
Effective Evacuation Route Strategy

for Emergency Vehicles

Myint Myint Sein

University of Computer Studies,

Yangon (UCSY), Myanmar

myint@ucsy.edu.mm

Yasunori Owada

NICT, Miyagi, Japan

yowada@nict.go.jp

K-zin Phyo

University of Computer Studies,

Yangon (UCSY), Myanmar

kzinphyo@ucsy.edu.mm

Nordin Bin Ramli

MIMOS, Malaysia

nordin.ramli@mimos.my

 Mau Luen Tham

Universiti Tunku Abdul Rahman,

UTAR, Malaysia

thamml@utar.edu.my

Suvit Poomrittigul

PIT, Thailand

suvit@pit.ac.th

Abstract— Rapid response and recovery efforts are critical

to emergency and disaster management. It is important that

rescue teams need to arrive at incident location within a short

time to minimize the risk and damage. The effective evacuation

route estimating algorithm is developed for complicated

unstructured road network based on the Dijkstra algorithm.

The proposed system will estimate the optimal evacuation

route for emergency services and vehicles such as fire service

vehicle, ambulance and police car. It is also provided to search

the near relief area and guiding to move the safe place through

the optimal evacuation route assessment. The nearest

emergency service is estimated by extracting surround services

system. The haversine distance is applied for measuring

between two locations. The optimal route is computed from

service center to the incident location after estimating the

nearest emergency services. Yangon’s complex road network is

selected to implement the proposed web-based application

system.
Keywords: Rapid response, Disaster management, Evacuation

route, Advanced Dijkstra algorithm, Emergency Services and

Vehicles.

I. INTRODUCTION

 Emergencies can occur at any time without notice or

message. Emergencies may be caused by accidents, fires,

explosions and natural disaster. An emergency is a terrible

situation that can endanger people and the environment and

requires an immediate response from emergency services

and rescue teams. In many developing countries, the rate of

emergency damage is still high due to lack of emergency

respond scheme and unstructured road grids. Because of

disaster and unfinished reconstruction, some roads are

damaged, and some roads are impassable. It is a critical task

of medical service centers, fire stations and emergency

rescue teams, to move the injured people to the hospitals

within a short time. Weak road network infrastructure

makes it difficult for emergency vehicles to reach the

incident place quickly. To address this situation, an effective

evacuation route strategy for emergency vehicles is

proposed to get to the incident location and destination

quickly. Yangon road network is selected for implement the

proposed system. The location of three emergency services,

fire stations, hospitals and police stations in Yangon region

are collected and stored in database. Inadditing, the location

of road, street and road condition are added in database.

 There are some researches related to optimal part finding

algorithm [1-5]. The proposed evacuation route findinding

system is extened based on previous research works [1-3].

The geospecial parth optimization algorithem for hospital

was implemented for a case study of Allahabad city[4].

 S.Sivakumaret al.[5] proposed the Modified Dijkstra’s

shortest path algorithm with multiple features such as cost,

time and congestion. Most traditional route search methods

are often used as the criteria for choosing the shortest route

with the travel distance.

 In this study, a unique optimization algorithm based on

Dijkstra's algorithm has been upgraded, including the

addition of certain parameters and conditional statement of

roads to find the effective evacuation routes and better

implementation of the safest and convenient routes.

Yangon's road network is used to evaluate the proposed

system of intricate, narrow, one-ended roads, a complex

road network. The optimal route finding strategy is

improved by using the web technology for emergency

vehiles such as fire truck, ampulance and police car when

the accident occurs on unstructure road network.

This research is a part of the “ Context-Aware Disaster

Mitigation using Mobile Edge Computing and Wireless

Mesh Network”, ASEAN IVO project. One of the goals of

this project is to find the rapid route or optimal route

identification on complex road network for fire vehicle.

II. GENERATING THE ROAD NETWORK DATA BASE

 The proposed optimal route detection system for the

emergency vehicles is primarily to save lives and properties

and to pinpoint the exact location of emergencies.

A. Data Collection for Tested Area

 The downtown area of Yangon’s road network is selected

for the study area of the proposed system. It is one of the

largest cities in Myanmar and which is built with

complicated unstructured road like a narrow road and a

closed road. The location data (latitude, longitude) of 85

hospitals and clinics, 41 fire force stations and 50 police

stations are collected for emergency services.

