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Abstract— Rapid response and recovery efforts are critical 

to emergency and disaster management. It is important that 

rescue teams need to arrive at incident location within a short 

time to minimize the risk and damage. The effective evacuation 

route estimating algorithm is developed for complicated 

unstructured road network based on the Dijkstra algorithm. 

The proposed system will estimate the optimal evacuation 

route for emergency services and vehicles such as fire service 

vehicle,  ambulance and police car. It is also provided to search 

the near relief area and guiding to move the safe place through 

the optimal evacuation route assessment. The nearest 

emergency service is estimated by extracting surround services 

system. The haversine distance is applied for measuring 

between two locations. The optimal route is computed from 

service center to the incident location after estimating the 

nearest emergency services. Yangon’s complex road network is 

selected to implement the proposed web-based application 

system.  
Keywords: Rapid response, Disaster management, Evacuation 

route, Advanced Dijkstra algorithm, Emergency Services and 

Vehicles.  

I. INTRODUCTION 

    Emergencies can occur at any time without notice or 

message. Emergencies may be caused by accidents, fires, 

explosions and natural disaster. An emergency is a terrible 

situation that can endanger people and the environment and 

requires an immediate response from emergency services 

and rescue teams. In many developing countries, the rate of 

emergency damage is still high due to lack of emergency 

respond scheme and unstructured road grids. Because of 

disaster and unfinished reconstruction,  some roads are 

damaged, and some roads are impassable. It is a critical task 

of medical service centers, fire stations and emergency 

rescue teams, to move the injured people to the hospitals 

within a short time. Weak road network infrastructure 

makes it difficult for emergency vehicles to reach the 

incident place quickly. To address this situation, an effective 

evacuation route strategy for emergency vehicles is 

proposed to get to the incident location and destination 

quickly. Yangon road network is selected for implement the 

proposed system. The location of three emergency services, 

fire stations, hospitals and police stations in Yangon region 

are collected and stored in database. Inadditing, the location 

of road, street and road condition are added in database.  

    There are some researches related to optimal part finding 

algorithm [1-5]. The proposed evacuation route findinding 

system is extened based on previous research works [1-3]. 

The geospecial parth optimization  algorithem for hospital 

was implemented for a case study of Allahabad city[4].   

     S.Sivakumaret al.[5] proposed the Modified Dijkstra’s 

shortest path algorithm with multiple features such as cost, 

time and congestion. Most traditional route search methods 

are often used as the criteria for choosing the shortest route 

with the travel distance. 

     In this study, a unique optimization algorithm based on 

Dijkstra's algorithm has been upgraded, including the 

addition of certain parameters and conditional statement of 

roads to find the effective evacuation routes and better 

implementation of the safest and convenient routes. 

Yangon's road network is used to evaluate the proposed 

system of intricate, narrow, one-ended roads, a complex 

road network. The optimal route finding strategy is 

improved by using the web technology for emergency 

vehiles such as fire truck, ampulance and police car when 

the accident occurs on unstructure road network. 

This research is a part of the “ Context-Aware Disaster 

Mitigation using Mobile Edge Computing and Wireless 

Mesh Network”, ASEAN IVO project. One of the goals of 

this project is to find the rapid route or optimal route 

identification on complex road network for fire vehicle.   

II. GENERATING THE ROAD NETWORK DATA BASE  

    The proposed optimal route detection system for the 

emergency vehicles is primarily to save lives and properties 

and to pinpoint the exact location of emergencies.   

A. Data Collection for Tested Area 

      The downtown area of Yangon’s road network is selected 

for the study area of the proposed system. It is one of the 

largest cities in Myanmar and which is built with 

complicated  unstructured road like a narrow road and a 

closed road. The location data (latitude, longitude) of 85 

hospitals and clinics, 41 fire force stations and 50 police 

stations are collected for emergency services. 
 

 

 

 

   

 

 

 

  

 

  

Fig. 1.  Emergency Services Location Map. 
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  Figure 1 is illustrated the location map of the emergency 

services in Yangon. All location of roads, narrow streets and 

road conditions are also added in created database. 

B. Quantum Geographical Information System(QGIS) 

The creating the vector map of Yangon Road network, 

data analyzing and editing the special data information are 

performed by  QGIS. It is incorporated with other open-

source packages as GRASS, PostGIS, Map and GIS server.            

Yangon's road network is made up of 100,000 edges and 

35,000 nodes. 

III. PROPOSED OPTIMAL ROUTE  FINDING SYSTEM 

     The aim is to reduce the level of damage by searching the 

near emergency services from the incident place and 

minimizing delays along the route to an emergency location.  

A. Overview of the Proposed System 

     The overview of the proposed web application structure 

is shown in Fig. 2. The system collects the  address or street 

name as emergency location information to determine the 

exact location of the incident. The system can then check 

the location with special coordinates on Google-Maps. The 

close emergency services are estimated by the  Haversine 

measurement.  

  

 

Fig. 2.  Overview of the proposed System. 

B. Computing the Optimal Route 

    After estimating the nearest emergency services, the 

optimal route from services center to the incident location is 

calculated. Source place is defined for emergency service 

and destination place is for incident place. For compairson 

result, optimal route is computed for both of ordinary 

method and proposed method. The proposed modified 

Dijkstra algorithm (pseodo code) is described as follow:  

 

 

 

 

 

 

 

 

 

 

 

 

      

 

  

IV. EXPERIMENTS AND RESULTS 

In experiment, the optimal evacuation route for fire vehicle 

is computed in original and modified Dijkstra method. The 

fire event is in KMS kyar street, Tamwe township. The 

result of incident location verification and estimated nearest 

emergency services are shown in Fig 3(a) and Fig. 3(b), 

respectively. The optimal route computing results for 

original and proposed approach are illustrated in Fig 3(b) 

and Fig 3(b), respectively. The computation time for number 

of nodes  in each operation are shown in Table1. 

    
                            (a)                                                    (b)               

    
                       (c)                                                    (d) 

       Fig. 3.  The Optimal Route between the Fire Dept. and KMS kyar street. 

Table 1 Evaluation of Runtime Complexity Based on No. of Nodes. 

                

V. CONCLUSION 

The estimating of effective emergency route strategy is 
proposed for complexed road network of Yangon. The 
proposed work will help emergency rescue teams to reach 
the incident location in a short time save the lives and 
properties. It will deploy a nearby victim area and will carry 
the best rescue routes to evacuate people from dangerous 
areas. On integrating with real time road traffic condition 
obtained by IOT sensor will be considered to improve this 
proposed approach.  
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Abstract— Recent advances in deep learning and computer 

vision have transformed surveillance into an important 

application for smart disaster monitoring systems. Based on the 

detected number of victims and activity of disasters, emergency 

response unit can dispatch manpower more efficiently, which 

could save more lives. However, most of existing disaster 

detection methods fall into the class of single-task learning, 

which can either detect victim or classify disaster. In contrast, 

this paper proposes a YOLO-based multi-task model which 

performs the aforementioned tasks simultaneously. This is 

accomplished by attaching a disaster classification head model 

to the backbone of a victim detection model. The head model is 

inherited from the MobileNetv2 architecture, and we precisely 

select the backbone feature map layer to which the head model 

is attached. For the victim detection, results reveal that the 

solution achieves up to 0.6938 and 20.31 in terms of average 

precision and frame per second, respectively. Whereas for the 

disaster classification, the algorithm is comparable with most 

deep learning models that are specifically trained for single task. 

This shows that our solution is flexible and robust enough to 

handle both victim detection and disaster classification. 

Keywords—deep learning, disaster image classification, 

YOLO, victim detection, multi-task learning 

I. INTRODUCTION 

 Every year, natural disasters such as hurricanes and 
wildfires generate substantial amounts of damages, monetary 
costs, as well as injuries and deaths. For example, the 2021 
Fukushima earthquake inflicted 187 casualties, while causing 
significant damage across Japan [1]. Given that the first 72 
hours after a disaster are critical for rescuing survivors [2], 
disaster response system plays a vital role in facilitating search 
and rescue efforts. Based on the reported number of victims 
and activity of disasters, emergency response unit can dispatch 
manpower more efficiently, which could save more lives. 
Clearly, the underlying premise behind these steps is an 
accurate disaster detection.   

Video analytics is regarded as one of the most promising 
candidates for detecting disaster [3]. It prevails over dedicated 
sensors in the context of smoke and wildfire detections [4]. 
Traditional works rely on machine learning techniques, which 
require manual feature extraction. In [5], a hierarchical 
disaster image classification framework based multiple 
correspondence analysis was proposed to aid emergency 
managers in disaster response situations. The handcrafted 

features consist of twelve low-level color features and nine 
mid-level object location features. To classify disaster 
damage, the authors in [6] leveraged a Bag-of-Visual-Words 
(BoVW) model that utilizes Histogram of Oriented Gradients 
(HOG) handcrafted features. 

Modern detection methods automatically learn high-level 
features through a convolutional neural network (CNN), 
which is known as deep learning. The output is regarded as 
the combination of object classification and localization. You 
Only Look Once (YOLO) [7] and Single-Shot Detector (SSD) 
[8] are two prevalent object detection methods. The former 
formulates the object detection as a regression problem in such 
a way that it can pass the input image only once to CNN for 
end-to-end training. Unlike YOLO, SSD does not segment the 
image into multiple gids and predict several bounding boxes 
per grid. Instead, SSD utilizes anchor boxes to make 
predictions on multi-scale feature map.  

In this paper, we select YOLO over SSD due to its 
superiority in achieving the tradeoff between accuracy and 
speed [9]. Different from existing disaster-related works, 
which focus on single-task learning, we aim to propose a 
unified multi-task model that performs disaster classification 
and victim detection simultaneously. The contribution lies in 
eliminating the straightforward approach of running multiple 
individual CNN models, especially on low-powered 
embedded systems. The unified model facilitates edge 
computing, which is one of goals of the ASEAN IVO project 
titled “Context-Aware Disaster Mitigation using Mobile Edge 
Computing and Wireless Mesh Network”.   

The rest of the paper is organized as follows. Section II 
describes related works. In Section III, we present the 
proposed solution. Section IV reports results and discussions. 
Section V concludes the paper.  

II. LITERATURE REVIEW 

A.  Disaster Detection 

 The emergence of machine learning has paved the way for 
smart disaster response systems. Embedding versatile 
machine intelligence into various tasks of disaster detection  
has received considerable attention from both academia and 
industry communities.  

 Recognizing the power of CNN, the authors in [10] 
proposed a damage assessment method which outperforms the 
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BoVW model. The collected Damage Assessment Dataset 
(DAD) consists of four major natural disasters. Another CNN 
framework was adopted in [11], where multiple pretrained 
unimodal CNNs that extract features from raw text and images 
independently are combined and fed into a final classifier for 
disaster damage identification. Their dataset, known as 
Damage Multimodal Dataset (DMD), is composed of five 
different damage categories collected from various sources of 
text and images. 

Inspired by the fact that Twitter has rapidly grown to a 
popular social network platform with a plethora of content-
rich messages, the work in [12] released a large multimodal 
dataset collected from Twitter during different natural 
disasters, known as CrisisMMD. The authors in [13] took one 
step forward by automatically classifying tweet messages that 
people post during disasters into one dataset of user-defined 
situational awareness categories, known as Artificial 
Intelligence for Disaster Response (AIDR). 

