 in (12f) is the backhaul connection
capacity restriction.

By identifying the best user associations as well as power distribution, which is often
a difficult task with a variety of unknowns and hybrid unknown spaces (discrete clustering
and continuous power) in the network, the technique in (12a) aims to maximize energy
efficiency. Additionally, the optimization issue in (12a) involves a one-shot situation at a
certain time instant that must be reassessed as the network advances until the following
time instant. We are consequently driven to deploy MP-DQN approaches to address
the issues.

4. Deep Reinforcement Learning for Parameterized Action Space

In this section, we illustrate the DRL which can handle the parameterized action
space for identifying optimal user association (discrete action) as well as emitting power
allocation (continuous action) of SC by satisfying the QoS. The parameterized action
space [54] combined with discrete and continuous action space represented as Ad and
Aj respectively is illustrated as A = {(j, zj)|zj∈ Aj for all j ∈ Ad}, where a(t) = (j, zj)

Sensors 2023, 23, 6448 9 of 21

is the hybrid action. A discrete action j has been chosen from the discrete action set
Ad =

{
j1, j2, j3, . . . , jJ

}
= {[cku(t)] : cku(t) = {0, 1}, k ∈ K, uεU}. The continuous action

parameters for that specific discrete action j is zj = pUE(t) =
[
pUE

1 (t), pUE
2 (t), . . . , pUE

u (t)
]
,

where pUE
u (t) =

[
pSu ,u, f (t)

]
f:f∈Fu

for downlink data transmission in all sub channels allo-

cated to uth UE. Furthermore, zj ∈ Z , where Z is the set of continuous actions considering
all possible discrete action. According to [55], parameterized action MDP (PAMDP) is
presented as < S ,P ,A,R, γ >. Here, S represents the state space, the Markov probability
of transition is illustrated as P , the parameterized action space is denoted by A, the reward
is definedR and the discount faction is γ ∈ [0, 1]. At the tth timeslot, the agent observes the
state of environment s(t) ∈ S and chooses suitable parameterized action a(t) ∈ A based
on its policy π. After applying the chosen parameterized action, the immediate reward
r(s(t), a(t)) is received with next state of environment s(t + 1) ∼ P(s(t + 1)|s(t), a(t)).

To solve the non-convex, the NP-hard and joint optimization problem consists of
selecting the user association and allocating the transmitted power of MDRU-aided two-tier
HetNet discussed in Section 3 by parametrized DRL, state, action, reward, and experience
replay are described below:

State: The data rate of each UE at tth timeslot has been generated from SINR that
is calculated considering the user association, emitting power allocation, channel gain,
interference, and noise poser observed by UE in that specific time slot. Hence, the set of
data rate for all UE has been assumed as the state at tth timeslot for DRL agent.

s(t) = [ρ1(t), . . . , ρu(t)]. (13)

Action: In this optimization problem, discreate (identification of UE association) and
continuous (emitting power for each UE from SBS) action spaces at tth timeslot have been
combinedly considered as follows:

a(t) =
[
cUE(t), pUE(t)

]
, (14)

where cUE(t) = [cku(t)], k = 1 : M, u = 1 : U with cku(t) = {0, 1}, k ∈ K, uεU is denoted
for UE association with SC. When cku(t) = 1, it means uth UE is associated with kth SC for
that specific time slot and otherwise cku(t) = 0. After ensuring the UE association, SC is
allocation power to that UE at tth timeslot. The vector of power allocation from SCs at tth

timeslot is defined as pUE(t) =
[
pUE

1 (t), pUE
2 (t), . . . , pUE

u (t)
]
.

Reward: The maximization of the overall energy efficiency according to the Equation (12a)
is the prime goal of this research by satisfying the QoS of every UE and the constraint capacity
of backhaul link of each SBS. Therefore, the reward r(t) at tth time slot is illustrated as:

(a) Reward function one (RFO) [29]:

r(s(t), a(t)) =

{
r′(s(t), a(t)) i f ρSC

k ≤ RSC
k , ∀k ∈ K

r′(s(t), a(t))− rth i f ρSC
k > RSC

k f or some k ∈ K,
(15)

where r′(s(t), a(t)) ∼= λ1Zα1(t) − λ2Zα2(t) with α1(t) =
1

PT
∑U

u=1 ρu(t) that is the energy

efficiency of system and α2(t) = ∑U
u=1 (ρu(t)− νu)

2 which is the penalty term is deployed
for discouraging the agent to take the actions, for example, the capacity of every UE huge
diverges from the threshold of QoS and Zα1(t) and Zα2(t) are the Z-scores of α1(t) and α2(t),
respectively. In addition, rth is the threshold value is deployed to mitigate the likelihood of
violating the backhaul capacity constraint.

(b) Reward function two (RFT):

r(st, at) = λ1Zα1(t) + λ2∑U
u=1 RQoS_UE(t) + λ3∑M

m=1 RQOS_backhaullink(t), (16)

Sensors 2023, 23, 6448 10 of 21

α1(t) = 1
PT

∑U
u=1 ρu(t),

RQOSUE(t) = i f ρu ≥ vu, r = 1 else r = −1,

RQOSbackhaullink (t) = i f ρSC
k ≤ DSC

k , r = 1 else r = −1.

Here, λ1, λ2, λ3 are non-negative weights of the corresponding terms and range from 0
to 1.

Experience replay: It is a DRL strategy that utilizes replay memory to record the
agent’s experiences at each time step in a data set that is pooled over several episodes.
After that, a minibatch of experience is selected randomly from the experience replay
that is utilized for training. This process solves the problem of autocorrelation leading to
unstable training.

Furthermore, three well-known DRL including our proposed method called MP-DQN
which can handle parameterized action space are discussed below.

4.1. Deep Q Netwrok

One of the most well-known DRL algorithms is DQN [56], which is value-based and
utilized for discrete action space only. The goal of traditional DQN is to find optimized the
action by maximizing the action value function Q(s,a) as follows:

Q(s, a)

Sensors 2023, 23, x FOR PEER REVIEW 10 of 21

deployed for discouraging the agent to take the actions, for example, the capacity of
every UE huge diverges from the threshold of QoS and 𝑍ఈభ(௧) and 𝑍ఈమ(௧) are the Z-
scores of 𝛼ଵ(𝑡) and 𝛼ଶ(𝑡), respectively. In addition, r௧ is the threshold value is
deployed to mitigate the likelihood of violating the backhaul capacity constraint.

(b) Reward function two (RFT): r(𝑠௧, 𝑎௧) = 𝜆ଵ𝑍ఈభ(௧) + 𝜆ଶ ∑ 𝑅ொௌ_ா(𝑡)௨ୀଵ + 𝜆ଷ ∑ 𝑅ொைௌ_௨(𝑡)ெୀଵ , (16)𝛼ଵ(𝑡) = ଵ ∑ 𝜌௨(𝑡)௨ୀଵ ,

𝑅ொைௌೆಶ(𝑡) = 𝑖𝑓 𝜌௨ ≥ 𝑣௨ , 𝑟 = 1 𝑒𝑙𝑠𝑒 𝑟 = −1, 𝑅ொைௌ್ೌೖೌೠೖ(𝑡) = 𝑖𝑓 𝜌ௌ ≤ 𝐷ௌ , 𝑟 = 1 𝑒𝑙𝑠𝑒 𝑟 = −1.

Here, 𝜆ଵ, 𝜆ଶ,𝜆ଷ￼ are non-negative weights of the corresponding terms and range from 0
to 1.

Experience replay: It is a DRL strategy that utilizes replay memory to record the
agent’s experiences at each time step in a data set that is pooled over several episodes.
After that, a minibatch of experience is selected randomly from the experience replay that
is utilized for training. This process solves the problem of autocorrelation leading to
unstable training.

Furthermore, three well-known DRL including our proposed method called MP-
DQN which can handle parameterized action space are discussed below.