Fig. 1. Emergency Services Location Map.

2021 IEEE 10th Global Conference on Consumer Electronics (GCCE)

978-1-6654-3676-2/21/$31.00 ©2021 IEEE 764

20
21

 IE
EE

 1
0t

h
G

lo
ba

l C
on

fe
re

nc
e

on
 C

on
su

m
er

 E
le

ct
ro

ni
cs

 (G
C

C
E)

 |
97

8-
1-

66
54

-3
67

6-
2/

21
/$

31
.0

0
©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

G
C

C
E5

30
05

.2
02

1.
96

21
93

5

Authorized licensed use limited to: Universiti Tunku Abdul Rahman. Downloaded on December 16,2021 at 05:50:52 UTC from IEEE Xplore. Restrictions apply.

 Figure 1 is illustrated the location map of the emergency

services in Yangon. All location of roads, narrow streets and

road conditions are also added in created database.

B. Quantum Geographical Information System(QGIS)

The creating the vector map of Yangon Road network,

data analyzing and editing the special data information are

performed by QGIS. It is incorporated with other open-

source packages as GRASS, PostGIS, Map and GIS server.

Yangon's road network is made up of 100,000 edges and

35,000 nodes.

III. PROPOSED OPTIMAL ROUTE FINDING SYSTEM

 The aim is to reduce the level of damage by searching the

near emergency services from the incident place and

minimizing delays along the route to an emergency location.

A. Overview of the Proposed System

 The overview of the proposed web application structure

is shown in Fig. 2. The system collects the address or street

name as emergency location information to determine the

exact location of the incident. The system can then check

the location with special coordinates on Google-Maps. The

close emergency services are estimated by the Haversine

measurement.

Fig. 2. Overview of the proposed System.

B. Computing the Optimal Route

 After estimating the nearest emergency services, the

optimal route from services center to the incident location is

calculated. Source place is defined for emergency service

and destination place is for incident place. For compairson

result, optimal route is computed for both of ordinary

method and proposed method. The proposed modified

Dijkstra algorithm (pseodo code) is described as follow:

IV. EXPERIMENTS AND RESULTS

In experiment, the optimal evacuation route for fire vehicle

is computed in original and modified Dijkstra method. The

fire event is in KMS kyar street, Tamwe township. The

result of incident location verification and estimated nearest

emergency services are shown in Fig 3(a) and Fig. 3(b),

respectively. The optimal route computing results for

original and proposed approach are illustrated in Fig 3(b)

and Fig 3(b), respectively. The computation time for number

of nodes in each operation are shown in Table1.

 (a) (b)

 (c) (d)

 Fig. 3. The Optimal Route between the Fire Dept. and KMS kyar street.

Table 1 Evaluation of Runtime Complexity Based on No. of Nodes.

V. CONCLUSION

The estimating of effective emergency route strategy is
proposed for complexed road network of Yangon. The
proposed work will help emergency rescue teams to reach
the incident location in a short time save the lives and
properties. It will deploy a nearby victim area and will carry
the best rescue routes to evacuate people from dangerous
areas. On integrating with real time road traffic condition
obtained by IOT sensor will be considered to improve this
proposed approach.
 ACKNOWLEDGMENT

This publication is the output of the ASEAN IVO
http://www.nict.go.jp/en/asean Ivo/ index. html project titled Context-

Aware Disaster Mitigation using Mobile Edge Computing and Wireless

Mesh Network and financially supported by NICT
(http://www.nict.go.jp/en/ index.html). We thank our project members

NICT-Japan, UCSY-Myanmar, PIT-Thailand, UTAR and MIMO Malaysia.

REFERENCES

[1] K-zin Phyo and Myint Myint Sein ,”Investigation of Optimum
Rescue Itinerary by Using Advanced Routing Method”, IEEE GCCE
Conference, Nara, Japan, October 4-13,2018,pp. 521-522.

[2] K-zin Phyo and Myint Myint Sein, “Optimal Path Finding for
Emergency Cases on Android," Annual International Conference on
Mobile Systems, Singapore, 23rd - 25th June, 2016, pp.71.

[3] Yutaka Ohsawa, Htoo Htoo, Naw Jacklin Nyunt; and Myint Myint
Sein, "Generalized Bichromatic Homogeneous Vicinity Query
Algorithm in Road Network Distance, Japan International
Conference, IPSJ, Kyoto 2015, Mach 17~19.