The performance of disaster detection model is tightly 
connected with the quality and quantity of dataset. On one 
hand, the availability of multiple datasets facilitates the 
learning process of CNN. On the other hand, the heterogeneity 
stemming from the datasets presents a hurdle for 
benchmarking purpose. In response, the authors in [14] first 
consolidated the aforementioned four datasets into a dataset 
called Crisis Image Benchmarks Dataset, and subsequently 
validated the performance on several CNN models such as 
VGG16 [15] and MobileNet [16]. Unlike the previous works 
[10-11,13] which focus on single-task classification, the same 
authors in [14] extended their work to a multi-task 
classification model [17], which targets on (i) disaster types, 
(ii) informativeness, (iii) humanitarian, and (iv) damage 
severity assessment. However, the solution is limited to 
classification tasks, without considering the additional 
requirement to locate the instances in an image. In contrast, 
our work aims to develop a multi-task learning (MTL) model 
which jointly executes disaster classification and victim 
detection. 

B. Multi-task Learning (MTL) 

MTL is to perform more tasks using one model, without 
the need of using separate model for each task. Generally, it 
can be categorized into two classes, namely hard and soft 
parameter sharing. Hard parameter sharing is the most 
frequently used approach to MTL in deep learning [18]. As 
illustrated in Fig. 1 (a), the general idea of hard parameter 
sharing is to share multiple hidden layers for all tasks, which 
are then branched out into several task-specific output layers. 
In the computer vision domain, the shared hidden layers are 
usually the modern CNN architectures. Although hard 
parameter sharing is useful in many scenarios, it could break 
down easily if the tasks are not closely related or require 
reasoning on different levels. As for soft parameter sharing, 
each task has its own backbone, where the parameters of each 
backbone are regularized to encourage them to be similar. 
These layers are often referred to as the constrained layers. 
After that, each backbone is connected to the task-specific 
output layers. Fig. 1 (b) shows an example of MTL using the 
soft parameter sharing approach.  

In the context of object detection, MTL can be categorized 
into three types. Firstly, there are multi-task object detection 
models that add an additional head model(s) for other tasks 
(s). In such a model, a head model is branched out from the 
backbone or the neck of the original detector for each new 

task. Examples of using hard parameter sharing can be found 
in [19-21]. In self-driving car application, the work in [20] 
added another head model for lane lines detection to the joint 
segmentation and detection model. The algorithm in [21] 
adopted four head models for (i) citrus detection and (ii) 
segmentation, as well as (iii) maturity and (iv) quality 
classification on the detection citrus. On the other hand, the 
authors in [22] resorted to the soft parameter sharing 
approach, where a Task-related Attention Module (TAM) was 
used to share information between the two head models.  

Secondly, some multi-task object detection models are 
achieved with minimal modification on the original detector 
model. In [23], a multi-task object detection model was used 
to predict the class and the relative distance of the detected 
vehicle. The authors discretized the distance of the detected 
vehicle, making the distance prediction a classification task 
instead of a regression task. Then, the vehicle class and the 
distance labels were combined into one unified label. For 
instance, given M vehicles classes and N types of distance to 
be predicted, there will be a total of M x N new labels to be 
formed. As a result, the multi-task model is no different from 
a regular object detection model. However, it has to learn to 
predict the class and the distance of the detected vehicles 
simultaneously, making it a multi-task model.   

Lastly, some multi-task object detection models used other 
tasks to improve the performance of object detection. In such 
applications, the additional tasks are auxiliary tasks, which 
serve as a refinement to the main task (object detection). The 
auxiliary tasks are added to learn features that could help the 
object detection head model to predict more accurately. For 
example, [24] used three auxiliary tasks, which include (i) 
closeness labelling, (ii) multi-object labelling and (iii) 

Fig. 1.  Multi-task learning can be categorized into two main 

approaches. (a) Illustration of hard parameter sharing approach. (b) 
Illustration of soft parameter sharing. 
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foreground labelling to learn additional features for the object 
detection head model. 

III. PROPOSED SOLUTION 

A multi-task model is designed for victim detection and 
disaster classification, using the hard parameter sharing 
approach. A head model for disaster classification is added on 
top of the backbone of the selected object detection model. 

A. Object Detection Model 

As mentioned, we select YOLO as the object detection 
model because of its high speed and accuracy. Although 
YOLOv4 [25] is the latest version, YOLOv3 is still regarded 
as one of the most widely used object detector [26]. Without 
loss of generality, we focus on developing the YOLOv3 based 
multi-task model. The results are also expectably applicable 
to YOLOv4, which follows the same structural design as 
YOLOv3.  

YOLOv3's backbone is DarkNet-53, which is a deep 
residual network inspired by the Residual Neural Network 
(ResNet). YOLOv3 also adopts the Feature Pyramid Network 
(FPN) as its neck model to extract features at three different 
scales. FPN takes three feature maps from the 82nd, 94th and 
the last layer from DarkNet-53 as its inputs. Lastly, three head 
models (or decoders) are used to detect objects based on the 
three different features from the FPN. The head model is very 
simple. It consists of two convolutional layers, where a 3 x 3 
convolutional layer is followed by a 1 x 1 convolutional layer. 
The output channel of each head model is 3 (K + 5), where K 
is the total number of classes to be predicted. For the 
remaining five channels, four are used to predict the spatial 
coordinate of the bounding boxes (x, y, w, h) and one for 
objectness score. 

Ideally, an object detection model should only predict one 
bounding box for each detected object. However, an object 
detector will likely predict more than one bounding box for 
each object. Thus, Non-Maximum Suppression (NMS) is 
applied to remove the redundant bounding boxes. After 
applying NMS, we set the number of bounding boxes to be the 
victim count. To this end, a layer will be added to compute 
and return the victim count as a tensor. Fig. 2 shows the model 
architecture of the YOLOv3 for victim detection and victim 
counting. 

B. Disaster Classification Head Model 

The disaster classification head model will be added to one 
of the output feature maps from the DarkNet-53. It is 
important to decide where should the head model be attached 
to the DarkNet-53. This is because the disaster classification 
task requires different high-level feature maps compared to 
the victim detection task. Since the disaster classification 

task's activation map does not focus on any victim-shape 
objects [17], it is important to select a feature map from 
DarkNet-53 that has not highly specialized for victim 
detection. 

After some empirical testing, we decided to add the head 
model to the 94th layer of DarkNet-53 instead of the 82nd or 
the last layer. We do not attach the head model to the last layer 
of DarkNet-53, because the feature maps produced by this 
layer are highly specialized for victim detection. On the other 
hand, the feature maps extracted in the 82nd layer are 
considerably too low-level. The 94th layer of DarkNet-53 
seems to provide feature maps that are not too specialized for 
victim detection, but still consist of some high-level features 
that could be shared for both tasks. 

The head model for disaster classification adopts the 
MobileNetv2 architecture [27], because it is designed for 
lightweight and fast applications. Specifically, our disaster 
classification head model borrows the architecture of the last 
few blocks in the MobileNetv2, which consists of two inverted 
residual blocks, one pointwise convolution layer followed 
with a global average pooling, and one more pointwise 
convolution layer for the classification. 

Fig. 3 shows the detailed structure of the disaster 
classification head model. DW represents a 3 x 3 depthwise-
separable convolution layer, while PW represents a 1 x 1 
conventional convolution layer (which is a pointwise 
convolution). BN represents a batch normalization layer, and 
ReLU6 is ReLU clipped at a maximum value of 6, as used in 
[28] for depthwise-separable convolution. 

C. The Unified Model 

A victim detection model based on YOLOv3 is used as the 
based model. Then, the disaster classification head model will 
be attached to the second feature map output by the DarkNet-
53 backbone in YOLOv3. Together, a unified multi-task 
model for victim detection and disaster classification is 
formed. Fig. 4 illustrates the architecture of the model. 

 

Fig. 2. The architecture of the YOLOv3 for victim detection and 
counting. 

Fig. 3. The architecture of the disaster classification head model. 
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IV. EXPERIMENTS 

A. Datasets 

The images used in the dataset are extracted from the 
Crisis Image Benchmarks Dataset [14]. The sub-dataset for 
disaster types is used to train both the disaster classification 
task and victim detection task. The class label for disaster type 
in the sub-dataset include (i) fire, (ii) hurricane, (iii) flood, (iv) 
earthquake, (v) landslide, (vi) other disasters (to cover the 
remaining disaster types, such as bus or car accident, plane 
crash, explosion, and war) and (vii) not disaster. The data split 
for the sub-dataset is as shown in Table I. 

 There is a lack of publicly available victim detection 
datasets. Thus, the disaster type dataset will be annotated for 
victim detection. The dataset is labelled using Auto-Annotate, 
which is built on top of a Mask R-CNN model. The pre-trained 
Mask R-CNN model has been forked 1400 times in GitHub, 
making it a reliable model. After auto-annotating the dataset, 
manual inspection is done to validate the generated bounding 
boxes. In total, 5994, 634 and 1448 images from the train, 
validation and test dataset, respectively, are labelled. The 
remaining images are not used because there is no victim in 
the images. Table II shows the data split for the custom victim 
detection dataset. 

TABLE I.  DATA SPLIT FOR DISASTER TYPES TASK. 

Class Labels Train Validation Test 

Fire 1270 121 280 

Hurricane 1444 175 352 

Flood 2336 266 599 

Earthquake 2058 207 404 

Landslide 940 123 268 

Other Disaster 1132 143 302 

Not Disaster 3666 435 990 

Total 12846 1470 3195 

 

 

 

TABLE II.  DATA SPLIT FOR VICTIM DETECTION DATASET. 

Class Labels Count 

Train 5994 

Validation 634 

Test 1448 

Total 8076 

 

B. Training Details 

The head models for victim detection and disaster 
classification are trained separately. A YOLOv3 for victim 
detection will be trained as a base model. Then, the trained 
DarkNet-53 backbone will be frozen, and used as the 
backbone for the disaster classification head model. After the 
training, the head models will be attached to the trained 
YOLOv3, resulting a unified model. All models in this paper 
are trained on the NVIDIA GeForce RTX 2070 SUPER 
Graphic Cards. Table III shows the complete configuration of 
the experimental platform. 

A YOLOv3 model pretrained on the COCO dataset is used 
for transfer learning. The weights for DarkNet-53 and FPN 
layers will be transferred to our model. These weights are 
frozen and will not be trained. On the other hand, the three 
head models will be initialized randomly. We trained the 
model for 100 epochs with 0.99 momentum and 0.0005 

Fig. 4. The architecture of the unified model for victim detection and disaster classification. YOLOv3 is used as the base model, where a custom layer for 
victim counting after the NMS layer. A disaster classification head model is added to the second output feature maps from the DarkNet-53 backbone. 

TABLE III.  CONFIGURATION OF EXPERIMENTAL PLATFORM. 

Names Configuration 

Operating System Ubuntu 18.04 

CPU Intel Core i7-10875H CPU, 2.30 gigahertz 

RAM (GB) 64 

GPU NVIDIA GeForce RTX 2070 SUPER 

GPU Acceleration 

Libray 
CUDA9.1, CUDNN7.6.5 
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weight decay. A batch size of 64 is used on one graphic 
processing unit only. Adam optimizer is used with the initial 
learning rate set to 0.001. To avoid over-fitting, adaptive 
learning rate method is used. The learning rate is reduced by a 
factor of 0.1 when the validation loss stops decreasing after 
three epochs. Similar training procedures are repeated for the 
disaster classification, except that the three head models are 
replaced by the customized MobileNetv2 like head model. 

C. Performance Evaluation 

The performance of the two tasks will be evaluated 
separately. For victim detection task, average prevision (AP) 
is used as the evaluation metric to evaluate the performance of 
the victim detection model. AP is derived from precision and 
recall. The definition of precision (P) and recall (R) are as 
shown in (1) and (2): 

 � �
��

�����
 (1) 

 � �
��

�����
 (2) 

where TP, FP and FN are true positive count, false positive 
count, and false negative count, respectively. Based on the 
precision and recall, the AP can be expressed as the integral 
of function P of R as shown in (3). 