4.1. Deep Q Netwrok
One of the most well-known DRL algorithms is DQN [56], which is value-based and

utilized for discrete action space only. The goal of traditional DQN is to find optimized
the action by maximizing the action value function 𝑄(௦,) as follows: 𝑄(𝑠, 𝑎) ≙ 𝐸 [∑ 𝛾𝑟(𝑠(𝑡 + 𝑘), 𝑎(𝑡 + 𝑘))| 𝑠(𝑡) = 𝑠, 𝑎(𝑡) = 𝑎ஶୀ]. (17)

The maximization of (17) is equivalent to the Bellman equation and can be described as 𝑦(𝑡) = 𝑟(𝑡) + 𝛾𝑚𝑎𝑥(௧ାଵ)𝑄(𝑠(𝑡 + 1), 𝑎(𝑡 + 1); θି), (18)

where 𝑦(𝑡) represents the optimized value of Q. The loss function is represented as 𝐿 = (𝑦(𝑡) − 𝑄(𝑠(𝑡), 𝑎(𝑡); θ))ଶ, (19)

which mitigates the correlation between current value 𝑄(𝑠(𝑡), 𝑎(𝑡); θ) and target value 𝑦(𝑡). In addition, the traditional DQN can be deployed for continuous action space when
it is converted into a finite set of discrete action spaces by discretizing the process.
Furthermore, DQN can also be utilized for parameterized action space by converting from
continuous to discrete action space that concatenates with existing discrete action space.
When continuous action has conducted the quantization to reverse discrete action, many
action values are generated and those action values may round off. Consequently, the
complexity of the DQN exponentially rises with the size of the action space, resulting in
very massive power consumption and a delay in convergence speed. To overcome those
issues, P-DQN has been deployed to handle the parameterized action space-based
optimization problem [28].

4.2. Paramataized Deep Q Learing
P-DQN [57] is a DRL algorithm that handles hybrid (discrete-continuous) action

spaces combined without relaxation or approximation. The structure of P-DQN is similar
to DDPG, which describes a deterministic function that takes the state as input and
produces continuous parameters of each discrete action. After that, generated continuous

E
[
∑∞

k=0 γkr(s(t + k), a(t + k))|s(t) = s, a(t) = a
]
. (17)

The maximization of (17) is equivalent to the Bellman equation and can be described as

y(t) = r(t) + γmaxa(t+1)Q(s(t + 1), a(t + 1); θ−), (18)

where y(t) represents the optimized value of Q. The loss function is represented as

L = (y(t)−Q(s(t), a(t); θ))2, (19)

which mitigates the correlation between current value Q(s(t), a(t); θ) and target value y(t).
In addition, the traditional DQN can be deployed for continuous action space when it is
converted into a finite set of discrete action spaces by discretizing the process. Furthermore,
DQN can also be utilized for parameterized action space by converting from continuous to
discrete action space that concatenates with existing discrete action space. When continuous
action has conducted the quantization to reverse discrete action, many action values are
generated and those action values may round off. Consequently, the complexity of the
DQN exponentially rises with the size of the action space, resulting in very massive power
consumption and a delay in convergence speed. To overcome those issues, P-DQN has
been deployed to handle the parameterized action space-based optimization problem [28].

4.2. Paramataized Deep Q Learing

P-DQN [57] is a DRL algorithm that handles hybrid (discrete-continuous) action
spaces combined without relaxation or approximation. The structure of P-DQN is similar to
DDPG, which describes a deterministic function that takes the state as input and produces
continuous parameters of each discrete action. After that, generated continuous action
parameters are concatenated with the state, which is utilized as input to the Q network to
generate the Q values. Finally, the optimal function chooses the best discrete action from
generated Q values. Let’s consider one actor parameter network zj(s; θ) with weight θ
and one actor network Q(s, j, zj; w) with weight w. Furthermore, the weights θ has been
estimated by optimizing the expected function of the action-value that are described as
E
[
Q(s, j, zj(j; θ); w)

]
. And the weight w has been determined by optimizing the mean

squared error E
[
(y(t)− [Q(s(t), a(t); w)])2

]
, where a(t) = (j, zj) and the target value is

described as

Sensors 2023, 23, 6448 11 of 21

y(t) = r(t) + γ max
j′∈Ad

Q(s(t + 1), j′, z′j(s(t + 1); θ−);ω−). (20)

In addition, the loss function of the actor parameter and the actor network can be presented
as follows:

Lx(θ) =
1
N ∑N

t=1 Q(s(t), j, zj(s(t); θ);ω), (21)

LQ(ω) =
1
N ∑N

t=1 (y(t)−Q(s(t), j, zj(s(t); θ);ω))
2
. (22)

Furthermore, the weights θ and ω are updated according to

θ← θ− αa,p∇θ Lx(θ), (23)

ω← ω− αa∇ωLx(ω), (24)

where αa,p and αa are the learning rate for the actor parameter and actor network.
Even if P-DQN can converge and the impact is excellent, there is still room for im-

provement in the theory behind discrete and continuous action selection. Updates to any
action’s continuous action parameter will affect all actions’ Q values, not just the Q value
linked to the action parameter [28,30].

4.3. Multi Pass Deep Q Learing

The issue of excessive parameterization of P-DQN is resolved by MP-DQN [30] by
employing multiple concurrent batch processing to provide action parameters to the Q net-
work. Without altering the P-DQN structure, MP-DQN isolates the continuous parameters
and inputs each one into the Q network individually. They executed a forward pass once for
each discreate action j where the state s and action parameter vector zej are concatenated as
input and Ej represents the j dimensional standard basis vector. Hence, the joint parameter
vector is represented as ZEj = (0, . . . , 0, zj, 0, . . . , 0) where each zi, i 6= j is set to zero. As a
consequence, the impact of network weights is negated for unassociated action parameters
zj from the input layer where all false gradients are set to zero. Furthermore, Q is only
depended on associated zj where

Q(s, j,ZEj) u Q(s, j, zj). (25)

To forecast all Q values, c forward passes are necessary as opposed to just one. To
perform the multi pass, the capacity of parallel minibatch processing by PyTorch or Tensor-
flow library can be deployed. A multi-pass with j actions is processed in the same manner
as a minibatch of size j:

Q(s, .,ZE1; θQ
)

.

.

.
Q(s, .,ZEJ ; θQ)

 =

Q11 · · · Q1j
...

. . .
...

Qj1 · · · QJ J

, (26)

where the Q-value for action b produced on the ath pass is Qab. Furthermore, the diagonal
elements Qaa is pivotal and deployed in the final output Qa ← Q aa as shown in Figure 4.
According to [33], MP-DQN makes it easier to choose the best hybrid action by reducing
the impact of a single discrete action on other continuous action parameters.

Sensors 2023, 23, 6448 12 of 21

Sensors 2023, 23, x FOR PEER REVIEW 12 of 21

Figure 4. According to [33], MP-DQN makes it easier to choose the best hybrid action by
reducing the impact of a single discrete action on other continuous action parameters.

Figure 4. Architecture of multi pass deep Q learning (MP-DQN).

5. Performance Evaluations
In this section, we utilize TensorFlow 1.14.0 on Spyder IDE 3.3.6 in an 11th Gen inter-

core i7, 16 GB RAM, and RTX 3060 laptop GPU to demonstrate the simulation scenario. In
addition, a HetNet has been considered which consists of one MBS with 100 antennas and
20 beamforming groups, three SBSs connected with MBS through backhaul transmission
model [58], and five UEs presented in Figure 5a. We consider the non-line-of-sight path-
loss model for urban MBSs and SBSs [59] and slow Rayleigh fading channels ℎ~𝒞𝒩(0,1).
We followed the same system configuration as [29] for ensuring a fair comparison,
tabulated in Table 2. All simulation results have been standardized by using the Z-score.

Table 2. Simulation Parameters.

Parameter Value
Carrier frequency 2 GHz
Subchannel bandwidth 15 kHz
Number of subchannels 3
Number of subchannels per user 1
MBS antenna array size 100
MBS beamforming group size 20
The radius of the entire network 500 m
Number of SBS 2
Number of MDRU 1
Number of UE 5
SINR threshold of UE 1 for each UE
Rayleigh channel coefficient ℎ~𝒞𝒩(0,1)
Path loss model from MBS to SBS 19.77 + 3.91 ൈ 𝑙𝑜𝑔ଵ𝑑 in dB and 𝑑 in km

Path loss model for SBS to UEs 30.53 + 36.71 ൈ 𝑙𝑜𝑔ଵ𝑑,௨,௧ in dB and 𝑑,௨,௧ in
km at time 𝑡

Figure 4. Architecture of multi pass deep Q learning (MP-DQN).

5. Performance Evaluations

In this section, we utilize TensorFlow 1.14.0 on Spyder IDE 3.3.6 in an 11th Gen inter-
core i7, 16 GB RAM, and RTX 3060 laptop GPU to demonstrate the simulation scenario. In
addition, a HetNet has been considered which consists of one MBS with 100 antennas and
20 beamforming groups, three SBSs connected with MBS through backhaul transmission
model [58], and five UEs presented in Figure 5a. We consider the non-line-of-sight path-loss
model for urban MBSs and SBSs [59] and slow Rayleigh fading channels h ∼ CN (0, 1). We
followed the same system configuration as [29] for ensuring a fair comparison, tabulated in
Table 2. All simulation results have been standardized by using the Z-score.