[4] N. Kumar, M. Kumar and S. Kumarsrivastva,” Geospatial Path
optimization for Hospital: a case study of Allahabad city, Uttar
Pradesh”, Internation Journal of Modern Engineering Research, Vol.
4 ,Issue.10, 2014, pp.9-14.

[5] S. Sivakumar and C.Chandrasekar ,”Modified Dijkstra’s Shortest Path
Algorithm”, International Journal of Innovative Research in
Computer and Communication Engineering, 11- 2014, Vol. 2,
pp.6450-6456.

2021 IEEE 10th Global Conference on Consumer Electronics (GCCE)

765Authorized licensed use limited to: Universiti Tunku Abdul Rahman. Downloaded on December 16,2021 at 05:50:52 UTC from IEEE Xplore. Restrictions apply.

978-1-6654-0690-1/21/$31.00 ©2021 IEEE

Joint Disaster Classification and Victim Detection
using Multi-Task Learning

Mau-Luen Tham
Department of Electrical and Electronic

Engineering
Universiti Tunku Abdul Rahman

Kajang, Malaysia
thamml@utar.edu.my

Yasunori Owada
Resilient ICT Research Center

National Institute of Information and
Communications Technology (NICT)

Tokyo, Japan
yowada@nict.go.jp

Yi Jie Wong
Department of Mechatronics and

BioMedical Engineering
Universiti Tunku Abdul Rahman

Kajang, Malaysia
yjwong1999@1utar.my

Myint Myint Sein
Geographical Information System
University of Computer Studies,

Yangon (UCSY)
Myanmmar

myint@ucsy.edu.mm

Ban Hoe Kwan
Department of Mechatronics and

BioMedical Engineering
Universiti Tunku Abdul Rahman

Kajang, Malaysia
kwanbh@utar.edu.my

Yoong Choon Chang
Department of Electrical and Electronic

Engineering
Universiti Tunku Abdul Rahman

Kajang, Malaysia
ycchang@utar.edu.my

Abstract— Recent advances in deep learning and computer

vision have transformed surveillance into an important

application for smart disaster monitoring systems. Based on the

detected number of victims and activity of disasters, emergency

response unit can dispatch manpower more efficiently, which

could save more lives. However, most of existing disaster

detection methods fall into the class of single-task learning,

which can either detect victim or classify disaster. In contrast,

this paper proposes a YOLO-based multi-task model which

performs the aforementioned tasks simultaneously. This is

accomplished by attaching a disaster classification head model

to the backbone of a victim detection model. The head model is

inherited from the MobileNetv2 architecture, and we precisely

select the backbone feature map layer to which the head model

is attached. For the victim detection, results reveal that the

solution achieves up to 0.6938 and 20.31 in terms of average

precision and frame per second, respectively. Whereas for the

disaster classification, the algorithm is comparable with most

deep learning models that are specifically trained for single task.

This shows that our solution is flexible and robust enough to

handle both victim detection and disaster classification.

Keywords—deep learning, disaster image classification,

YOLO, victim detection, multi-task learning

I. INTRODUCTION

 Every year, natural disasters such as hurricanes and
wildfires generate substantial amounts of damages, monetary
costs, as well as injuries and deaths. For example, the 2021
Fukushima earthquake inflicted 187 casualties, while causing
significant damage across Japan [1]. Given that the first 72
hours after a disaster are critical for rescuing survivors [2],
disaster response system plays a vital role in facilitating search
and rescue efforts. Based on the reported number of victims
and activity of disasters, emergency response unit can dispatch
manpower more efficiently, which could save more lives.
Clearly, the underlying premise behind these steps is an
accurate disaster detection.

Video analytics is regarded as one of the most promising
candidates for detecting disaster [3]. It prevails over dedicated
sensors in the context of smoke and wildfire detections [4].
Traditional works rely on machine learning techniques, which
require manual feature extraction. In [5], a hierarchical
disaster image classification framework based multiple
correspondence analysis was proposed to aid emergency
managers in disaster response situations. The handcrafted

features consist of twelve low-level color features and nine
mid-level object location features. To classify disaster
damage, the authors in [6] leveraged a Bag-of-Visual-Words
(BoVW) model that utilizes Histogram of Oriented Gradients
(HOG) handcrafted features.