 	� � 
 � ����
�

�
 (3) 

 The train, validation and test PR curves of the victim 
detection model are plotted in Fig. 5. The train, validation and 
test AP of the model are 0.7814, 0.6907 and 0.6938, 
respectively. Also, the average frame per second is 20.31, 
making it suitable for real-time disaster monitoring.  

Fig. 6 shows some examples of victim detection using our 
model. On the other hand, the performance of the disaster 
classification head model will be evaluated using accuracy, 
precision, recall and F1 score. Table IV compares the results 
with those extracted from [17].  

 

 

TABLE IV.  DISASTER CLASSIFICATION USING DIFFERENT MODELS. 

Backbone Accuracy Precision Recall F1 Score 

ResNet18 0.812 0.807 0.809 0.809 
ResNet50 0.817 0.810 0.812 0.812 
ResNet101 0.819 0.815 0.816 0.816 
AlexNet 0.755 0.753 0.753 0.753 
VGG16 0.803 0.797 0.798 0.798 
DenseNet (121) 0.817 0.811 0.813 0.813 
SqueezeNet 0.726 0.719 0.717 0.717 
InceptionNet (v2) 0.808 0.801 0.802 0.802 
MobileNet (v2) 0.793 0.788 0.793 0.789 
EfficientNet (b1) 0.838 0.834 0.838 0.835 

Proposed 
Solution 

0.792 0.827 0.769 0.766 

 

 Interestingly, the proposed solution is comparable with 
most CNN models that are specifically trained for single task. 
The ability to detect victim on top of disaster classification 
comes at the cost of only 2 % accuracy performance loss. As 
for precision, our model has the second highest precision and 
approximate the best model within 0.7 % gap. With regards to 
recall and F1 score, the proposed algorithm performs slightly 
worse than other models. Again, such performance drop is 
contributed by the hard parameter sharing setup. Overall, our 
solution is flexible and robust enough to handle both victim 
detection and disaster classification.  

Fig. 5. Precision-recall curves of the YOLOv3 for victim detection. 

Fig. 6. Victim detection at different areas. (a) Flood. (b) Landslide. (c) 
Earthquake.  

(a) 

(b) 

(c) 
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V. CONCLUSION 

In this paper, we propose a multi-task model for disaster 
classification and victim detection. The model has a high AP 
of 0.6938 for victim detection, with precision and recall as 
high as 0.98 and 0.7. As for the disaster classification task, the 
performance does not surpass the best benchmark 
performance. However, the trade-off is acceptable since our 
backbone is shared for multi-tasking. In future works, the 
proposed models can be optimized using OpenVINO. 
OpenVINO performs static model analysis and redesign the 
model for optimal execution on an edge device. Then, the 
model can be deployed in an IoT framework for disaster 
response. 
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Abstract—Image classification can learn useful insights from 
crisis incidents and is gaining popularity in the field of disaster 
management. This is fueled by the recent advances in computer 
vision and deep learning techniques, where accurate neural 
network models for disaster type classification can be accrued. 
However, these studies quite commonly neglect the prohibitive 
inference workload which may hamper its wide-spread 
deployment, especially for model execution on low-powered 
edge devices. In this paper, we propose a lightweight disaster 
classification model that recognizes four types of natural 
disaster plus one non-disaster class. To support real-time 
applications, the proposed model is optimized with OpenVINO, 
which is a neural network acceleration platform. Different from 
existing works which focus on benchmarking at training stage, 
our experimental results reveal the actual performance at 
inference stage. Specifically, the optimized version achieves up 
to 23.93 frames per second (FPS), which is more than doubled 
the speed achieved by the original model, while sacrificing only 
0.935 % of classification accuracy. 

Keywords—natural disaster, deep learning, disaster image 
classification, OpenVINO, benchmarking 

I. INTRODUCTION 
Artificial intelligence (AI) algorithms are developed with 

the intention of making decisions in real life. Moving forward, 
convolutional neural network (CNN), which is an advanced 
version of AI, is able to learn more meaningful insights from 
images. The training process of these neural network models 
can be facilitated by open-source deep learning (DL) 
frameworks such as TensorFlow [1] and Keras [2]. The 
growing popularity of CNN have paved the way for new 
computer vision applications. One specific area would be 
disaster management [3], where video surveillance cameras 
and sensors can be leveraged to gain situational awareness. 

A natural disaster is an incident caused by nature’s threat. 
It can be defined as a natural phenomenon that causes the 
health impacts of mankind, loss of livelihoods and services, 
social and economic disruption, or properties and 
environmental damage [4]. Some examples are tornadoes, 
earthquakes, floods, and wildfires. Monitoring these disasters 
at large-scale coverage would require a plethora of Internet of 
things (IoT) devices [5], which often have long-range 
transmission range but low computational power.  

Existing works for disaster classification quite commonly 
neglect the prohibitive inference workload which may hamper 

its wide-spread deployment, especially for model execution 
on low-powered edge devices. In this paper, we propose a 
lightweight disaster classification model that identifies four 
types of natural disasters and one non-disaster class. The 
optimized model facilitates edge computing, which is one of 
goals of the ASEAN IVO project titled “Context-Aware 
Disaster Mitigation using Mobile Edge Computing and 
Wireless Mesh Network”. 

The contributions in this study are threefold. First, we 
consolidate a dataset which consists of natural disaster and 
non-disaster images (natural sceneries). Second, we employ 
the transfer learning approach to output a disaster 
classification model before optimizing the model with 
OpenVINO. Third, we provide benchmark results for both 
training and inference stages, which sheds more insights into 
the actual implementation performance. 

The rest of the paper is organized as follows. Section II 
discusses the related works. Section III describes the proposed 
solution. Section IV presents the experimental results and 
discussions. Section V concludes the article. 

II. RELATED WORK 
DL, especially CNN has gained momentum in disaster 

monitoring. According to [6], majority works have focused on 
CNN instead of machine learning (ML) methods due to its 
superior performance. Such gain, however, are only possible 
under the availability of abundant labelled datasets.  

Recognizing the importance of datasets, the authors in [7] 
consolidated a substantial amount of human detection and 
action detection dataset for disaster management application. 
The goal was to develop a DL-based drone surveillance 
framework. However, the framework did not consider disaster 
event classification. A similar work can be found in [8], where 
the authors utilized various CNN architectures including 
ResNet50, Inception V3 and AlexNet in identifying survivors 
in debris. This time, the annotated images were focused on 
earthquake-hit regions.  

The work in [9] focused on classifying disaster events after 
collecting more than 7000 images consisting of cyclones, 
drought, earthquakes, floods, landslides, thunderstorms, 
snowstorms, and wildfires, from social media platforms. The 
burden of annotating data was relieved by adopting active 
learning, which automatically chooses and labels the data 
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from which it learns without human interaction. The authors 
in [10] further divided disaster-related images into four 
different categories, namely disaster type detection, 
informativeness, humanitarian and damage severity. By 
setting binary and multiclass classification labels on a 
consolidated dataset, benchmark results using several CNN 
architectures were provided.  

Apart from the disaster-related images, text messages 
contain critical information such as infrastructural damages, 
casualties, and help requests. The usefulness of such social 
media data has motivated the authors in [11] to develop a 
multimodal fusion model, which combines both visual and 
textual features to classify relevant disaster images. However, 
all the above studies focused on accuracy measurement, where 
high-end graphics processing unit (GPU) such as NVIDIA 
Tesla P100 GPU was utilized. Deploying these trained models 
directly on resource-constrained edge devices remains a 
challenging task [12]. This is especially true for real-time 
disaster monitoring applications. 

Different from the aforementioned works, the authors in 
[13] assessed the CNN performance in terms of accuracy and 
speed. Results showed that their proposed model was able to 
achieve 9 frames per second (FPS) on a low-powered 
embedded device, while maintaining reasonable accuracy. 
However, they did not explore the potential of neural network 
optimization on target devices at the inference stage. Such 
performance acceleration is made possible with an open-
source CNN model inference engine called OpenVINO 
Toolkit [14]. The study in [15] benchmarked several 
pretrained CNN models under the OpenVINO settings. 
However, it remains unaddressed as in how much 
improvement can be brought to implementation by 
OpenVINO, as compared to the unoptimized version.  

III. DL MODEL DEPLOYMENT 
To achieve a robust DL model, training and inference 

phases must be analyzed correctly. To this end, we propose 
the methodology shown in Fig. 1, where the three stages are 
necessary to evaluate the actual performance. 

A. Model Training 
A new natural disaster classification model is trained using 

the transfer learning approach. Without loss of generality, we 
select VGG16 to be the neural network architecture due to its 
high accuracy [6,10,11,13,14, 15]. The results are also 
expectably applicable to other architectures such as DarkNet-

53 [16]. The collected dataset contains natural disaster and 
non-disaster images, which were downloaded from public 
sources: [17] and [18], respectively. The natural disaster data 
consists of cyclones, earthquakes, floods, and wildfires. On 
the other hand, the non-disaster images comprise of nature 
scenes such as coast, mountain, forest, open country, as well 
as man-made scenes like street, inside city, buildings, and 
highways. Table I summarizes the data distribution among 
training, testing, and validation.  

 The dataset split is 67.5 % for training, 25 % for testing, 
and 7.5 % for the validation split. The parameters to fine-tune 
the VGG16 model are shown in Table II. The batch size means 
the number of images from the dataset that are selected from 
the beginning and used to train the natural disaster 
classification model in each iteration throughout the training 
dataset. The number of steps is the number of iterations. After 
each step or iteration, the gradient of the natural disaster 
classification model will be updated. Once all images of the 
training dataset are gone through, one epoch is completed. The 
values of the minimum and maximum learning rates are used 
by the cyclical learning rate (CLR) technique to improve the 
accuracy of the model [19]. 

 CLR requires the minimum and maximum boundary 
values before it can be used. A test on the learning rate range 
is executed whereby training starts at a lowest learning rate of 
10 𝑒𝑒𝑒𝑒−10 . After each batch update, the learning rate will 
increase exponentially until it reaches a rate of 10𝑒𝑒𝑒𝑒1, and the 
current learning rate and loss will be logged simultaneously. 
The loss gives the idea of how the model performs in the 
training and validation datasets as shown in Fig. 2. The CLR 
technique makes the learning rate moves cyclically between 
the set boundaries as shown in Fig 3. 

 

 

Fig. 1.  Methodology for performance evaluation of the proposed model using OpenVINO Deep Learning Workbench. 

 
Fig. 2. Learning rate range test 

 
Fig. 3. CLR plot 
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TABLE I.  DATA SPLIT FOR DISASTER CLASSIFICATION  

Disaster Label Train Validation Test Total 

Cyclone 599 78 251 928 
Earthquake 923 86 341 1350 

Flood 741 80 252 1073 

Wildfire 724 68 285 1077 

Non-Disaster 1821 223 652 2696 

 

TABLE II.  PARAMETERS AND ITS VALUES FOR FINE-TUNING THE 
VGG16 MODEL  

Parameter Value 
Batch Size 32 
Number of Steps 8 
Epoch 48 
Min Learning Rate 1e-6 
Max Learning Rate 1e-4 

 

Along with the immediate responses, the correctness of the 
result is also a very crucial parameter for such applications. 

B. Model Optimization 
To reach the goal of this study, we proposed the method 

shown in Fig. 1. There are five processes to get the output 
predictions for each image in the inference stage. Each stage 
will be discussed in the following sections. 

1)  Obtaining the trained model. A transfer learning approach 
is applied to the pre-trained VGG16 model to output a 
new natural disaster classification model. Fine-tunings 
and parameters are modified with the intention of 
minimizing execution time and increasing accuracy. 

2)  Freezing the model. The model is saved as a .pb file with 
the weights frozen during the training stage. TensorFlow 
version 2.0 is used to execute the training and freeze the 
model. 