Table 2. Simulation Parameters.

Parameter Value

Carrier frequency 2 GHz
Subchannel bandwidth 15 kHz
Number of subchannels 3
Number of subchannels per user 1
MBS antenna array size 100
MBS beamforming group size 20
The radius of the entire network 500 m
Number of SBS 2
Number of MDRU 1
Number of UE 5
SINR threshold of UE 1 for each UE
Rayleigh channel coefficient h ∼ CN (0, 1)
Path loss model from MBS to SBS 19.77 + 3.91× log10dk in dB and dk in km
Path loss model for SBS to UEs 30.53 + 36.71× log10dk,u,t in dB and dk,u,t in km at time t
Noise power spectral density 174 dBm/Hz
Maximum transmit power of SBS 24 dBm
Maximum cluster size 3
Transmit power of MBS 43 dBm
Operational power of SBS 0.5 W
Operational power of MBS 130W

Sensors 2023, 23, 6448 13 of 21

Sensors 2023, 23, x FOR PEER REVIEW 13 of 21

Noise power spectral density 174 dBm/Hz
Maximum transmit power of SBS 24 dBm
Maximum cluster size 3
Transmit power of MBS 43dBm
Operational power of SBS 0.5 W
Operational power of MBS 130W

(a) (b)

Figure 5. (a) Network geometry of HetNet based IoRT network and (b) Average reward
(normalized) of proposed method (MP-DQN), P-DQN and DQN during the training session.

We compare the proposed MP-DQN presented in Algorithm 1 for the optimization
problem, where UE association and emitting power allocation of SBSs/MDRUs have been
considered jointly as the hybrid action space with two DRL based algorithms P-DQN and
DQN. For DQN, continuous action space is converted into discrete by quantization
process with ೄ,ೌೣଵℒ , where ℒ is the discrete power levels (ℒ = 5 is considered in our
simulation). In addition, the simulation results of the proposed method are compared to
a well-known method called Nearest SBS/MDRU with Random Power. Each UE is
connected to the nearby SC, which generates random power to serve every UE in its SC’s
cluster by fulfilling the conditions (1) the total power for all UE must be less or equal to
the maximum power and (2) the total sum rate cannot exceed backhaul capacity of each
SBS/MDRU. Furthermore, we consider the size of replay memory is 20,000, mini batch is
128, and the discount factor is 0.95 for all DRL algorithms. The total episodes for MP-DQN
and P-DQN are 2000 while each episode has 50 timesteps. However, 3200 episodes are
considered to simulate DQN. It takes more episodes to converge in hybrid action space-
based optimization problem. In addition, other hyperparameters for MP-DQN, P-DQN,
and DQN are tabulated in Table 3.

Algorithm 1: Multi pass DQN (MP-DQN) Algorithm.
Input: Probability distribution 𝜉, mini batch size 𝐵, exploration parameter 𝜀,
learning rates {𝛼, 𝛼,}.
Initialization: actor weights ω, ωି and actor parameter weights (θ, θି)
For t = 1, 2, 3, T do
 Estimate the action parameters 𝑧(𝑠(𝑡); θ(t)) by actor network
 Choose the action 𝑎(𝑡) = (𝑗, 𝑧) based on the 𝜀 greedy policy:

 𝑎(𝑡) = ቊ radom sample according to probability distribution 𝜉, 𝑤𝑖𝑡ℎ 𝜀 ൫𝑗, 𝑧൯: 𝑗 = 𝑎𝑟𝑔𝑚𝑎𝑥∈ 𝑄൫𝑠(𝑡), 𝑗, 𝕫𝕖; ω൯ , 𝑤𝑖𝑡ℎ (1 − 𝜀)

Figure 5. (a) Network geometry of HetNet based IoRT network and (b) Average reward (normalized)
of proposed method (MP-DQN), P-DQN and DQN during the training session.

We compare the proposed MP-DQN presented in Algorithm 1 for the optimization
problem, where UE association and emitting power allocation of SBSs/MDRUs have been
considered jointly as the hybrid action space with two DRL based algorithms P-DQN
and DQN. For DQN, continuous action space is converted into discrete by quantization
process with PSCm ,max

10L , where L is the discrete power levels (L = 5 is considered in our
simulation). In addition, the simulation results of the proposed method are compared
to a well-known method called Nearest SBS/MDRU with Random Power. Each UE is
connected to the nearby SC, which generates random power to serve every UE in its SC’s
cluster by fulfilling the conditions (1) the total power for all UE must be less or equal to
the maximum power and (2) the total sum rate cannot exceed backhaul capacity of each
SBS/MDRU. Furthermore, we consider the size of replay memory is 20,000, mini batch is
128, and the discount factor is 0.95 for all DRL algorithms. The total episodes for MP-DQN
and P-DQN are 2000 while each episode has 50 timesteps. However, 3200 episodes are
considered to simulate DQN. It takes more episodes to converge in hybrid action space-
based optimization problem. In addition, other hyperparameters for MP-DQN, P-DQN,
and DQN are tabulated in Table 3.

Algorithm 1: Multi pass DQN (MP-DQN) Algorithm.

Input: Probability distribution ξ, mini batch size B, exploration parameter ε, learning rates
{αa, αa,p}.
Initialization: actor weightsω,ω− and actor parameter weights (θ, θ−)
For t = 1, 2, 3, T do

Estimate the action parameters zj(s(t); θ(t)) by actor network
Choose the action a(t) = (j, zj) based on the ε greedy policy:

a(t) =
{

radom sample according to probability distribution ξ, with ε

(j, zj) : j = argmaxc∈Ad
Q(s(t), j,zej;ω), with (1− ε)

Execute action a(t), receive immediate reward r(s(t), a(t)) and next state s(t + 1)
Save the experience (s(t), a(t), r(t), s(t + 1)) into replay memory
Select mini batch size B randomly from the replay memory
Define the target y(t) by

y(t) = r(t) + γmax
j′∈Ad

Q(s(t + 1), j′, z′j(s(t + 1); θ−);ω−)

Select the diagonal element from

Q11 · · · Q1c
...

. . .
...

Qc1 · · · Qcc

Choose the best action j by argmax from diagonal elements
Use the (y(t), s(t), a(t)) to estimate the gradients ∇ωLx(ω) and ∇θ Lx(θ)

Update the weights parametersω,ω−, θ, θ−

Sensors 2023, 23, 6448 14 of 21

Table 3. The hyperparameter of MP-DQN.

Parameters MP-DQN
Q Network

MP-DQN
Actor

P-DQN
Q Network

P-DQN
Actor DQN

Learning rate 10−4 10−5 10−5 10−5 10−3

Exploration e-greedy Ornstein-Uhlenbeck noise e-greedy Ornstein Uhlenbeck noise e-greedy

Number of Outputs |Ad| U.|Ad| |Ad| U.|Ad| |Ad|∗L
U

Hidden layer
ReLu, 1024
ReLu, 512
ReLu, 256

ReLu, 1024
ReLu, 512
ReLu, 256

ReLu, 512
ReLu, 128 ReLu, 256

ReLu, 512
ReLu, 128

Relu 128 Relu 128 Relu 16 Relu 16

Number of Inputs U + U.|Ad| U U + U.|Ad| U U

5.1. Simulation Results for Stationary UEs

We illustrate the average normalized results versus step over 500 realizations of
proposed MP-DQN, P-DQN, and DQN algorithms during the training session. Figure 5b
presents the average normalized reward of proposed MP-DQN, P-DQN and traditional
DQN. Due to the complexity of the traditional DQN for discretization issues and the size
of action space, the average reward is not properly converged. In P-DQN, the results
are perfectly converged and saturated after-time steps. The final value of the average
normalized reward is around 0.91. In comparison, the results of the proposed MP-DQN
have converged perfectly but are a saturated bit later than P-DQN. The saturated value
of the proposed method is around 1.25, which is clearly best compared with P-DQN and
DQN algorithms.

We compare the average normalized test results of our proposed MP-DQN method
with P-DQN, DQN, and Nearest SBS+ Random Power in Figure 6a,b and Figure 7 by
considering the total time steps with 100 realizations. In Figure 6a, the average standardized
test reward has been shown for all methods where maximum average results (around 1.26)
for all timesteps are generated by our proposed method MP-DQN. The second height test
reward is produced from P-DQN while the nearest SBS with random power for the UE
method gives the worst results. In addition, the average normalized energy efficiency for
test sessions has been depicted in Figure 6b for all discussed methods. The energy efficiency
of our proposed method is approximately 9.89%, 94.7%, and 160.44% better than P-DQN,
traditional DQN, and distance-based association methods, respectively during the whole
test period. In addition, the average UE throughput by the normalized process has been
illustrated in Figure 7 for all methods. According to Figure 7, the average normalized
system throughput of our proposed method MP-DQN is approximately 4.27 which is
12.36%, 44.74%, and 19.607% better results compared to P-DQN, DQN, and the nearest
distance with random power allocation algorithms. The summary of test results for all
methods including the proposed method is presented in Table 4.