Modern detection methods automatically learn high-level
features through a convolutional neural network (CNN),
which is known as deep learning. The output is regarded as
the combination of object classification and localization. You
Only Look Once (YOLO) [7] and Single-Shot Detector (SSD)
[8] are two prevalent object detection methods. The former
formulates the object detection as a regression problem in such
a way that it can pass the input image only once to CNN for
end-to-end training. Unlike YOLO, SSD does not segment the
image into multiple gids and predict several bounding boxes
per grid. Instead, SSD utilizes anchor boxes to make
predictions on multi-scale feature map.

In this paper, we select YOLO over SSD due to its
superiority in achieving the tradeoff between accuracy and
speed [9]. Different from existing disaster-related works,
which focus on single-task learning, we aim to propose a
unified multi-task model that performs disaster classification
and victim detection simultaneously. The contribution lies in
eliminating the straightforward approach of running multiple
individual CNN models, especially on low-powered
embedded systems. The unified model facilitates edge
computing, which is one of goals of the ASEAN IVO project
titled “Context-Aware Disaster Mitigation using Mobile Edge
Computing and Wireless Mesh Network”.

The rest of the paper is organized as follows. Section II
describes related works. In Section III, we present the
proposed solution. Section IV reports results and discussions.
Section V concludes the paper.

II. LITERATURE REVIEW

A. Disaster Detection

 The emergence of machine learning has paved the way for
smart disaster response systems. Embedding versatile
machine intelligence into various tasks of disaster detection
has received considerable attention from both academia and
industry communities.

 Recognizing the power of CNN, the authors in [10]
proposed a damage assessment method which outperforms the

0407

20
21

 IE
EE

 1
2t

h
A

nn
ua

l U
bi

qu
ito

us
 C

om
pu

tin
g,

 E
le

ct
ro

ni
cs

 &
 M

ob
ile

 C
om

m
un

ic
at

io
n

C
on

fe
re

nc
e

(U
EM

C
O

N
) |

 9
78

-1
-6

65
4-

06
90

-1
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
U

EM
C

O
N

53
75

7.
20

21
.9

66
65

76

Authorized licensed use limited to: Universiti Tunku Abdul Rahman. Downloaded on October 17,2022 at 08:47:59 UTC from IEEE Xplore. Restrictions apply.

BoVW model. The collected Damage Assessment Dataset
(DAD) consists of four major natural disasters. Another CNN
framework was adopted in [11], where multiple pretrained
unimodal CNNs that extract features from raw text and images
independently are combined and fed into a final classifier for
disaster damage identification. Their dataset, known as
Damage Multimodal Dataset (DMD), is composed of five
different damage categories collected from various sources of
text and images.

Inspired by the fact that Twitter has rapidly grown to a
popular social network platform with a plethora of content-
rich messages, the work in [12] released a large multimodal
dataset collected from Twitter during different natural
disasters, known as CrisisMMD. The authors in [13] took one
step forward by automatically classifying tweet messages that
people post during disasters into one dataset of user-defined
situational awareness categories, known as Artificial
Intelligence for Disaster Response (AIDR).

The performance of disaster detection model is tightly
connected with the quality and quantity of dataset. On one
hand, the availability of multiple datasets facilitates the
learning process of CNN. On the other hand, the heterogeneity
stemming from the datasets presents a hurdle for
benchmarking purpose. In response, the authors in [14] first
consolidated the aforementioned four datasets into a dataset
called Crisis Image Benchmarks Dataset, and subsequently
validated the performance on several CNN models such as
VGG16 [15] and MobileNet [16]. Unlike the previous works
[10-11,13] which focus on single-task classification, the same
authors in [14] extended their work to a multi-task
classification model [17], which targets on (i) disaster types,
(ii) informativeness, (iii) humanitarian, and (iv) damage
severity assessment. However, the solution is limited to
classification tasks, without considering the additional
requirement to locate the instances in an image. In contrast,
our work aims to develop a multi-task learning (MTL) model
which jointly executes disaster classification and victim
detection.