3)  Model conversion to a compatible format. Conversion of 
the trained model into Intermediate Representation (IR) 
format needs to be done in order for it to be used in the 
OpenVINO environment [20]. OpenVINO’s model 
optimizer tool is used to perform the conversion, with the 
following code and parameter: 

The parameter –input_shape [1,224,224,3] defines the 
input data properties of the model in the training as 
follows: Number of images [N] × Height [H] × Weight 
[W] × Channels [C]. Note that [N,H,W,C] is for a 
TensorFlow model. After a successful conversion of the 
model to IR format, a .xml (describes the network 
topology) and a .bin (contains the weights and biases 
binary data) file will be generated [21][22].  

4)  Executing inferences. In this stage, OpenVINO’s 
Inference Engine tool is used to perform the inference. A 
custom Python script is executed to initiate plugins, load 

IR model, read the label, input data, infer and process the 
output. The alternative of using a python script is the 
Deep Learning Workbench (DL Workbench). 

5)  Performance evaluation. The original (TensorFlow) 
model and optimized (OpenVINO) model are evaluated 
based on the 25 % test dataset, for precise and accurate 
measurements. For the original model, it is evaluated 
using the classification_report function in TensorFlow 
while the optimized model uses DL Workbench. The 
precision of the TensorFlow’s natural disaster 
classification model is floating-point (FP) 32. In the 
optimized model, the precision can be FP 32, FP 16, and 
integer (INT) 8. In theory, a higher precision gives a 
higher accuracy but requires higher computational power, 
and vice versa. 

C. Model Inference 
There are two inference modes: synchronous and 

asynchronous. The data were fed into the inference engine in 
a synchronous manner, allowing only one image to be 
processed per inference. Asynchronous inference, on the other 
hand, speeds up the process by inferencing one image while 
pre-processing the next image. 

The script to run the inference of the TensorFlow model is 
in asynchronous mode. By default, the inference model in the 
Inference Engine of OpenVINO also uses asynchronous 
mode. However, there are certain disadvantages to this 
method, as acquiring the predictions comes after all of the 
flow is completed. 

IV. EXPERIMENTAL RESULTS 
The proposed model is evaluated using the dataset 

provided in [16] and [17]. Sample images from the dataset can 
be seen in Fig 1. The dimension of the images varies 
throughout the dataset. Image pre-processing based on the 
required input size of 224 × 224 pixels is done before the 
training or inferencing of the model. 

Regarding the hardware used, there are two environments 
that are used to carry out the experiments. Their main 
specifications are described in the following items. 

1)  Hardware on training phase: The hardware used in this 
phase is an Intel NUC equipped with a 10th–generation 
i7-10710U 6-core Intel processor with 64 GB of memory 
and 1 TB of a solid-state drive as the storage. The 
operating system in the Intel NUC is the Ubuntu 18.04 
LTS version. The software used for training is 
TensorFlow version 2.0. 

2)  Hardware on the inference phase: The hardware is similar 
to that of the training phase. The difference is that the 
inference for the optimized model is able to take 
advantage of the Intel integrated graphics, which is Intel 
UHD Graphics. The optimized model is executed in the 
OpenVINO environment, and the version is OpenVINO 
2021.4. 

A. Training Performance 
Once the training of the model is completed, a 

performance test of precision, recall, f1-score, and accuracy is 
executed by the function classification_report. The 25 % test 
dataset is used for the performance evaluation and has a total 
number of 1781 images. 

python3 mo_tf.py --saved_model_dir <model-path> 
--output_dir <output-dir> --input_shape 
[1,224,224,3] 
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Table III shows the performance results of the TensorFlow 
model. It is noteworthy that precision gives us an idea of how 
well the model classifies a natural disaster when it 
output/classify a natural disaster; recall ratio gives us an idea 
of how well the model classifies a natural disaster, given an 
input of natural disaster scenario; F1-score is the harmonic 
mean between precision and recall; support is the number of 
occurrences (or images used) in each class to produce the 
results; and accuracy is the ratio of the correct predictions to 
all of the predictions. 

The performance of TensorFlow’s model has achieved an 
accuracy of 93 %. A few videos have been used as inputs to 
the model and it achieved an average of 7.70 FPS. Note that 
the same test dataset is used to evaluate the performance of the 
optimized model in the subsequent sub-section. 

B. Inferences Performance 
Once the trained model is converted successfully into 

OpenVINO IR format, the optimized model is used by the 
Inference Engine to do inferencing. The DL Workbench tool 
is used to obtain the inference performance of the optimized 
model. Figs. 4 - 7 shows the inference performance overview 
obtained from the DL Workbench. 

TABLE III.  RESULTS OF TENSORFLOW NATURAL DISASTER 
CLASSIFICATION MODEL  

Disaster Class Precision Recall F1-Score Support 

Cyclone 96% 98% 97% 251 
Earthquake 94% 92% 93% 341 

Flood 84% 90% 87% 252 
Wildfire 93% 93% 93% 285 

Non-Disaster 96% 93% 95% 652 

 
 

 
Fig. 4. Performance overview of the optimized FP32 model on Intel CPU 

 

 
Fig. 5. Performance overview of the optimized INT8 model on Intel CPU 

 

 
Fig. 6. Performance overview of the optimized FP32 model on Intel GPU 

 

 
Fig. 7. Performance overview of the optimized FP16 model on Intel GPU 

 
 

TABLE IV.  RESULTS OF OPENVINO OPTIMIZED MODEL RUNNING ON 
CPU  

Precision FP 32 FP 16 INT 8 

Throughput (FPS) 11.81 - 21.35 
Accuracy (%) 92.19 - 92.30 

 

TABLE V.  RESULTS OF OPENVINO OPTIMIZED MODEL RUNNING ON 
INTEGRATED GPU 

Precision FP 32 FP 16 INT 8 

Throughput (FPS) 9.15 23.93 - 

Accuracy (%) 92.19 92.13 - 

 

Table IV presents the performance results of the optimized 
model that runs on an Intel CPU. The INT 8 precision model 
has achieved an increase of 80.8 % FPS and 0.119 % accuracy, 
showing higher performance as compared to the FP 32 
precision model. Hence, the best performance with Intel CPU 
is the INT 8 precision model. The FP 16 precision model is 
not available as it will upscale the model to the FP 32 to 
perform inference due to the limitation of DL workbench and 
the particular Intel CPU used in this study. 

Table V shows the performance results of the optimized 
model that runs on an Intel integrated GPU. The FP 16 
precision model has obtained 162 % higher FPS while 
sacrificing 0.0650 % accuracy, compared to the FP 32 
precision model. The INT 8 precision model is not supported 
on the integrated GPU model [25]. Since the accuracy drop in 
the FP 16 precision model is very low, along with the 
considerable increase of throughput, the FP 16 precision 
model provides the best performance on Intel integrated GPU 
hardware. 

Since TensorFlow’s model runs on the CPU, to ensure 
reliable and accurate results, the comparison is done on the 
optimized FP 32 and INT 8 precision models of the optimized 
model that ran on the same CPU. The optimized FP 32 
precision model achieves an increase of 53.4 % in throughput 
with a loss of 0.871 % in accuracy. Meanwhile, the optimized 
INT 8 precision model achieves an increase of 177 % in 
throughput at the cost of 0.753 % in accuracy. 

On the other hand, if the program is implemented on an 
edge device, which is the Intel NUC in our study, and the 
optimized model is able to run on the Intel integrated GPU 
hardware. Only the optimized FP 32 and FP 16 precision 
model is able to take advantage of the GPU hardware. Since 
the optimized FP 16 precision model provides the best 
performance on GPU hardware, it achieves a substantial 
improvement of 211 % in throughput while only sacrificing 
0.935 % accuracy as compared to the TensorFlow’s model. 

The comparisons show that the OpenVINO optimized 
models have a better performance enhancement over the 
TensorFlow’s model in terms of frame rate inference while 
losing a negligible amount of accuracy. 

DL Workbench is able to display the results of the 
performance summary of the model as shown in Figs. 8 - 11. 
This allows us to identify the throughput, latency, batch, and 
streams values of the model. 
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Fig. 8. Performance results of the optimized FP32 model on Intel CPU 
 

Fig. 9. Performance results of the optimized INT8 model on Intel CPU 
 

Fig. 10. Performance results of the optimized FP32 model on Intel GPU 
 

Fig. 11. Performance results of the optimized FP16 model on Intel GPU 
 

 In this part, we evaluate the performance in terms of 
throughput and latency. It is noteworthy that throughput is the 
number of images processed in a certain amount of time, 
which is one second, and latency is the amount of time used 
to perform an inference for a single image [23]. The INT8 
model on the CPU and the FP16 model on the Intel GPU 
achieve a high throughput while only the INT8 model 
achieves the lowest latency of 44.12 milliseconds. 

V. CONCLUSION AND FUTURE LINES 
Natural disasters happen all around the world. Early 

detection of natural disasters for the people staying around the 
danger zone can enable safe evacuation of the people to a 
nearby shelter. The main issue that the current study aims to 
address is the unbalanced dataset and the need of powerful 
hardware for performing inference. To overcome the dataset 
limitation, we have consolidated a natural disaster dataset, and 
trained a new natural disaster classification model to classify 
natural disaster and non-disaster scenarios. We have 
addressed the need for powerful hardware by deploying the 
trained model into the OpenVINO platform. Lastly, we have 
evaluated the performance of the trained model and concluded 
that the model performs significantly better in the OpenVINO 
environment as compared to the TensorFlow environment.  
DL Workbench is a great tool for conversion of model, 
analysis of the converted model, as well as the performance 

measurement that can be done on it. As for future research 
works, the power consumption of the model running in 
different environments can be measured and it will be used as 
one of the performance metrics. 
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ABSTRACT
The inherent characteristics of Internet of things (IoT) such as low
computation power of IoT nodes and transmission reliability of IoT
links demand a new paradigm for efficient data processing and dis-
semination. This is especially true for disaster situations with high
possibility of communication breakdowns. On one hand, the con-
cept of artificial intelligence of things (AIoT) has been introduced
as a technology to push data storage and computing closer to the
network edge. On the other hand, wireless mesh network offers a
strong self-healing capability and network robustness against disas-
ter damages. To enable smart disaster monitoring applications, we
first implement a lightweight multi-task model that performs joint
disaster classification and victim detection. These AI outputs are
then wirelessly synchronized via a mesh network solution called
NerveNet. All the experiments are conducted in a real urban envi-
ronment, including static and mobile nodes. Experimental results
validate the effectiveness of the proposed solution, where text and
images can be synchronized within two minutes across a multi-hop
Wi-Fi network. Furthermore, the optimized AI model has ultra-low
power consumption around 1.23 W with frames per second (FPS)
of 2.01.
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• Artificial intelligence; • Network experimentation; •Wire-
less integrated network sensors;
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1 INTRODUCTION
Internet of things (IoT) is a network of a cluster of connected em-
bedded devices with identifiers. IoT provides many functions such
as intelligent information processing, reliable information trans-
mission and overall information perception. These characteristics
of IoT can provide an effective guarantee for disaster forecasting,
detection, and precaution ahead of time through the IoT-based early
warning system so that the impact of a disaster can be reduced.

In the traditional IoT framework, these data are transmitted to
a remote central cloud platform through the Internet to be pro-
cessed. However, there is an issue where the big data transmission
process consumes enormous energy, time, cost, and bandwidth.
Therefore, edge computing is introduced to process and analyze
the valuable information from the raw sensor data at the network
edge in real-time [1]. Thus, it can improve the quality of service
(QoS) of applications and reduce the task latency [2].