Table 4. The average normalized value of implemented methods.

Methods Average Reward Average Energy Efficiency Average UE Throughput

MP-DQN (Proposed) 1.26 6.83 4.27
P-DQN 0.92 6.21 3.80

Nearest SBS+ Random Power −0.75 2.62 3.57
DQN 0.118 3.51 2.95

Sensors 2023, 23, 6448 15 of 21

Sensors 2023, 23, x FOR PEER REVIEW 15 of 21

(a) (b)

Figure 6. (a) Average reward (normalized) and (b) Average energy efficiency (normalized) of
proposed method (MP-DQN), P-DQN, and DQN during the test session.

Figure 7. The average normalized system throughput proposed method (MP-DQN), P-DQN, and
DQN during the test session.

Table 4. The average normalized value of implemented methods.

Methods
Average
Reward

Average Energy
Efficiency

Average UE
Throughput

MP-DQN (Proposed) 1.26 6.83 4.27
P-DQN 0.92 6.21 3.80

Nearest SBS+ Random Power −0.75 2.62 3.57
DQN 0.118 3.51 2.95

5.2. Simulation Results Considering UE’s Mobility
Due to its ability to remember previous activities, the GM mobility model is not

stateless. It is appropriate for moveable UEs such as robots, cars, UGV, etc. We have
illustrated average standardized reward, emergency efficiency, UE throughput, and
SBS/MDRU throughput in Figure 8, Figure 9, Figure 10, and Figure 11, respectively. In
addition, simulation results based on RFO and RFT have been illustrated in Figure Xa and
Figure Xb, respectively, where X is within 8 to 11. Each UE’s average velocity has been
considered 10 km/h with a random direction. In Figure 8a, the average standardized
rewards mean is 0.6, 0.98, 1.48, and 1.61 from Nearest SBS + random power, DQN, PDQN,
and MPDQN, respectively, based on the RFO. When the simulation is run with the RFT,
the MPDQN generates (mean) 1.12, while PDQN and DQN produce 1.08 and 0.74,
respectively illustrated in Figure 8b. Average standardized emergency efficiencies for all

Figure 6. (a) Average reward (normalized) and (b) Average energy efficiency (normalized) of pro-
posed method (MP-DQN), P-DQN, and DQN during the test session.

Sensors 2023, 23, x FOR PEER REVIEW 15 of 21

(a) (b)

Figure 6. (a) Average reward (normalized) and (b) Average energy efficiency (normalized) of
proposed method (MP-DQN), P-DQN, and DQN during the test session.

Figure 7. The average normalized system throughput proposed method (MP-DQN), P-DQN, and
DQN during the test session.

Table 4. The average normalized value of implemented methods.

Methods
Average
Reward

Average Energy
Efficiency

Average UE
Throughput

MP-DQN (Proposed) 1.26 6.83 4.27
P-DQN 0.92 6.21 3.80

Nearest SBS+ Random Power −0.75 2.62 3.57
DQN 0.118 3.51 2.95

5.2. Simulation Results Considering UE’s Mobility
Due to its ability to remember previous activities, the GM mobility model is not

stateless. It is appropriate for moveable UEs such as robots, cars, UGV, etc. We have
illustrated average standardized reward, emergency efficiency, UE throughput, and
SBS/MDRU throughput in Figure 8, Figure 9, Figure 10, and Figure 11, respectively. In
addition, simulation results based on RFO and RFT have been illustrated in Figure Xa and
Figure Xb, respectively, where X is within 8 to 11. Each UE’s average velocity has been
considered 10 km/h with a random direction. In Figure 8a, the average standardized
rewards mean is 0.6, 0.98, 1.48, and 1.61 from Nearest SBS + random power, DQN, PDQN,
and MPDQN, respectively, based on the RFO. When the simulation is run with the RFT,
the MPDQN generates (mean) 1.12, while PDQN and DQN produce 1.08 and 0.74,
respectively illustrated in Figure 8b. Average standardized emergency efficiencies for all

Figure 7. The average normalized system throughput proposed method (MP-DQN), P-DQN, and
DQN during the test session.

5.2. Simulation Results Considering UE’s Mobility

Due to its ability to remember previous activities, the GM mobility model is not state-
less. It is appropriate for moveable UEs such as robots, cars, UGV, etc. We have illustrated
average standardized reward, emergency efficiency, UE throughput, and SBS/MDRU
throughput in Figure 8, Figure 9, Figure 10 and Figure 11, respectively. In addition, sim-
ulation results based on RFO and RFT have been illustrated in Figure Xa and Figure Xb,
respectively, where X is within 8 to 11. Each UE’s average velocity has been considered
10 km/h with a random direction. In Figure 8a, the average standardized rewards mean is
0.6, 0.98, 1.48, and 1.61 from Nearest SBS + random power, DQN, PDQN, and MPDQN,
respectively, based on the RFO. When the simulation is run with the RFT, the MPDQN gen-
erates (mean) 1.12, while PDQN and DQN produce 1.08 and 0.74, respectively illustrated
in Figure 8b. Average standardized emergency efficiencies for all algorithms have been
illustrated in Figure 9a,b according to RFO and RFT, respectively. In Figure 9a, MPDQN
gives 5.03 while PDQN, DQN, and Nearest SBS + random power produce 4.81, 3.52, and
3.13, respectively. Furthermore, the MPDQN and PDQN generate almost similar energy
efficiency that is better than the DQN and Nearest SBS + random power illustrated in
Figure 9b.

Sensors 2023, 23, 6448 16 of 21

Sensors 2023, 23, x FOR PEER REVIEW 16 of 21

algorithms have been illustrated in Figure 9a,b according to RFO and RFT, respectively.
In Figure 9a, MPDQN gives 5.03 while PDQN, DQN, and Nearest SBS + random power
produce 4.81, 3.52, and 3.13, respectively. Furthermore, the MPDQN and PDQN generate
almost similar energy efficiency that is better than the DQN and Nearest SBS + random
power illustrated in Figure 9b.

(a) (b)

Figure 8. Average standardized reward based on (a) RFO and (b) RFT from proposed method (MP-
DQN), P-DQN, and DQN and Nearest SBS + random power.

(a) (b)

Figure 9. Average standardized energy efficiency based on (a) RFO and (b) RFT from proposed
method (MP-DQN), P-DQN, and DQN and Nearest SBS + random power.

Figure 8. Average standardized reward based on (a) RFO and (b) RFT from proposed method
(MP-DQN), P-DQN, and DQN and Nearest SBS + random power.

Sensors 2023, 23, x FOR PEER REVIEW 16 of 21

algorithms have been illustrated in Figure 9a,b according to RFO and RFT, respectively.
In Figure 9a, MPDQN gives 5.03 while PDQN, DQN, and Nearest SBS + random power
produce 4.81, 3.52, and 3.13, respectively. Furthermore, the MPDQN and PDQN generate
almost similar energy efficiency that is better than the DQN and Nearest SBS + random
power illustrated in Figure 9b.

(a) (b)

Figure 8. Average standardized reward based on (a) RFO and (b) RFT from proposed method (MP-
DQN), P-DQN, and DQN and Nearest SBS + random power.

(a) (b)

Figure 9. Average standardized energy efficiency based on (a) RFO and (b) RFT from proposed
method (MP-DQN), P-DQN, and DQN and Nearest SBS + random power.
Figure 9. Average standardized energy efficiency based on (a) RFO and (b) RFT from proposed
method (MP-DQN), P-DQN, and DQN and Nearest SBS + random power.

Sensors 2023, 23, x FOR PEER REVIEW 17 of 21

(a) (b)

Figure 10. Average standardized UE throughput based on (a) RFO and (b) RFT from proposed
method (MP-DQN), P-DQN, and DQN and Nearest SBS + random power.

(a) (b)

Figure 11. Average standardized SBS throughput based on (a) RFO and (b) RFT from proposed
method (MP-DQN), P-DQN, and DQN and Nearest SBS + random power.