B. Multi-task Learning (MTL)

MTL is to perform more tasks using one model, without
the need of using separate model for each task. Generally, it
can be categorized into two classes, namely hard and soft
parameter sharing. Hard parameter sharing is the most
frequently used approach to MTL in deep learning [18]. As
illustrated in Fig. 1 (a), the general idea of hard parameter
sharing is to share multiple hidden layers for all tasks, which
are then branched out into several task-specific output layers.
In the computer vision domain, the shared hidden layers are
usually the modern CNN architectures. Although hard
parameter sharing is useful in many scenarios, it could break
down easily if the tasks are not closely related or require
reasoning on different levels. As for soft parameter sharing,
each task has its own backbone, where the parameters of each
backbone are regularized to encourage them to be similar.
These layers are often referred to as the constrained layers.
After that, each backbone is connected to the task-specific
output layers. Fig. 1 (b) shows an example of MTL using the
soft parameter sharing approach.

In the context of object detection, MTL can be categorized
into three types. Firstly, there are multi-task object detection
models that add an additional head model(s) for other tasks
(s). In such a model, a head model is branched out from the
backbone or the neck of the original detector for each new

task. Examples of using hard parameter sharing can be found
in [19-21]. In self-driving car application, the work in [20]
added another head model for lane lines detection to the joint
segmentation and detection model. The algorithm in [21]
adopted four head models for (i) citrus detection and (ii)
segmentation, as well as (iii) maturity and (iv) quality
classification on the detection citrus. On the other hand, the
authors in [22] resorted to the soft parameter sharing
approach, where a Task-related Attention Module (TAM) was
used to share information between the two head models.

Secondly, some multi-task object detection models are
achieved with minimal modification on the original detector
model. In [23], a multi-task object detection model was used
to predict the class and the relative distance of the detected
vehicle. The authors discretized the distance of the detected
vehicle, making the distance prediction a classification task
instead of a regression task. Then, the vehicle class and the
distance labels were combined into one unified label. For
instance, given M vehicles classes and N types of distance to
be predicted, there will be a total of M x N new labels to be
formed. As a result, the multi-task model is no different from
a regular object detection model. However, it has to learn to
predict the class and the distance of the detected vehicles
simultaneously, making it a multi-task model.

Lastly, some multi-task object detection models used other
tasks to improve the performance of object detection. In such
applications, the additional tasks are auxiliary tasks, which
serve as a refinement to the main task (object detection). The
auxiliary tasks are added to learn features that could help the
object detection head model to predict more accurately. For
example, [24] used three auxiliary tasks, which include (i)
closeness labelling, (ii) multi-object labelling and (iii)

Fig. 1. Multi-task learning can be categorized into two main

approaches. (a) Illustration of hard parameter sharing approach. (b)
Illustration of soft parameter sharing.

0408

Authorized licensed use limited to: Universiti Tunku Abdul Rahman. Downloaded on October 17,2022 at 08:47:59 UTC from IEEE Xplore. Restrictions apply.

foreground labelling to learn additional features for the object
detection head model.

III. PROPOSED SOLUTION

A multi-task model is designed for victim detection and
disaster classification, using the hard parameter sharing
approach. A head model for disaster classification is added on
top of the backbone of the selected object detection model.

A. Object Detection Model

As mentioned, we select YOLO as the object detection
model because of its high speed and accuracy. Although
YOLOv4 [25] is the latest version, YOLOv3 is still regarded
as one of the most widely used object detector [26]. Without
loss of generality, we focus on developing the YOLOv3 based
multi-task model. The results are also expectably applicable
to YOLOv4, which follows the same structural design as
YOLOv3.

YOLOv3's backbone is DarkNet-53, which is a deep
residual network inspired by the Residual Neural Network
(ResNet). YOLOv3 also adopts the Feature Pyramid Network
(FPN) as its neck model to extract features at three different
scales. FPN takes three feature maps from the 82nd, 94th and
the last layer from DarkNet-53 as its inputs. Lastly, three head
models (or decoders) are used to detect objects based on the
three different features from the FPN. The head model is very
simple. It consists of two convolutional layers, where a 3 x 3
convolutional layer is followed by a 1 x 1 convolutional layer.
The output channel of each head model is 3 (K + 5), where K
is the total number of classes to be predicted. For the
remaining five channels, four are used to predict the spatial
coordinate of the bounding boxes (x, y, w, h) and one for
objectness score.