The evolution of edge computing technology has driven the
smart applications towards the use of artificial intelligence (AI) /
machine learning (ML) / deep learning (DL) algorithms such as con-
volutional neural networks (CNN) in image analysis, and recurrent
neural network (RNN) in semantic analysis. The fusion technology
of AI and IoT is referred to as artificial intelligence of things (AIoT).
The feasibility of this new paradigm has been demonstrated in var-
ious personal and business applications [3]. However, the limited
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processing capacity constraints of IoT devices present a challenge
to integrate AI into AIoT applications [4]. Therefore, various efforts
have been put to improve the AI performance in terms of speed
and power consumption. For example, the work in [5] shows how
ML can be used for flood detection based on weather data recorded
by IoT sensors such as (i) relative humidity, (ii) temperature, (iii)
pressure, (iv) month, and (v) estimated rainfall range.

When disaster events happen, an efficient rescue operation re-
quires the detected disaster type and number of victims. A straight-
forward approach would be deploying two single-task AI models
that perform the disaster classification and victim detection sepa-
rately. Such approach is ill-suited for AIoT applications due to high
memory footprint and computing power. A better candidate would
be using a multi-task learning model, as proposed in [6], which
offers faster frames per second (FPS) and more accurate prediction.

Transmission reliability is another challenge that deserves fur-
ther study in the context of AIoT. This is especially relevant for
disaster situations, where communications infrastructure, such as
cellular base stations (BSs) may be destroyed. Mesh network can
combat against node failures by using several redundant links and
paths to the destination node. If one of these node fails, then other
nodes can be used to reroute the data until it reaches the destina-
tion sink node. In this paper, we implement a mesh networking
solution called NerveNet, which enables fast route switching on
layer 2 [7]. The main contribution of this paper is that we assess
the experimental performance of AIoT based disaster monitoring
application with real implementation of edge AI and wireless mesh
network. Note that the proposed solution facilitates mesh network
database synchronization, which is one of goals of the ASEAN IVO
project titled ”Context-Aware Disaster Mitigation using Mobile
Edge Computing and Wireless Mesh Network”.

The rest of the paper is organized as follows. Section 2 describes
the related work. Section 3 discusses the hardware and configura-
tion used to build the testbed. Section 4 presents the experimental
performance evaluation. Section 5 concludes the paper.

2 RELATEDWORK
2.1 Artificial Intelligence of Things (AIoT)
Several existing works [8]–[10] explored the potential of AIoT for
situational awareness and disaster recovery operations. An ideal
disaster resilient smart cities model is one that could utilize IoT
devices such as smart cameras, drones, radio frequency identifi-
cation (RFID), and sensors in the cities for rapid data collection,
coupled with mobile edge computing for real-time computing. AIoT
has shown its potential in disaster response for both real time data
collection and inferencing. The authors in [11] demonstrated how
sequence model could predict the flow rates in downstream gaug-
ing station based on the flow rate in upstream station. The study
in [12] utilized signals from fire detection system to predict the
potential of house fire and alert the appropriate authorities using
IoT networks.

Edge AI is a special type of AIoT, which brings computing closer
to the data sources, which could be the connected IoT devices or
local edge servers [13]. In edge AI applications, IoT devices will de-
ploy the AI model locally, bypassing the need of sending the input
data to a cloud server for model inferencing before obtaining the

inference output. This could significantly reduce the latency, espe-
cially if the input data is bandwidth-hungry such as high-resolution
images. However, IoT devices generally are low-powered devices
with limited computational capacity, which might inhibit the large-
scale deployment of edge AI. Thus, recent efforts have focused
on optimizing ML models via methods such as model compres-
sion and knowledge distillation [14-15]. Among these efforts, Intel
OpenVINO toolkit emerges as an extremely useful tool for edge
AI facilitation. It is an open-source and production-ready that opti-
mizes DLmodels across any target Intel hardware while minimizing
the inference time [16]. It also comes with a complementary tool
called OpenVINO DL Workbench, which provides a user-friendly
dashboard for model’s performancemeasurement, optimization and
deployment using OpenVINO. A plethora of works exploited Open-
VINO for inference optimization, such as license plate detection
[17].

Arduino and Raspberry Pi are both suitable candidates for AIoT,
However, Raspberry Pi is preferred for complicated projects [18], es-
pecially when dealing with edge AI deployment. In fact, OpenVINO
provides a detailed documentations on OpenVINO installation for
Raspberry Pi [19].

2.2 Disaster Classification and Victim Detection
Literature on disaster classification often surrounds the dataset
since the robustness of disaster monitoring is tightly correlated
with the quality and quantity of training data. There are five major
datasets for disaster classification, which are Artificial Intelligence
for Disaster Response (AIDR) [20], Damage Multimodal Dataset
(DMD) [21], Damage Assessment Dataset (DAD) [22], CrisisMMD
[23] dataset, and Crisis Image Benchmark Datasets (CrisisIBD) [24].
The most notable dataset among all is the CrisisIBD dataset, which
comprises of all the aforementioned dataset. It is labelled for four dif-
ferent tasks: (i) disaster type classification, (ii) informativeness, (iii)
humanitarian categories, and (iv) damage severity. The consolidated
dataset is meant for benchmarking in deep learning tasks related
to disaster response, to address the lack of benchmark datasets for
disaster response domain.

For victim detection task, there is a lack of a proper benchmark
dataset. However, victim detection is essentially an object detection
task. Thus, pretrained object detection models such as You Only
Look Once (YOLO) and Single Shot Multi-Box Detector (SSD) can
be directly adopted without further fine-tuning. In [6], a pretrained
YOLOv3 was used for transfer learning, and fine-tune the model
for a custom victim detection dataset. Meanwhile, [25] explored
similar problem by considering a thermal camera-based victim
detection. Similarly, a MobileNet-SSD pretrained on VOC dataset
was fine-tuned on a custom thermal dataset. Generally, all of the
above works [6], [25] could achieve a robust victim detection model
without needing a large size victim detection dataset, since they
are adopted from pretrained object detection model.

2.3 Multi-Task Learning
Another pool of literature focuses on solving multiple tasks using
one unified model, which is termed as multi-task learning (MTL).
MTL can be categorized into two types, which are hard parameter
sharing and soft parameter sharing. In the first category, different
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Figure 1: Proposed multi-task learning model.

tasks share the same backbone for feature extraction, while having
separate head models (added on top of the backbone) for individ-
ual prediction. Whereas for soft parameter sharing, each task is
allowed to have its own backbone. Clearly, hard parameter sharing
approach is more suitable for edge AI, as it requires lesser computa-
tion workload since each task shares the same backbone. Examples
of hard parameter sharing can be found in [26] and [27]. In [26],
a MTL model adopted four head models for joint citrus detection
and segmentation with citrus maturity and quality classification.
Meanwhile, [27] proposed a MTL model for traffic object detection,
with road segmentation and lane line detection.

There are limited works in disaster response domain that address
multiple tasks together. Research work in [28] was the first to
address the need of MTL model for (i) disaster classification, (ii)
informativeness, (iii) humanitarian categories, and (iv) damage
severity assessment on a given input image. On the other hand,
our previous work [6] is the first to propose a MTL model for joint
disaster classification and victim detection, as shown in Figure 1.
This eliminates the straightforward approach of running multiple
separate DL models for each task, reducing the total latency with
while preserving the accuracy of all tasks. This facilitates real-time
disaster detection on the edge using any camera sensors in an IoT
network.

2.4 NerveNet
NerveNet is a resilient network developed by Japan’s National In-
stitute of Information and Communications Technology (NICT).
NerveNet is a specially developed network for the regional area to
provide reliable network access and a stable, resilient information-
sharing platform in emergencies, even if the base station is de-
stroyed in a disaster. The base stations of NerveNet are intercon-
nected by the Ethernet-based wired or wireless transmission sys-
tems such as satellite, Wi-Fi, LoRa and so on. They will form a
mesh-topological network.

Nowadays, the current trend of the common network infras-
tructures uses the tree topology. As compared to it, NerveNet has
the characteristic that is more tolerant to the faults such as node
failures, disconnections, and destruction of the base station. Since
the base station in the NerveNet supports basic services such as SIP
proxy, DNS, and DHCP, the NerveNet can continuously provide
connectivity services to the devices.

NerveNet has the feature of database synchronisation. It uses a
hearsay daemon to synchronize the database of every node within

the NerveNet network. Specifically, hearsay daemon synchronizes
MySQL databases by updating the queries only and will not delete
any actions when there is a lack of queries in another node’s data-
base. When the NerveNet node is connected to the NerveNet net-
work, it will seek the difference in the table with other nodes.

After that, the database will be updated with the latest data.
However, suppose all the NerveNet nodes are shut down. In that
case, the data in the database will be deleted, and they cannot relieve
the data back by using the hearsay daemon synchronisation since
all the existing databases are empty.

3 AIOT IMPLEMENTATION
The aim of this section is to describe the basic hardware and soft-
ware building blocks needed to establish an AIoT platform for
disaster monitoring. The testbed consists of one Raspberry Pi 4
(RP4) serving as NerveNet monitoring node and five Intel next unit
of computing (NUC) serving as NerveNet base station nodes. The
testbed composition is depicted in Figure 2.

In default, NerveNet is configured to operate in the 172.16.0.0/16
network. The IP address of each node is 172.16.n.1 where n is the
node id of the node defined during the network installation. For
instance, the node in Figure 2a with a label of 208 has a NerveNet
IP of 172.16.208.1.

The wireless links of the NerveNet are established using the
Ethernet remote bridge (ERB) feature of NerveNet. To establish
an ERB link between two nodes, one node must have a wireless
interface configured as a wireless access point (AP) while the other
node must have a wireless interface configured as a station (STA).
Each ERB link is static and definedwith a collection of configuration
files included in the NerveNet distribution. To avoid the Wi-Fi
interference, a different channel is assigned for each NerveNet link.
Alfa wireless adapter is used to establish the NerveNet wireless
links thanks to their superiority in long-range transmission. The
module transmission power of RP4 and Intel NUC are set to 12
dBm and 15 dBm, respectively. All NerveNet nodes except the link
between 210 and 204 are equipped with an omnidirectional antenna
of 9 dBi. The positions of 210 and 204 are located at ground floor
and 8th floor, respectively. Their connectivity is established based
on a pair of 10 dB directional antenna.

Once the wireless mesh network is established, NerveNet
Hearsay daemon can synchronize the data within the MySQL
database based on the checksum of tables defined in the
‘/writable/etc/tables.d/’ directory. In other words, any telemetric
data from any node placed into this database will be automatically
synchronized among all nodes. In this paper, we assume all the data
stems from the NerveNet monitoring node, where RP4 is selected
due to its high portability. Intel Neural Compute Stick 2 (NCS 2) is
a dedicated hardware accelerator, and it is plugged into RP4 so that
it can run deep neural network models optimized by Intel Open-
VINO toolkit [18]. Here, we will run the multitask model [6] in the
Intermediate Representation (IR) format. It can classify a total of
seven categories: fire, hurricane, flood, earthquake, landslide, other
disaster and not disaster.
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Figure 2: AIoT testbed implementation. (a) Testbed. (b) NerveNet monitoring node (front view). (c) NerveNet monitoring node
(rear view). (d) NerveNet base

Figure 3: Working flow of AIoT monitoring.

4 PERFORMANCE EVALUATION
4.1 Disaster Monitoring
A video clip containing various types of disaster is used for the
inference. Its duration and resolution are 38 s and 720 x 1072, respec-
tively. There are a total of 14 disaster events from this video clip.
Figure 4 displays one of the screenshots, where the FPS, disaster
type and total victims are reported as 2.01, flood and 5, respectively.
To demonstrate the ultra-low power consumption of our AIoT solu-
tion, we adopted an USB power meter for the measurement purpose.
Figures 5a and 5b show the power consumption recorded during
idle time and multitask execution time, respectively. From the fig-
ure, it can be observed that the AIoT model consumes around 1.23
W.