For evaluating the IoRT network, the QoS of UE is the crucial parameter that directly
depends on the downlink throughput of UE in each time slot. In Figure 10, we have
depicted the average standardized UE throughput. When we have utilized the RFO, the
means of average standardized UE throughputs are 2.92, 2.85, and 2.97 from MPDQN,
PDQN, and DQN, respectively. However, the Nearest SBS + Random power generates
3.08, as shown in Figure 10a. We have illustrated the simulation results using the RFT in
Figure 10b. The mean of average standardized UE throughput is 3.05 (similar to Figure
10a) by Nearest SBS + Random power, while DRL-based algorithms generate better
results. Hence, the design of an appropriate reward function is the key factor in DRL-
based problem formulation. The proposed method (MPDQN) gives 3.91, which is the best
UE throughput compared to PDQN (3.44) and DQN (3.40). Another key factor of two-tier
HeNet is the backhaul connection from MBS to SBS/MDRU, which depends on the
throughput of SBS/MDRU illustrated in Figure 11. The proposed method with the RFT
outperforms others that are clearly shown in Figure 11.

In Figure 12, the mean of average standardized UE throughput has been presented
concerning the velocity range from 10 Km/h to 60 Km/h. With RFO, the average
standardized UE throughput means approximately 3.10, 2.95, 2.92, and 2.84 from Nearest
SBS + random power, DQN, MPDQN, and PDQN, respectively for all velocities until 60

Figure 10. Average standardized UE throughput based on (a) RFO and (b) RFT from proposed
method (MP-DQN), P-DQN, and DQN and Nearest SBS + random power.

Sensors 2023, 23, 6448 17 of 21

Sensors 2023, 23, x FOR PEER REVIEW 17 of 21

(a) (b)

Figure 10. Average standardized UE throughput based on (a) RFO and (b) RFT from proposed
method (MP-DQN), P-DQN, and DQN and Nearest SBS + random power.

(a) (b)

Figure 11. Average standardized SBS throughput based on (a) RFO and (b) RFT from proposed
method (MP-DQN), P-DQN, and DQN and Nearest SBS + random power.

For evaluating the IoRT network, the QoS of UE is the crucial parameter that directly
depends on the downlink throughput of UE in each time slot. In Figure 10, we have
depicted the average standardized UE throughput. When we have utilized the RFO, the
means of average standardized UE throughputs are 2.92, 2.85, and 2.97 from MPDQN,
PDQN, and DQN, respectively. However, the Nearest SBS + Random power generates
3.08, as shown in Figure 10a. We have illustrated the simulation results using the RFT in
Figure 10b. The mean of average standardized UE throughput is 3.05 (similar to Figure
10a) by Nearest SBS + Random power, while DRL-based algorithms generate better
results. Hence, the design of an appropriate reward function is the key factor in DRL-
based problem formulation. The proposed method (MPDQN) gives 3.91, which is the best
UE throughput compared to PDQN (3.44) and DQN (3.40). Another key factor of two-tier
HeNet is the backhaul connection from MBS to SBS/MDRU, which depends on the
throughput of SBS/MDRU illustrated in Figure 11. The proposed method with the RFT
outperforms others that are clearly shown in Figure 11.

In Figure 12, the mean of average standardized UE throughput has been presented
concerning the velocity range from 10 Km/h to 60 Km/h. With RFO, the average
standardized UE throughput means approximately 3.10, 2.95, 2.92, and 2.84 from Nearest
SBS + random power, DQN, MPDQN, and PDQN, respectively for all velocities until 60

Figure 11. Average standardized SBS throughput based on (a) RFO and (b) RFT from proposed
method (MP-DQN), P-DQN, and DQN and Nearest SBS + random power.

For evaluating the IoRT network, the QoS of UE is the crucial parameter that directly
depends on the downlink throughput of UE in each time slot. In Figure 10, we have
depicted the average standardized UE throughput. When we have utilized the RFO, the
means of average standardized UE throughputs are 2.92, 2.85, and 2.97 from MPDQN,
PDQN, and DQN, respectively. However, the Nearest SBS + Random power generates
3.08, as shown in Figure 10a. We have illustrated the simulation results using the RFT in
Figure 10b. The mean of average standardized UE throughput is 3.05 (similar to Figure 10a)
by Nearest SBS + Random power, while DRL-based algorithms generate better results.
Hence, the design of an appropriate reward function is the key factor in DRL-based problem
formulation. The proposed method (MPDQN) gives 3.91, which is the best UE throughput
compared to PDQN (3.44) and DQN (3.40). Another key factor of two-tier HeNet is the
backhaul connection from MBS to SBS/MDRU, which depends on the throughput of
SBS/MDRU illustrated in Figure 11. The proposed method with the RFT outperforms
others that are clearly shown in Figure 11.

In Figure 12, the mean of average standardized UE throughput has been presented
concerning the velocity range from 10 Km/h to 60 Km/h. With RFO, the average standard-
ized UE throughput means approximately 3.10, 2.95, 2.92, and 2.84 from Nearest SBS +
random power, DQN, MPDQN, and PDQN, respectively for all velocities until 60 Km/hour.
In contrast, those are around 3.10, 3.40, 3.44, and 3.93 for Nearest SBS + random power,
DQN, PDQN, and MPDQN, respectively, when adopting the RFT. The results are varied
for the Nearest SBS + random power method due to the random power allocations. In
our simulations, the discrete action (user association) selects the SC, and the continuous
action allocates the power from SBS according to user association in every time step. As a
result, the increment of velocity does not impact the simulation results. It is shown that the
proposed method with the proposed reward function RFT gives a better result compared
to others (Nearest SBS + random power, DQN, and PDQN).

The proposed reward function RFT consists of three main factors of a two-tier IoRT
network (i) the energy efficiency, (ii) the QoS of UE, and (iii) the QoS of SBS/MDRU, while
the original reward function RFO mainly depends on the average standardized energy
efficiency and throughput of UE. As a result, DRL algorithms with the proposed reward
function produce better results in contrast to DRL algorithms with the original reward
function. The proposed method (MP-DQN) performs better than other algorithms due
to the solution of excessive parameterization of P-DQN. In summary, MP-DQN with the
proposed reward function RFT outperforms PDQN, DQN, and Nearest SBS + random
power in reward, average energy efficiency, average system throughput, and average SBS
throughput for various velocities of UE.

Sensors 2023, 23, 6448 18 of 21

Sensors 2023, 23, x FOR PEER REVIEW 18 of 21

Km/hour. In contrast, those are around 3.10, 3.40, 3.44, and 3.93 for Nearest SBS + random
power, DQN, PDQN, and MPDQN, respectively, when adopting the RFT. The results are
varied for the Nearest SBS + random power method due to the random power allocations.
In our simulations, the discrete action (user association) selects the SC, and the continuous
action allocates the power from SBS according to user association in every time step. As a
result, the increment of velocity does not impact the simulation results. It is shown that
the proposed method with the proposed reward function RFT gives a better result
compared to others (Nearest SBS + random power, DQN, and PDQN).

Figure 12. The mean of average standardized UE throughput based with proposed and old reward
function from proposed method (MP-DQN), P-DQN, and DQN and Nearest SBS + random power.

The proposed reward function RFT consists of three main factors of a two-tier IoRT
network (i) the energy efficiency, (ii) the QoS of UE, and (iii) the QoS of SBS/MDRU, while
the original reward function RFO mainly depends on the average standardized energy
efficiency and throughput of UE. As a result, DRL algorithms with the proposed reward
function produce better results in contrast to DRL algorithms with the original reward
function. The proposed method (MP-DQN) performs better than other algorithms due to
the solution of excessive parameterization of P-DQN. In summary, MP-DQN with the
proposed reward function RFT outperforms PDQN, DQN, and Nearest SBS + random
power in reward, average energy efficiency, average system throughput, and average SBS
throughput for various velocities of UE.

6. Conclusions
For the PDM, authorities deploy various UE such as UGVs, UAVs, UUVs, health care

robots, and smartphones via IoRT to collect information in affected areas, where wireless
network, especially 4G/LTE/5G and beyond, works as a backbone. Few SBSs of HetNet
can be damaged due to the disaster. Hence, the deployment of MDRU to replace
malfunctioning SBS is well-established nowadays. In addition, the electric power crisis is
a big challenge for PDM. Therefore, power optimization of HetNet by satisfying all UE
demands has paid great attention to research. In this article, we have examined UE
association and power allocation of SBS/MDRU to optimize the energy efficiency, UE
throughput, and SC throughput of the downlink without knowing the environmental
priori knowledge while taking into account the backhaul link and QoS guarantee for
stationary and movable UE in MDRU aided two-tier HetNet, which are nonconvex, NP-
hard, as well as a hybrid action space problem. We have proposed MP-DQN, which is
model-free as well as hybrid action space-based DRL algorithm. The simulation results of
the proposed method (MP-DQN) have been compared with two DRL-based algorithms
(P-DQN and DQN) and the nearest distance-based SBS with random allocation power.