4.2 NerveNet Database Synchronization
Figure 6 displays the NerveNet database related to text and image
synchronization. The columns “time update” and “timestamp_sync”
indicate the time generated by the source and the time received by
this specific node, respectively. By comparing the “timestamp_sync”

Figure 4: Detection screenshot.

Figure 5: Power Measurement. (a) Idle time. (b) Execution
time.

of each NerveNet node, the synchronization latency can be calcu-
lated and plotted in Figure 7. From the figure, it can be observed
that the closer the NerveNet node to source node 202 and first
NerveNet base station node 210, the shorter the network latency.
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Figure 6: Database synchronization. (a) Text. (b) Image.

Figure 7: Synchronization Latency with respect to node 210. (a) Text. (b) Image.

Surprisingly, the latency for text synchronization is larger than that
of the image synchronization. This is because both text and screen-
shots are pushed to the NerveNet database at the same time. In this
case, NerveNet may attempt to synchronize the images first before

the text. The size of total synchronized images is 647168 bytes. Nev-
ertheless, both text and images can be synchronized within two
minutes across a multi-hop Wi-Fi network.
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5 CONCLUSIONS
In this paper, we have proposed a AIoT-based disaster monitor-
ing using NerveNet wireless mesh network. To reduce the heavy
workload of AI inference, we utilized OpenVINO to accelerate the
process so that it can be executed on low-powered Raspberry Pi de-
vice. As for the data robustness, we invoked the feature of data syn-
chronization to disseminate the data among NerveNet nodes. The
effectiveness of the solution has been demonstrated via a testbed
implementation. In future, we plan to test the framework in a LoRa
based mesh network.
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Abstract—Remote flood forecasting has exponentially 
grown over the past decade together with the unprecedented 
expansion of Internet of Things (IoT) network. This is feasible 
with the use of long range wireless communication technology 
such as LoRa. Ideally, each LoRa device shall process the 
sensor data locally and trigger warnings to the remote server 
based on prediction results. However, conventional prediction 
methods rely on highly computational artificial intelligence 
(AI) algorithms, which are not suitable for low-powered LoRa 
network. In this paper, the LoRa device is integrated with an 
edge AI model, which is based on long short-term memory 
(LSTM) neural network. OpenVINO is adopted to optimize the 
LSTM model, before executing the solution on a Raspberry Pi 
4 in combination with Intel Movidius Neural Computing Stick 
2 (NCS2). Experimental results demonstrate the feasibility of 
deployment of the customized model on low-cost and power-
efficient embedded hardware. 

Keywords—Edge AI, LSTM, Flood Forecasting, LoRa Mesh 
Network, IoT 

I. INTRODUCTION 

Flood forecasting models have been researched in the 
hydrological engineering area for many years. Recently, 
there has been increased research interest in river flood 
prediction and modelling, defined as data-driven approaches. 
The artificial neural network (ANN) model is the most 
famous usual data-driven approach. Most conventional 
statistical methods require a lot of data for their models, and 
they can generate no assumptions for both linear and non-
linear systems. Hence, the data-driven approach, ANN, is an 
alternative to hydrological flood forecasting instead of the 
existing methods [1]. 

Artificial intelligence (AI) has made essential 
development in modelling hydrological forecasting and 
dynamic hydrological issues. With the advancement of 
information technology, the application of ANN models in 
many aspects of science and engineering is increasingly 
becoming common due to its simplicity of structure. Diverse 
neural network modelling approaches have been applied, like 
implementing the model approaches individually or 
combining process-based approaches to minimize mistakes 
and increase the models' forecasting accuracy. The study in 
[2] applied AI model to forecast river flow for 15 years 
starting from 2000. 

However, there are some limitations of the ANN model. 
One of them is lacking understanding of watershed 
processes. Furthermore, the limitation of memory in 
calculating sequential data exposes the disadvantages of the 
ANN model. The breakthrough in computational science has 
recently increased the interest in deep neural network (DNN) 
approaches. In addition, the most recent DNN applications, 
such as the long short-term memory (LSTM) [3] and gated 
recurrent unit (GRU) [4] neural networks, have been 
efficiently implemented in diverse areas and fields, such as 
time sequence problems. Those models can apply to machine 
translation, speech recognition, tourism field, language 
modelling, rainfall-runoff simulation, stock prediction and 
river flow forecasting. 

On 11th March 2011, around 29000 cellular towers were 
damaged in the East Japan Great Earthquake. These damages 
have restricted the broadcast of evacuation notices and the 
collection of historical information for disaster forecasting. 
Hence, it can be known that the resilience of a network 
remains an open issue in the deployment of the fault-tolerant 
network during an emergency disaster. Fortunately, a 
disaster-resilient mesh-topological network called NerveNet 
was developed by Japan NICT. Each NerveNet node is 
independent and tolerant to system failure and link 
disconnection due to its mesh structure. 

In this paper, a flood forecasting model is proposed. In 
the study area, rainfall and river water levels collected at 
hydrological stations serve as dataset for the training and 
testing process of the AI models. Then, the forecasted flood 
water level will be processed to generate the flood warning 
message. It will be sent through the NerveNet LoRa mesh 
network. Note that the proposed solution facilitates edge 
computing, which is one of goals of the ASEAN IVO project 
titled “Context-Aware Disaster Mitigation using Mobile 
Edge Computing and Wireless Mesh Network”. 

The rest of the paper is organized as follows. Section II 
discusses the related works. Section III describes the system 
architecture. Section IV presents the experimental results and 
discussions. Section V concludes the article. 



II. RELATED WORK 

A. Edge AI 

Several existing works [5]–[6] explored the potential of 
edge AI for various applications. The authors in [5] focused 
on real-time apple detection with the implementation of 
YOLOv3-tiny algorithm on various embedded platforms. 
However, they did not consider the communication aspects. 
Recognizing the importance of LoRa, the authors in [6] 
proposed an edge AI in LoRa-based fall detection system 
with fog computing and LSTM. The processing burden is 
placed on an LoRa-based edge gateway, where the collected 
sensor information is transmitted from an edge node via 
Bluetooth Low Energy (BLE). Differently, our solution 
integrates both edge AI and LoRa functionalities into one 
single device, which simplifies the deployment effort. 

B. NerveNet 

NerveNet is a resilient network developed by Japan 
National Institute of Information and Communications 
Technology (NICT) [7]. NerveNet is a specially developed 
network for the regional area to provide reliable network 
access and a stable, resilient information-sharing platform in 
emergencies, even if the base station is destroyed in a 
disaster. The base stations of NerveNet are interconnected by 
the Ethernet-based wired or wireless transmission systems 
such as satellite, Wi-Fi, LoRa and so on. They will form a 
mesh-topological network. 

Nowadays, the current trend of the common network 
infrastructures uses the tree topology. As compared to it, 
NerveNet has the characteristic that it is more tolerant to the 
faults such as node failures, disconnections, destruction of 
the base station and so on. Since the base station in the 
NerveNet supports basic services such as SIP proxy, DNS, 
DHCP, the NerveNet can also continuously provide 
connectivity services to the devices. 

III. SYSTEM ARCHITECTURE 

A. Dataset 

The dataset we employ is the Abashiri River watershed 
[8], located northeast of Hokkaido, Japan. The area of the 
watershed is around 1380 km2. It has a 115 km long main 
river to the North Pacific and a range of elevation from 0 m 
to 978 m [9]. All AI models are trained and tested using the 
datasets observed at the downstream stations called 'Hongou'. 
The used datasets are hourly datasets with the water level 
and rainfall variables from 1st January 2019 to 31st 
December 2020. 

During data pre-processing, the rainfall and water level 
data undergo a train-test split, separated into 70 % of the data 
as training dataset and 30 % as a testing dataset, as listed in 
Table I. The training data calculates the training process  
error and estimates the AI models' parameters. The testing 
data provides an independent performance evaluation of the 
AI models after training. 

Next, the hydrological dataset has also undergone data 
standardisation where the values' distribution is rescaled to a 

mean value of 0 and a standard deviation value of 1. Data 
scaling is essential to fasten the training process of the AI 
model because the AI models can converge more rapidly if 
the dataset features are closer to the normal distribution. 
Prior to the AI model training, the time series dataset is 
converted into sequential data with 24-time steps as the 
sequence length. The model performs equally well when the 
sequence length is between five to 15 or more. Therefore, in 
this paper, the sequence length value of 24 is used in the 
model to represent 24 hours in one day. 

B. AI Model Training in Google Colab 

In this paper, four types of AI models, namely Random 
Forest, SVM, LSTM and GRU, are trained and tested on the 
dataset to benchmark the performance of the system in terms 
of flood water level forecasting. Trained in in Google Colab 
platform, the best AI model will be selected as the edge AI. 

For Random Forest, the parameter 'max_depth' represents 
each tree's depth in the forest. Here, we set the max_depth 
value to 2. There are several hyperparameters in the LSTM 
model-building process. Firstly, the optimisation algorithm is 
the stochastic gradient descent procedure's extension to 
update the weights iterative of the network according to the 
training dataset. Secondly, an epoch is defined as the whole 
dataset transferring forward and backwards across the 
model's neural network once. Thirdly, the batch size is the 
number of samples propagating throughout the entire neural 
network. Table II demonstrates the hyperparameter settings 
of the LSTM model. For fair comparison, the same 
hyperparameters are adopted to train the GRU models. 

C. AI Model Optimization using OpenVINO 

The immediate output format of the LSTM model is .h5, 
which will be converted to pb format. The intention is to 
utilize the OpenVINO toolkit [10], which enables the faster 
running of the AI model in edge device. There are two main 
components in the OpenVINO toolkit, which are the model 
optimiser and inference engine. Firstly, when the trained 
model in pb format is fed into the model optimiser, it 
converts them to the IR format. At the same time, it 
optimises the performance, space, and hardware-agnostic 
with conservative topology transformations. The outputs of 
the model optimiser are .xml and .bin.  

Secondly, the AI inferencing process is performed at the 
edge device by setting the inference engine to Intel Neural 
Compute Stick 2 (NCS2), which is a hardware accelerator. 
Before feeding to the inference engine, the data is scaled 
using the scaler.gz exported from the training process. The 
scaled data is then reframed. The historical time series data 
representing the last 24 hours is extracted from the scaled 
dataset by retrieving the top 24 values of the rainfall and 
water level data. After that, the sequence data and the trained 
model in IR format are fed into the inference engine to 
generate the water levels ahead of 1 hour in text form and the 
result graph in image form. 



D. Evaluation Metrics 

The mean absolute error (MAE) is the mean of the 
differences between the original value with the forecasted 
value. On an excellent flood forecast, the MAE should be 
smaller. Mathematically, it can be expressed as 

 MAE1


∑ |𝑒|

ୀ1  

The mean absolute percentage error (MAPE) is the 
percentage of the mean of the total error. On an excellent 
flood forecast, the MAPE should be smaller. It is written as 

 MAPE1


∑ ቚ


௬
ቚ
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The root mean squared error (RMSE) is the square root 
of the mean of the squared deviation of the forecasted flood 
water level value. On an excellent flood forecast, the RMSE 
should be smaller. It is written as 

 RMSEට1


∑ 𝑒

2
ୀ1  

Rଶ is the coefficient of determination and goodness of fit. 
With an excellent flood forecast, the 𝑅2 should be larger. 

 R2 = 1 −
sum squared regression (SSR)

total sum of squares (SST)
 

The NerveNet LoRa data transmission performance is 
evaluated by calculating the packet delivery ratio (PDR) of 
LoRa packets. 