Figure 12. The mean of average standardized UE throughput based with proposed and old reward
function from proposed method (MP-DQN), P-DQN, and DQN and Nearest SBS + random power.

6. Conclusions

For the PDM, authorities deploy various UE such as UGVs, UAVs, UUVs, health care
robots, and smartphones via IoRT to collect information in affected areas, where wireless
network, especially 4G/LTE/5G and beyond, works as a backbone. Few SBSs of HetNet can
be damaged due to the disaster. Hence, the deployment of MDRU to replace malfunctioning
SBS is well-established nowadays. In addition, the electric power crisis is a big challenge
for PDM. Therefore, power optimization of HetNet by satisfying all UE demands has
paid great attention to research. In this article, we have examined UE association and
power allocation of SBS/MDRU to optimize the energy efficiency, UE throughput, and
SC throughput of the downlink without knowing the environmental priori knowledge
while taking into account the backhaul link and QoS guarantee for stationary and movable
UE in MDRU aided two-tier HetNet, which are nonconvex, NP-hard, as well as a hybrid
action space problem. We have proposed MP-DQN, which is model-free as well as hybrid
action space-based DRL algorithm. The simulation results of the proposed method (MP-
DQN) have been compared with two DRL-based algorithms (P-DQN and DQN) and the
nearest distance-based SBS with random allocation power. During the whole test period
considering the stationary UE, our suggested method’s energy efficiency was around 9.89%,
94.7%, and 160.44% better than P-DQN, standard DQN, and distance-based association
approaches, respectively. When the problem formulation by considering the modified
Gauss–Markov UE mobility model has been investigated, we have proposed a new reward
function RFT that is dependent on (i) the average standardized energy efficiency, (ii) the
QoS of UE, and (iii) the QoS of SC; however, the original reward function RFO consists of
average standardized energy efficiency and throughput of UE. Hence, DRL algorithms with
the RFT are superior outcomes to those with the RFO. At various velocities, MP-DQN with
the RFT outperforms PDQN, DQN, and Closest SBS + random power regarding reward,
average energy efficiency, average system throughput, and average SC throughput.

Author Contributions: Conceptualization, H.K.; Investigation, H.K., M.-L.T. and Y.C.C.; Methodol-
ogy, H.K., M.-L.T. and Y.C.C.; Resources, C.-O.C. and Y.O.; Writing—original draft, H.K., M.-L.T. and
Y.C.C.; Software, H.K.; Funding acquisition, M.-L.T.; Writing—review and editing, H.K., C.-O.C. and
Y.O. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Universiti Tunku Abdul Rahman (UTAR), Malaysia,
under UTAR Research Fund (UTARRF) (IPSR/RMC/UTARRF/2021C1/T05). The ASEAN IVO
(http://www.nict.go.jp/en/asean_ivo/index.html) project, “Context-Aware Disaster Mitigation
using Mobile Edge Computing and Wireless Mesh Network”, was also involved in the production of
the contents of this work.

http://www.nict.go.jp/en/asean_ivo/index.html

Sensors 2023, 23, 6448 19 of 21

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lawry, L.; Burkle, F.M. Measuring the true human cost of natural disasters. Disaster Med. Public Health Prep. 2008, 2, 208–210.

[CrossRef] [PubMed]
2. Shimada, G. The impact of climate-change-related disasters on Africa’s economic growth, agriculture, and conflicts: Can

hu-manitarian aid and food assistance offset the damage? Int. J. Environ. Res. Public Health 2022, 19, 467. [CrossRef]
3. Kamegawa, T.; Akiyama, T.; Sakai, S.; Fujii, K.; Une, K.; Ou, E.; Matsumura, Y.; Kishutani, T.; Nose, E.; Yoshizaki, Y.; et al.

Development of a separable search-and-rescue robot composed of a mobile robot and a snake robot. Adv. Robot. 2020, 34, 132–139.
[CrossRef]

4. Vera-Ortega, P.; Vázquez-Martín, R.; Fernandez-Lozano, J.J.; García-Cerezo, A.; Mandow, A. Enabling Remote Responder
Bio-Signal Monitoring in a Cooperative Human–Robot Architecture for Search and Rescue. Sensors 2023, 23, 49. [CrossRef]
[PubMed]

5. Paravisi, M.; Santos, D.H.; Jorge, V.; Heck, G.; Gonçalves, L.M.; Amory, A. Unmanned Surface Vehicle Simulator with Realistic
Environmental Disturbances. Sensors 2019, 19, 1068. [CrossRef] [PubMed]

6. AlAli, Z.T.; Alabady, S.A. A survey of disaster management and SAR operations using sensors and supporting techniques. Int. J.
Disaster Risk Reduct. 2022, 82, 103295. [CrossRef]

7. Lee, M.-F.R.; Chien, T.-W. Artificial intelligence and Internet of Things for robotic disaster response. In Proceedings of the
2020 International Conference on Advanced Robotics and Intelligent Systems (ARIS), Taipei, Taiwan, 19–21 August 2020; IEEE:
Piscataway, NJ, USA, 2020; pp. 1–6.

8. Kamilaris, A.; Botteghi, N. The penetration of Internet of Things in robotics: Towards a web of robotic things. J. Ambient. Intell.
Smart Environ. 2020, 12, 491–512. [CrossRef]

9. Villa, D.; Song, X.; Heim, M.; Li, L. Internet of Robotic Things: Current Technologies, Applications, Challenges and Future
Directions. arXiv 2021, arXiv:2101.06256.

10. Ray, P.P. Internet of robotic things: Concept, technologies, and challenges. IEEE Access 2016, 4, 9489–9500. [CrossRef]
11. Vermesan, O.; Bahr, R.; Ottella, M.; Serrano, M.; Karlsen, T.; Wahlstrøm, T.; Sand, H.E.; Ashwathnarayan, M.; Gamba, M.T. Internet

of Robotic Things Intelligent Connectivity and Platforms. Front. Robot. AI 2020, 7, 104. [CrossRef]
12. Rengaraju, P.; Sethuramalingam, K.; Lung, C.H. Providing internet access for post-disaster communications using balloon

networks. In Proceedings of the 18th ACM Symposium on Performance Evaluation of Wireless Ad Hoc, Sensor & Ubiquitous
Networks, Alicante, Spain, 22–26 November 2021; pp. 111–117.

13. Panda, K.G.; Das, S.; Sen, D.; Arif, W. Design and Deployment of UAV-Aided Post-Disaster Emergency Network. IEEE Access
2019, 7, 102985–102999. [CrossRef]

14. Sakano, T.; Fadlullah, Z.M.; Ngo, T.; Nishiyama, H.; Nakazawa, M.; Adachi, F.; Kato, N.; Takahara, A.; Kumagai, T.; Kasahara, H.;
et al. Disaster-resilient networking: A new vision based on movable and deployable resource units. IEEE Netw. 2013, 27, 40–46.
[CrossRef]

15. Zeng, Y.; Zhang, R.; Lim, T.J. Wireless communications with unmanned aerial vehicles: Opportunities and challenges. IEEE
Commun. Mag. 2016, 54, 36–42. [CrossRef]

16. Sakano, T.; Kotabe, S.; Komukai, T.; Kumagai, T.; Shimizu, Y.; Takahara, A.; Ngo, T.; Md Fadlullah, Z.; Nishiyama, H.; Kato, N.
Bringing movable and deployable networks to disaster areas: Development and field test of MDRU. IEEE Netw. 2016, 30, 86–91.
[CrossRef]

17. Matracia, M.; Saeed, N.; Kishk, M.A.; Alouini, M.-S. Post-Disaster Communications: Enabling Technologies, Architectures, and
Open Challenges. IEEE Open J. Commun. Soc. 2022, 3, 1177–1205. [CrossRef]

18. Wang, J.; Sato, K.; Guo, S.; Chen, W.; Wu, J. Big Data Processing With Minimal Delay and Guaranteed Data Resolution in Disaster
Areas. IEEE Trans. Veh. Technol. 2018, 68, 3833–3842. [CrossRef]

19. Porte, J.; Briones, A.; Maso, J.M.; Pares, C.; Zaballos, A.; Pijoan, J.L. Heterogeneous wireless IoT architecture for natural disaster
monitorization. EURASIP J. Wirel. Commun. Netw. 2020, 2020, 184. [CrossRef]

20. Wang, Y. Models and Algorithms for Efficient Data Processing in Fog Computing Supported Disaster Areas. Ph.D. Dissertation,
University of Aizu, Aizuwakamatsu, Japan, 2019.

21. Wang, X.; Jiang, F.; Zhong, L.; Ji, Y.; Yamada, S.; Takano, K.; Xue, G. Intelligent Post-Disaster Networking by Exploiting Crowd
Big Data. IEEE Netw. 2020, 34, 49–55. [CrossRef]

22. Xu, K.; Qu, Y.; Yang, K. A tutorial on the internet of things: From a heterogeneous network integration perspective. IEEE Netw.
2016, 30, 102–108. [CrossRef]

23. Kabir, H.; Tham, M.-L.; Chang, Y.C. Twin Delayed DDPG based Dynamic Power Allocation for Mobility in IoRT. J. Commun.
Softw. Syst. 2023, 19, 19–29. [CrossRef]

https://doi.org/10.1097/DMP.0b013e31818adaa2
https://www.ncbi.nlm.nih.gov/pubmed/18756174
https://doi.org/10.3390/ijerph19010467
https://doi.org/10.1080/01691864.2019.1691941
https://doi.org/10.3390/s23010049
https://www.ncbi.nlm.nih.gov/pubmed/36616647
https://doi.org/10.3390/s19051068
https://www.ncbi.nlm.nih.gov/pubmed/30832355
https://doi.org/10.1016/j.ijdrr.2022.103295
https://doi.org/10.3233/AIS-200582
https://doi.org/10.1109/ACCESS.2017.2647747
https://doi.org/10.3389/frobt.2020.00104
https://doi.org/10.1109/ACCESS.2019.2931539
https://doi.org/10.1109/MNET.2013.6574664
https://doi.org/10.1109/MCOM.2016.7470933
https://doi.org/10.1109/MNET.2016.7389836
https://doi.org/10.1109/OJCOMS.2022.3192040
https://doi.org/10.1109/TVT.2018.2889094
https://doi.org/10.1186/s13638-020-01793-3
https://doi.org/10.1109/MNET.011.1900389
https://doi.org/10.1109/MNET.2016.7437031
https://doi.org/10.24138/jcomss-2022-0141

Sensors 2023, 23, 6448 20 of 21

24. Kabir, H.; Tham, M.-L.; Chang, Y.C. DRL based Energy-Efficient Radio Resource Allocation Algorithm in Internet of Robotic
Things. In Proceedings of the 2022 IEEE Symposium on Wireless Technology & Applications (ISWTA), Kuala Lumpur, Malaysia,
17–18 August 2022; pp. 104–109.

25. Nguyen, H.T.; Nguyen, M.T.; Do, H.T.; Hua, H.T.; Nguyen, C.V. DRL-based intelligent resource allo-cation for diverse QoS in 5G
and toward 6G vehicular networks: A comprehensive survey. Wirel. Commun. Mob. Comput. 2021, 2021, 5051328. [CrossRef]

26. Abbasi, M.; Shahraki, A.; Piran, J.; Taherkordi, A. Deep Reinforcement Learning for QoS provisioning at the MAC layer: A Survey.
Eng. Appl. Artif. Intell. 2021, 102, 104234. [CrossRef]

27. Xiong, Z.; Zhang, Y.; Niyato, D.; Deng, R.; Wang, P.; Wang, L.-C. Deep reinforcement learning for mobile 5G and beyond:
Fundamentals, applications, and challenges. IEEE Veh. Technol. Mag. 2019, 14, 44–52. [CrossRef]

28. Zhu, J.; Wu, F.; Zhao, J. An Overview of the Action Space for Deep Reinforcement Learning. In Proceedings of the 2021 4th
International Conference on Algorithms, Computing and Artificial Intelligence, Sanya, China, 22–24 December 2021; pp. 1–10.
[CrossRef]

29. Hsieh, C.-K.; Chan, K.-L.; Chien, F.-T. Energy-Efficient Power Allocation and User Association in Heterogeneous Networks with
Deep Reinforcement Learning. Appl. Sci. 2021, 11, 4135. [CrossRef]

30. Bester, C.J.; James, S.D.; Konidaris, G.D. Multi-pass Q-networks for deep reinforcement learning with parameterised action spaces.
arXiv 2019, arXiv:1905.04388.

31. Omstedt, F. A deep reinforcement learning approach to the problem of golf using an agent limited by human data. In Degree
Project in Computer Science and Engineering; Kth Royal Institute of Technology: Stockholm, Sweden, 2020.

32. Wen, G.; Wu, K. Building decision tree for imbalanced classification via deep reinforcement learning. Proc. Mach. Learn. Res. 2021,
157, 1645–1659.

33. Bouktif, S.; Cheniki, A.; Ouni, A. Traffic Signal Control Using Hybrid Action Space Deep Reinforcement Learning. Sensors 2021,
21, 2302. [CrossRef]

34. Zhang, X.; Jin, S.; Wang, C.; Zhu, X.; Tomizuka, M. Learning insertion primitives with discrete-continuous hybrid action space for
robotic assembly tasks. In Proceedings of the 2022 International Conference on Robotics and Automation (ICRA), Philadelphia,
PA, USA, 23–27 May 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 9881–9887. [CrossRef]

35. Yan, Y.; Du, K.; Wang, L.; Niu, H.; Wen, X. MP-DQN Based Task Scheduling for RAN QoS Fluctuation Minimizing in Public
Clouds. In Proceedings of the 2022 IEEE International Conference on Communications Workshops, ICC Workshops, Seoul,
Republic of Korea, 16–20 May 2022; pp. 878–884. [CrossRef]

36. Guo, L.; Jia, J.; Chen, J.; Du, A.; Wang, X. Joint Task Offloading and Resource Allocation in STAR-RIS assisted NOMA System. In
Proceedings of the 2022 IEEE 96th Vehicular Technology Conference, VTC2022-Fall, London, UK, 26–29 September 2022; pp. 1–5.
[CrossRef]

37. Shimizu, Y.; Suzuki, Y.; Sasazawa, R.; Kawamoto, Y.; Nishiyama, H.; Kato, N.; Yamamoto, A.; Kotabe, S. Development of Movable
and Deployable ICT Resource Unit (MDRU) and its Overseas Activities. J. Disaster Res. 2019, 14, 363–374. [CrossRef]

38. Khan, A.; Mukhtar, M.; Ullah, F.; Bilal, M.; Kwak, K.-S. EA-RDSP: Energy Aware Rapidly Deployable Wireless Ad hoc System for
Post Disaster Management. Comput. Mater. Contin. 2021, 69, 1725–1746. [CrossRef]

39. Zhou, H.; Wang, X.; Umehira, M.; Chen, X.; Wu, C.; Ji, Y. Deep reinforcement learning based access control for disaster
response networks. In Proceedings of the GLOBECOM 2020—2020 IEEE Global Communications Conference, Taipei, Taiwan,
7–11 December 2020; pp. 1–6. [CrossRef]

40. Ngo, T.; Nishiyama, H.; Kato, N.; Sakano, T.; Takahara, A. A Spectrum- and Energy-Efficient Scheme for Improving the Utilization
of MDRU-Based Disaster Resilient Networks. IEEE Trans. Veh. Technol. 2014, 63, 2027–2037. [CrossRef]

41. Wang, H.; Zhao, H.; Wu, W.; Xiong, J.; Ma, D.; Wei, J. Deployment algorithms of flying base stations: 5G and beyond with UAVs.
IEEE Internet Things J. 2019, 6, 10009–10027. [CrossRef]

42. Xu, Z.; Wang, Y.; Tang, J.; Wang, J.; Gursoy, M.C. A deep reinforcement learning based framework for power-efficient resource
allocation in cloud RANs. In Proceedings of the 2017 IEEE International Conference on Communications (ICC), Paris, France,
21–25 May 2017; pp. 1–6.

43. Zhao, N.; Liang, Y.-C.; Niyato, D.; Pei, Y.; Jiang, Y. Deep reinforcement learning for user association and resource allocation
in heterogeneous networks. In Proceedings of the 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi,
United Arab Emirates, 9–13 December 2018; pp. 1–6. [CrossRef]

44. Zhao, N.; Liang, Y.-C.; Niyato, D.; Pei, Y.; Wu, M.; Jiang, Y. Deep Reinforcement Learning for User Association and Resource
Allocation in Heterogeneous Cellular Networks. IEEE Trans. Wirel. Commun. 2019, 18, 5141–5152. [CrossRef]

45. Li, Z.; Wen, X.; Lu, Z.; Jing, W. A General DRL-based Optimization Framework of User Association and Power Control for HetNet.
In Proceedings of the 2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications
(PIMRC), Helsinki, Finland, 13–16 September 2021; pp. 1141–1147.