 PDR =
number of packets received

number of packets sent
 

IV. RESULTS AND DISCUSSIONS 

Table III compares the water level forecasting 
performance of the aforementioned five AI model types on 
the testing dataset. Theoretically, the deep learning methods 
outperform the conventional machine learning methods when 
the big data comes into its input. This is consistent with the 
result, where the LSTM and GRU models have a lower value 
of MAE, MAPE and RMSE than the Random Forest and 
SVM models. This indicates that the deep learning models 
have a lower deviation of the forecasted results from the 
ground truth and a lower error percentage. A higher R2 value 
indicates a more excellent time series forecasting 
performance from the deep learning models.  

From the table, it can be observed that the LSTM model 
has more excellent performance than the GRU model since it 
has lower MAE, MAPE, RMSE and higher R2. This finding 

is consistent with the findings in [11], where the LSTM 
model performs better than the GRU model in the case of 
short text processing and large-size datasets. In this paper, 
there is a huge amount of rainfall and water level dataset 
where both types of variables are short integers. They act as 
the inputs to the LSTM and GRU models. Therefore, it can 
be seen that the LSTM is more appropriate than the GRU 
models in these scenarios. 

All in all, the LSTM has the best performance in the AI 
water level forecasting since it has the lowest MAE, MAPE 
and RMSE while the highest R2 among all the proposed AI 
models. Therefore, LSTM is chosen as the AI water level 
forecasting model. Specifically, OpenVINO is used to 
convert the .h5 model to .xml and .bin format. It can be seen 
that there is a performance degradation of the converted 
model in all aspects.  

Fig. 1(a) display the prediction versus ground truth for 
test dataset by using LSTM variations. As expected, the 
prediction using Keras model is close to the actual values. To 
reveal more insights, Fig. 1(b) compares the inference time 
between these two LSTM models. It can be seen that the 
LSTM (OpenVINO) is 28x slower than the Keras version. 
The reason is that the Keras model was using the Intel® 
Xeon® CPU @ 2.20Ghz provided by the Google Colab. This 
hardware has more computational power than the NCS2, 
which consumes only around 1.5W.  

 Fig. 2 shows the actual deployment of LoRa nodes. For 
the LoRa parameters, we adopted spreading factor of 12, 
transmission power of 20 mW, and bandwidth of 500 kHz. 
Three NerveNet LoRa nodes serve as MQTT subscriber 
whereas one NerveNet LoRa node acts as MQTT publisher. 

(a) 

Fig. 1 LSTM performance benchmarking. (a) Prediction vs ground 
truth. (b) Inference time. 

(b) 



The publisher publishes the MQTT message at three 
different locations. At each location, a total of 11 LoRaMesh 
packets are transmitted. The quality of service (QoS) level is 
set to zero, which guarantees best-effort message delivery. In 
other words, the publisher only transmits each packet once 
and LoRa message packets may be lost during the 
transmission process. Node 208 is located inside the building 
in such a way that nodes 203 and 204 can act as relay node. 
We implement subscriber and publisher nodes using Intel 
next unit computing (NUC) and Raspberry Pi 4, respectively. 
The latter is chosen due to its high portability and low cost, 
which is suitable for massive deployment of flood 
monitoring. 

Fig. 3 depicts the overall performance of NerveNet 
LoRaMesh. It can be observed from Fig. 3a, only extra hops 
are needed at location 3. This is reasonable since the distance 
between 204/208 and location 3 is at least 1200 m. In this 
case, node 203 which is closer to location 3 acts as relay 
node. For LoRaMesh packet to arrive at node 208, the packet 
initially sent by node 214 at location 3 is passed to 203, 
through 204 to 208. For other two locations, only one hop 
transmission is needed. This is because there are less 
obstacles, such as trees and buildings. The multi-hop 
transmission is affected by the received signal strength 
indicator (RSSI), as reported in Fig. 3b. All RSSI values are 
measured with respect to the publisher node 214, except the 

last two columns. Specially, 204 and 208 measurements are 
based on their relay nodes 203 and 204, respectively. 

All LoRaMesh packets are received when the publisher 
transmits messages at locations 1 and 2. For location 3, two 
out of 11 packets are lost during the transmission for nodes 
204 and 208. Specifically, when node 204 does not receive 
the packets from 203, it could not forward them to 208. Fig.3 
d compares the time on air. In LoRaMesh, time on air 
defines the elapsed time on air for a LoRaMesh packet 
between publisher and subscriber. As expected, the further 
the distance, the longer time needed to transmit the 
LoRaMesh packets.  

V.  CONCLUSION 

In this paper, we have proposed an edge AI solution that 
forecasts flood water level and transmits the packet via LoRa 
mesh network. the AI model training and the testing dataset 
are obtained from Japan's organisation. Hence, the AI results 
may not apply to the local area since the weather, season, 
humidity, and geographical condition of Malaysia are 
different from Japan. The local dataset can be requested from 
the local government to build an AI model that can fit the 
situation in Malaysia's local area so that a better 
understanding of the feasibility of the AI model in disaster 
detection in Malaysia. 

Fig. 2 System deployment. (a) The location of three subscriber nodes (203,204 and 208) and one publisher node (214). (b) Subscriber node (Intel NUC). 
(c) Publisher node (front view). (d) Publisher node (rear view). 
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Fig. 3 Performance of NerveNet LoRaMesh. (a) Hop count. (b) RSSI. (c) PDR. (d) Time on air. 
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Abstract— When a natural disaster event happens, it could 
trigger regional cellular network outages and hence disable 
network communication within the affected area. If a resilient 
network is implemented, alert messages with sufficient 
information can be sent over the Internet to provide a 
nationwide response. Japan National Institute of Information 
and Communication Technology (NICT) has invented a resilient 
network framework called NerveNet, which supports robust 
communications via mesh networking. Using their technology as 
the communication platform, disaster nodes could be installed 
at disaster hotspots to send out disaster information or even 
provide lightweight Internet services. NerveNet can support 
data synchronization using Wi-Fi and LoRa. The former is used 
to provide wide bandwidth but low-range data transmission, 
whereas the latter enables narrow-bandwidth data transmission 
in coverage of kilometers, which is suitable for crucial or 
emergency disaster data updates.  

Keywords—wireless mesh network, disaster resilient network, 
LoRa, database synchronization 

I. INTRODUCTION 

According to [1], the total occurrence of global natural 
disasters in 2021 is 13 % higher than the average over the last 
30 years. Malaysia, despite its geographically stable region, is 
facing similar disasters such as tsunami, floods, drought and 
earthquake. In fact, Malaysia had experienced 51 natural 
disaster events from the year 1998 to 2018, causing 281 people 
to die and more than 3 million people were affected, which 
caused around RM8 billion in damages [2]. Flood is the most 
common natural disaster in Malaysia, resulting in total 
residential and commercial damage of RM455 million and 
RM142 million, respectively [3].  

To raise the public awareness of the emergency situations, 
an efficient communication network should be robust against 
infrastructure damage during disasters. Using the existing 
cellular communication service, the alert packets are generally 
transmitted to the remote cloud via base stations (BSs), which 
are vulnerable to disaster damage. Japan, a country with a high 
natural disaster rate, has been using a resilient mesh network 
named NerveNet to overcome this challenge. NerveNet has 
been developed by the National Institute of Information and 
Communications Technology (NICT) in Japan since the year 

2006. Its resiliency was demonstrated by conducting a large 
scale of testbed with 30 BSs constructed within Tohoku 
University in Sendai in 2011 [4]. Later in 2014, NICT started 
the real deployment of NerveNet for disaster prevention 
purposes. The advantage is that the end devices do not rely on 
the availability of each other. When one NerveNet node goes 
inactive, it does not affect the overall service provided as other 
nodes will self-configure a new pathway to transfer data. 
Logically, any node can peer with any other nodes if they are 
under NerveNet network, which gives it fault-tolerance 
property during disaster events. 

In this paper, we design and implement a disaster-resilient 
mesh networking using NerveNet Wi-Fi and LoRa. The 
former is featured with short-range connectivity and high data 
rates whereas the latter offers long-range connectivity for low 
data rate applications. These two wireless technologies can 
complement each other to expand the Internet of things (IoT) 
connectivity and provide nation-wide coverage. By invoking 
the NerveNet Hearsay daemon, collected sensor data such as 
alert text and images can be wirelessly synchronized in 
multiple NerveNet nodes' database. This is one of goals of the 
ASEAN IVO project titled “Context-Aware Disaster 
Mitigation using Mobile Edge Computing and Wireless Mesh 
Network”. 

The rest of the paper is organized as follows. Section II 
discusses the related works. Section III describes the proposed 
solution. Section IV presents the experimental results and 
discussions. Section V concludes the article. 

II. RELATED WORK 

In [5], the authors proposed an architecture for a drone-
based communication infrastructure for disaster response. The 
formed wireless mesh network, however, relies on the Wi-Fi 
technology, which poses transmission range limitations. 
Another scheme was presented in [6], where the authors 
developed a synchronous content distribution system via Wi-
Fi mesh networking. In an effort to extend the IoT coverage, 
the authors in [7] implemented a Device-to-Device (D2D) 
based LoRaMAC solution to disseminate the data. However, 
the packet transmission scenario considers generic data, not 
the multimedia data such as text and image.  
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In [8], the work analyzed the performance of unmanned 
aerial vehicle (UAV)-enable LoRa networks for disaster 
management applications, from the perspective of ns-3 
simulation. Recognizing the complementary benefits of Wi-Fi 
and LoRa, the work in [9] designed a hybrid Wi-Fi LoRa ad-
hoc network which leverages smartphones and IoT devices as 
nodes in a mesh. However, their data distribution focuses on 
plain text string. In contrast, our work focuses on both text and 
image synchronization among NerveNet nodes. This 
facilitates crowdsourcing during disaster events, where 
response team can extract more useful insights from image for 
critical decision-making. 

III. PROPOSED SOLUTION 

The overall system architecture consisting of hardware 
and software is depicted in Fig. 1. There is a total of six 
NerveNet nodes. Nodes BS203, BS204 and BS205 are 
running x86 NerveNet OS in Ubuntu 18.04 of Intel NUC 
whereas nodes BS206, BS207 and BS208 are executing armhf 
NerveNet OS in Raspbian Buster of Raspberry Pi. Node 
BS203 concurrently serves as the NerveNet web application.  

A. NerveNet Wireless Mesh Network 

Usually, a mesh network is simply adding a redundant 
connection for each device within the network topology, then 
the device will look up for an alternative pathway to reach its 
destination if its primary peer is down. NerveNet Wi-Fi mesh 
network framework not only provides the function to look up 
every single mesh node in the network, but also adds database 
synchronization to share common data within the mesh 
network. The lookup feature is built by using a service daemon 
called Path Tree Management Generation (PTMGR), which is 
installed in the essential node within the mesh network. 
PTMGR continuously seeks for peers’ network status to 
identify if any node is down or new node has joined the 
network. If the connection between nodes is steadily 
maintained by PTMGR, the nodes could directly connect or 
access to each other and perform NerveNet SQL database 
synchronization. The nodes will compare the data rows within 
each other to update with the latest data. 

NerveNet also supports LoRa mesh network with the use 
of specific LoRa equipment. NerveNet LoRa uses a frequency 
band of 920 MHz for all LoRa nodes.  To overcome the 
potential LoRa signal interference, NerveNet LoRa uses time 
division multiple access (TDMA). Each node synchronizes 

the time from the global positioning system (GPS) receiver to 
other nodes in such as way that the node will transmit LoRa 
data within the period of the pre-configured time slot. For 
example, 10 seconds are divided into five slots to form a cycle, 
the time slots are allocated to five nodes, thus each node will 
transmit LoRa signal during its time slot only. With properly 
configured time slots and channels to reduce disturbance, 
NerveNet LoRa nodes are possible to communicate at the 
speed of 100 Bytes per second over several kilometers 
distance with a power consumption of only tens of milliwatt.  