46. Li, Z.; Wen, X.; Lu, Z.; Jing, W. A DDPG-based Transfer Learning Optimization Framework form User Association and
Power Control in HetNet. In Proceedings of the 2022 IEEE International Conference on Communications Workshops (ICC 750
Workshops), Seoul, Republic of Korea, 16–20 May 2022; pp. 343–348.

47. Narottama, B.; Shin, S.Y. Dynamic power allocation for non-orthogonal multiple access with user mobility. In Proceedings of the
2019 IEEE 10th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), Vancouver, BC,
Canada, 17–19 October 2019; pp. 0442–0446. [CrossRef]

https://doi.org/10.1155/2021/5051328
https://doi.org/10.1016/j.engappai.2021.104234
https://doi.org/10.1109/MVT.2019.2903655
https://doi.org/10.1145/3508546.3508598
https://doi.org/10.3390/app11094135
https://doi.org/10.3390/s21072302
https://doi.org/10.1109/icra46639.2022.9811973
https://doi.org/10.1109/iccworkshops53468.2022.9814668
https://doi.org/10.1109/vtc2022-fall57202.2022.10013059
https://doi.org/10.20965/jdr.2019.p0363
https://doi.org/10.32604/cmc.2021.017952
https://doi.org/10.1109/globecom42002.2020.9322553
https://doi.org/10.1109/TVT.2014.2314462
https://doi.org/10.1109/JIOT.2019.2935105
https://doi.org/10.1109/glocom.2018.8647611
https://doi.org/10.1109/TWC.2019.2933417
https://doi.org/10.1109/iemcon.2019.8936269

Sensors 2023, 23, 6448 21 of 21

48. Masaracchia, A.; Nguyen, V.-L.; Nguyen, M. The impact of user mobility into non-orthogonal multiple access (NOMA) transmis-
sion systems. EAI Endorsed Trans. Ind. Netw. Intell. Syst. 2020, 7, e5. [CrossRef]

49. Neely, M.J.; Modiano, E.; Rohrs, C.E. Dynamic power allocation and routing for time varying wireless networks. In Proceedings
of the IEEE INFOCOM 2003. Twenty-Second Annual Joint Conference of the IEEE Computer and Communications Societies 756
(IEEE Cat. No. 03CH37428), San Francisco, CA, USA, 30 March–3 April 2003; Volume 1, pp. 745–755.

50. Wang, Y.; Meyer, M.C.; Wang, J. Base Station Allocation for Users with Overlapping Coverage in Wirelessly Networked Disaster
Areas. In Proceedings of the 2019 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive
Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress
(DASC/PiCom/CBDCom/CyberSciTech), Fukuoka, Japan, 5–8 August 2019; pp. 954–960. [CrossRef]

51. Zhang, B.; Liu, S.; Yu, J.-L.; Han, Z. A Learning Aided Long-Term User Association Scheme for Ultra-Dense Networks. IEEE
Trans. Veh. Technol. 2021, 71, 820–830. [CrossRef]

52. Zhou, H.; Wang, X.; Umehira, M.; Chen, X.; Wu, C.; Ji, Y. Wireless Access Control in Edge-Aided Disaster Response: A Deep
Reinforcement Learning-Based Approach. IEEE Access 2021, 9, 46600–46611. [CrossRef]

53. Bai, F.; Helmy, A. A survey of mobility models. In Wireless Ad hoc Networks; University of Southern California: Los Angeles, CA,
USA, 2004; Volume 206, p. 147.

54. Hausknecht, M.; Stone, P. Deep reinforcement learning in parameterized action space. arXiv 2015, arXiv:1511.04143.
55. Masson, W.; Ranchod, P.; Konidaris, G. Reinforcement learning with parameterized actions. In Proceedings of the AAAI

Conference on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016; Volume 30. No. 1.
56. François-Lavet, V.; Henderson, P.; Islam, R.; Bellemare, M.G.; Pineau, J. An introduction to deep renforcement learning. Found.

Trends®Mach. Learn. 2018, 11, 219–354. [CrossRef]
57. Xiong, J.; Wang, Q.; Yang, Z.; Sun, P.; Han, L.; Zheng, Y.; Fu, H.; Zhang, T.; Liu, J.; Liu, H. Parametrized deep Q-networks learning:

Reinforcement learning with discrete-continuous hybrid action space. arXiv 2018, arXiv:1810.06394.
58. Wang, N.; Hossain, E.; Bhargava, V.K. Joint Downlink Cell Association and Bandwidth Allocation for Wireless Backhauling in

Two-Tier HetNets with Large-Scale Antenna Arrays. IEEE Trans. Wirel. Commun. 2016, 15, 3251–3268. [CrossRef]
59. 3rd Generation Partnership Project (3GPP). Further Advancements for E-UTRA Physical Layer Aspects (Release 9); 3rd Generation

Partnership Project (3GPP): Sofia Technology Park, France, 2016.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.4108/eai.21-10-2020.166669
https://doi.org/10.1109/dasc/picom/cbdcom/cyberscitech.2019.00175
https://doi.org/10.1109/TVT.2021.3127367
https://doi.org/10.1109/ACCESS.2021.3067662
https://doi.org/10.1561/2200000071
https://doi.org/10.1109/TWC.2016.2519401

Contact: Mau Luen Tham

Universiti Tunku Abdul Rahman, Malaysia

Email: thamml@utar.edu.my

ASIA-PACIFIC TELECOMMUNITY Document No:

The 35th APT Standardization Program Forum

(ASTAP-35)

ASTAP-35/INP-xx

17-20 April 2023, Bangkok, Thailand 13 April 2023

Malaysia

PROPOSED INCLUSION OF NEW USE CASE TO APT REPORT ON

LOCAL-AREA RESILIENT INFORMATION SHARING AND COMMUNICATION

SYSTEMS

In the Expert Group on Disaster Risk Management and Relief System (EG DRMR) of ASTAP

Working Group Network and System (WG NS), an ATP report, entitled “APT Report on local-

area resilient information sharing and communication systems,” has been discussing since

ASTAP-33, June 2021. In this report, editorial efforts are being made by NICT. In the latest draft

shown below, some systems including “NerveNet” have been described.

ASTAP-34/TMP-22

Draft of APT Report on local-area resilient information sharing and communication systems

https://www.apt.int/sites/default/files/2022/04/ASTAP-34-TMP-

22_LocalAreaResilientSystem_EG_DRMRS-20220421.docx

Universiti Tunku Abdul Rahman (UTAR), Malaysia has collaborated with NICT in using

NerveNet for disaster monitoring. Thus, Malaysia would like to include a new use case of

NerveNet to Section 5.1.3.4 of the APT report.

Proposed text:

5.1.3.4. Disaster Monitoring using Artificial Intelligence (AI) and NerveNet

When disaster events happen, an efficient rescue operation requires the detected disaster type

and number of victims. A straightforward approach would be deploying two single-task AI

models that perform the disaster classification and victim detection separately, as shown in

Figure 5-6(a). Such approach is ill-suited for IoT applications due to high memory footprint and

computing power. A better solution would be using a multi-task learning (MTL) model, as

displayed in Figure 5-6(b). The advantages of using the MTL model are listed in Figure 5-6(c).

ASTAP-32/ADM-01 Page 2 of 3

Figure 5-7 shows the implementation of MTL model in a low-powered IoT device (Raspberry

Pi).

Figure 5-6: (a) Conventional AI model. (b) Multi-task learning AI model. (c) Advantages of

using multi-task learning model.

(a) (b)

✓ LESSER memory requirements

✓ BETTER disaster classification accuracy

✓ SAME victim detection performance

✓ FASTER inference speed

(c)

Figure 5-7: Raspberry Pi (a) Front View. (b) Rear View.

(a) (b)

ASTAP-32/ADM-01 Page 3 of 3

Figures 5-8 shows the inference output of the MTL model at different areas.

Considering that communications infrastructure may be destroyed during disaster, resilient

networking is attained by implementing the NerveNet testbed as shown in Figure 5-9.

Figure 5-10 displays the working flow of the disaster monitoring solution. Once the detection

result for every particular video frame is obtained, rolling average prediction is applied to reduce

prediction flickering.

Figure 5-8: (a) Flood. (b) Earthquake. The joint disaster classification and victim count

prediction are labeled at the top left corner of the input images.

(a) (b)

Figure 5-10: Working flow of disaster monitoring.

Figure 5-9: NerveNet testbed.