B. Wi-Fi Mesh Network 

To install Wi-Fi mesh network, each device is initially 
configured with NerveNet IP address, access point (AP) 
interface and Wi-Fi Protected Access (WPA) client interface. 
These interfaces form Ethernet remote bridge (ERB) tunnel 
link, which is used by the PTMGR to enable each node to 
communicate. Both x86 and armhf versions of NerveNet OS 
are running Docker containers. 

C. LoRa Mesh Network 

To install LoRa mesh network,  we use RFlink-RM92A as 
the LoRa module, parameters of which are set as follows:  RF-
channel of 41, RF-bandwidth of 500 kHz, and spreading factor 
of SF12. The TDMA is set to four slots per minute, granting 
each LoRa node (BS203, BS206, BS207, and BS208) around 
15 seconds duration. To transmit plain text data, NerveNet 
LoRa node uses MQTT service to buffer published data, then 
sends out the LoRa data within the allocated time slot with its 
best effort. The LoRa data will remain in the MQTT buffer 
and waits for the next cycle if the attempt to transmit fails. 
However, NerveNet LoRa MQTT communication uses QoS 
level zero, LoRa packet loss is still possible. Similar as Wi-Fi, 
both x86 and armhf versions of NerveNet OS are running 
Docker containers. 

D. NerveNet Monitoring Dashboard (NerveDASH) 

NerveDASH is a web application for visualizing the 
results of disaster detection. The main components to support 
NerveDASH are Neo4j, MQTT service, HTTP server, REST 
API, WebSocket API, and Nginx server, as shown in Fig. 2. 

When NerveNet gateway sends a message, it will first be 
handled by MQTT client for JSON encodable data. If the data 
is media (image, video), it will be sent to HTTP server instead 
of MQTT broker. When the media storage has exceeded its 
limit, the oldest stored media will be replaced by the latest 
media data. Both MQTT and HTTP service point towards 
Neo4j server, a graphical-based NoSQL database server. By 
default, MQTT broker will set a count-down timer to receive 

Fig. 1 NerveNet network architecture. Fig. 2 NerveDASH. 
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a “heartbeat” message from NerveNet gateway (publisher). If 
the message is not received in 20 seconds interval, an inactive 
message will be sent to Neo4j (subscriber) to record that the 
respective node is down until a new “heartbeat” message is 
received.  

The data in Neo4j can then be retrieved via a RESTful API 
or a WebSocket API. The RESTful API is used for simple text 
retrieval, while WebSocket API is used for file streaming. 
Finally, the Nginx static file hosting feature is used to serve 
the frontend static files of the web application. The Nginx 
server can also be configured to provide load balancing for all 
HTTP endpoints if needed. 

E. Evaluation Metrics 

The network latency within NerveNet Wi-Fi domain is 
benchmarked using the ping command. We consider two 
scenarios: (1) one broken mesh link (2) no broken mesh link. 
Both TCP and UDP throughput are measured using the 
popular tool Iperf3 [10]. The former uses settings of 100 
packets and the latter configures the sender bandwidth and 
duration to be 50 Mbps and 10 s, respectively. Clearly, packet 
retransmission is only possible at the TCP scenario. When 
measuring UDP throughput, we also record the jitter. With 
respect to database synchronization,  the average time taken to 
synchronize images of different resolutions is recorded. The 
metadata of images is tabulated in Table I. 

IV. RESULTS AND DISCUSSIONS 

The NerveNet Wi-Fi mesh network performance within 
x86 (BS203, BS204, BS205) and armhf (BS206, BS207, 
BS208) are evaluated. Fig. 3 (a) and (b) show the Wi-Fi links 
for Intel NUC and Raspberry Pi, respectively. For the 
NerveNet LoRa mesh testbed as shown in Fig. 3(c), any 
device within the LoRa network could perform LoRa MQTT 
data exchange with each other. The NerveNet LoRa mesh 
MQTT messaging performance is carried out between BS203 
and BS207.  

Fig. 4 evaluates the TCP and UDP throughput for P2P and 
mesh links in NerveNet x86 Wi-Fi. To activate P2P link, we 
shutdown one out of three NerveNet nodes within the Wi-Fi 
domain. From the figure, it can be observed that P2P link has 
generally higher TCP and UDP throughput as compared with 
mesh-link. This is because the sender does not need to 
calculate a pathway to transfer the data. Also, when the route 
direction is from Wi-Fi client interface to Wi-Fi AP interface 
of peer device, the TCP throughput is also higher as compared 
with the reverse ordered route direction. 

Fig. 4 (c) displays the jitter of NerveNet Wi-Fi within x86 
domain in the cases of P2P and mesh links are more or less 
similar. The difference between the highest and lowest jitter is 
less than two milliseconds. According to [11], the QoS 
requirements of jitter for video conferencing is less than 30 
ms. Therefore, NerveNet Wi-Fi within triangular x86 nodes 

has good fundamentals to handle applications that require low 
jitter, such as providing VoIP services. 

Fig. 5 measures the NerveNet x86 Wi-Fi latency. It can be 
seen that there is no big difference in terms of P2P and mesh 
links within NerveNet x86 Wi-Fi domain. However, the 
latency is less than 10 ms when the route direction is from Wi-
Fi client interface to Wi-Fi AP interface, while the latency is 
five times greater if the route direction is reversed. This can 
be explained by NerveNet Wi-Fi in x86 machines having a 
lower route cost when the target’s AP interface is the next hop 
of its own client interface. Therefore, even if the target is just 
located at the next hop of its AP interface, the sender would 
still seek for target from its client interface’s next hop, causing 
the packet return time to increase. 

Similar as in x86 environment, Fig. 6 evaluates the TCP 
and UDP throughput for P2P and mesh links in NerveNet 
armhf Wi-Fi. From the figure, it is observed that the P2P link 
generally has a higher throughput as compared with mesh link. 
Unlike x86 machines, the relationship between throughput 
and route direction in NerveNet armhf Wi-Fi domain is not 
obvious. The highest throughput (BS207 to BS206) and 
lowest throughput (BS206 to BS208) via mesh link are both 
obtained when the target is located at the next hop of the 
sender’s AP interface. Fig. 6 (c) shows the average jitter of 
P2P and mesh links within NerveNet armhf Wi-Fi domain. 

Fig. 3 NerveNet testbed. (a) x86 Intel NUC Wi-Fi. (b) armhf Raspberry 

Pi Wi-Fi. (c) x86 Intel NUC and armhf Raspberry Pi LoRa Mesh 

Network. 

(a) 

(b) 

(c) 
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The variance of jitter at each link and route directions is as tiny 
as ignorable. However, even the highest jitter is just between 
0.5 to 0.6 ms, which is at least three times lesser than the jitter 
in NerveNet x86 Wi-Fi domain. 

To evaluate the time taken from an image file to be 
synchronized in all NerveNet node databases via Wi-Fi mesh, 
the cases of all nodes as image senders are tested. The 
corresponding time taken for the other two peers to receive the 
synchronized image file is recorded in Fig. 7. 

From Fig. 7 (a), it is clearly stated that as the image file 
size increased, the time taken for the peers to receive the 
synchronized file also increased. However, the time taken is 
not linear. For example, Node 203 takes 50 seconds to receive 
a 2.5 MB image file from BS205. However, it only takes 86 
seconds to receive a 10.9 MB image file, which is at least four 
times greater than the 2.5 MB image file. The figure also 
shows that the image sent by BS203 takes least time to be 
synchronized in the peers’ database, this could be due to the 
PTMGR daemon running at BS203, therefore it takes the least 
time to calculate Wi-Fi pathways. Similar trend can be 
observed in Fig. 7 (b). 

Since NerveNet LoRa mesh MQTT uses QoS level zero, 
the percentage of lost LoRa packets is interested. To test the 
NerveNet LoRa mesh MQTT messaging performance, the 
number of packets lost with MQTT payload size of 30 Bytes 
and 90 Bytes are recorded accordingly. Not only that, the 
number of LoRa packets sent at once could affect the ratio of 
lost packets, hence the number of LoRa messages published 
at once is varied at 10, 20, 40, and 60 messages. After the 
LoRa MQTT subscriber has not received any message for 20 
minutes, the remaining LoRa packets are considered lost. The 
test is carried out using BS203 as LoRa MQTT subscriber 
while BS206 as the LoRa MQTT publisher. 

Fig. 8. Time taken for NerveNet LoRa packet payload transmission. (a)  

30 bytes (b) 90 bytes. 

(a) 

(b) 

Fig. 6 NerveNet armhf Wi-Fi. (a) TCP throughput (b) UDP throughput. 

(c) UDP jitter. 

(a) 

(b) 

(c) 

Fig. 4 NerveNet x86 Wi-Fi. (a) TCP throughput (b) UDP throughput. 

(c) UDP jitter. 

(a) 

(b) 

(c) 

Fig. 5. NerveNet x86 Wi-Fi Latency. 
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Fig. 8 shows the time taken for LoRa packet payload 
transmission. It can be seen that the number of received LoRa 
MQTT messages is almost linear with time. This means the 
rate of LoRa MQTT message to be received is almost 
constant. However, the time taken to receive LoRa MQTT 
message is not a manipulated variable on the subscriber side. 
Instead, the published LoRa message is queued and buffered 
in MQTT broker to wait for transmission, once the published 
message is transmitted over NerveNet LoRa mesh, the over-

the-air duration is short, thus it is almost immediately received 
by the subscriber side. The manipulating variable is said to be 
LoRa MQTT payload size because the bandwidth is fixed, 
higher payload size means a higher bit rate, therefore 
increasing the risk of LoRa signals being interfered or 
corrupted.  

To reveal more insight, Fig. 9 displays the number of 
NerveNet MQTT LoRa packet loss. By dividing the total 
message sent by the number of packets lost, the percentages 
of lost packets with 30 Bytes payload size in 10, 20, 40, and 
60 messages are 10%, 10%, 5%, and 11.67% respectively. On 
the other hand, with the payload size of 90 Bytes, the 
percentage of lost packets in 10, 20, 40, and 60 messages are 
20%, 15%, 12.5%, and 13.33% respectively. Hence, it is 
concluded that the larger the LoRa MQTT payload size, the 
slower the LoRa packet transmission, and the higher the risk 
of LoRa packet being lost. 

Fig.10 displays the visual design of NerveDASH. The 
design phase of the frontend development is separated into 
three phases, namely sitemap designing, wireframing and 
visual designing. 

Fig. 10. NerveDASH. (a) Main page. (b) Node page. 

(a) 

(b) Fig. 8. Time taken for NerveNet LoRa packet payload transmission. (a) 

30 bytes (b) 90 bytes. 

(a) 

(b) 

Fig. 9. Number of LoRa MQTT Packet Loss. 

Fig. 7. Time taken for NerveNet image synchronization. (a)  x86 Wi-Fi 

(b) armhf Wi-Fi. 

(a) 

(b) 
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V. CONCLUSIONS 

A testbed for disaster response and monitoring platform 
using NerveNet has been designed and deployed. The tools 
such as the Hearsay daemon provided in NerveNet has been 
proven beneficial for application services within the regional 
local private network. The platform design also meets the 
requirements set by the International Telecommunication 
Union. The performance of the platform is also within an 
acceptable range of a regional disaster response and 
monitoring network. The outcome of the real implementation 
can serve as a guideline on designing and deploying a disaster 
response and monitoring platform using NerveNet. Hopefully, 
it will promote disaster-resilient telecommunications and 
distributed application development for disaster response. 
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