Ideally, an object detection model should only predict one
bounding box for each detected object. However, an object
detector will likely predict more than one bounding box for
each object. Thus, Non-Maximum Suppression (NMS) is
applied to remove the redundant bounding boxes. After
applying NMS, we set the number of bounding boxes to be the
victim count. To this end, a layer will be added to compute
and return the victim count as a tensor. Fig. 2 shows the model
architecture of the YOLOv3 for victim detection and victim
counting.

B. Disaster Classification Head Model

The disaster classification head model will be added to one
of the output feature maps from the DarkNet-53. It is
important to decide where should the head model be attached
to the DarkNet-53. This is because the disaster classification
task requires different high-level feature maps compared to
the victim detection task. Since the disaster classification

task's activation map does not focus on any victim-shape
objects [17], it is important to select a feature map from
DarkNet-53 that has not highly specialized for victim
detection.

After some empirical testing, we decided to add the head
model to the 94th layer of DarkNet-53 instead of the 82nd or
the last layer. We do not attach the head model to the last layer
of DarkNet-53, because the feature maps produced by this
layer are highly specialized for victim detection. On the other
hand, the feature maps extracted in the 82nd layer are
considerably too low-level. The 94th layer of DarkNet-53
seems to provide feature maps that are not too specialized for
victim detection, but still consist of some high-level features
that could be shared for both tasks.

The head model for disaster classification adopts the
MobileNetv2 architecture [27], because it is designed for
lightweight and fast applications. Specifically, our disaster
classification head model borrows the architecture of the last
few blocks in the MobileNetv2, which consists of two inverted
residual blocks, one pointwise convolution layer followed
with a global average pooling, and one more pointwise
convolution layer for the classification.

Fig. 3 shows the detailed structure of the disaster
classification head model. DW represents a 3 x 3 depthwise-
separable convolution layer, while PW represents a 1 x 1
conventional convolution layer (which is a pointwise
convolution). BN represents a batch normalization layer, and
ReLU6 is ReLU clipped at a maximum value of 6, as used in
[28] for depthwise-separable convolution.

C. The Unified Model

A victim detection model based on YOLOv3 is used as the
based model. Then, the disaster classification head model will
be attached to the second feature map output by the DarkNet-
53 backbone in YOLOv3. Together, a unified multi-task
model for victim detection and disaster classification is
formed. Fig. 4 illustrates the architecture of the model.

Fig. 2. The architecture of the YOLOv3 for victim detection and
counting.

Fig. 3. The architecture of the disaster classification head model.

0409

Authorized licensed use limited to: Universiti Tunku Abdul Rahman. Downloaded on October 17,2022 at 08:47:59 UTC from IEEE Xplore. Restrictions apply.

IV. EXPERIMENTS

A. Datasets

The images used in the dataset are extracted from the
Crisis Image Benchmarks Dataset [14]. The sub-dataset for
disaster types is used to train both the disaster classification
task and victim detection task. The class label for disaster type
in the sub-dataset include (i) fire, (ii) hurricane, (iii) flood, (iv)
earthquake, (v) landslide, (vi) other disasters (to cover the
remaining disaster types, such as bus or car accident, plane
crash, explosion, and war) and (vii) not disaster. The data split
for the sub-dataset is as shown in Table I.

 There is a lack of publicly available victim detection
datasets. Thus, the disaster type dataset will be annotated for
victim detection. The dataset is labelled using Auto-Annotate,
which is built on top of a Mask R-CNN model. The pre-trained
Mask R-CNN model has been forked 1400 times in GitHub,
making it a reliable model. After auto-annotating the dataset,
manual inspection is done to validate the generated bounding
boxes. In total, 5994, 634 and 1448 images from the train,
validation and test dataset, respectively, are labelled. The
remaining images are not used because there is no victim in
the images. Table II shows the data split for the custom victim
detection dataset.

TABLE I. DATA SPLIT FOR DISASTER TYPES TASK.

Class Labels Train Validation Test

Fire 1270 121 280

Hurricane 1444 175 352

Flood 2336 266 599

Earthquake 2058 207 404

Landslide 940 123 268

Other Disaster 1132 143 302

Not Disaster 3666 435 990

Total 12846 1470 3195

TABLE II. DATA SPLIT FOR VICTIM DETECTION DATASET.

Class Labels Count

Train 5994

Validation 634

Test 1448

Total 8076

B. Training Details

The head models for victim detection and disaster
classification are trained separately. A YOLOv3 for victim
detection will be trained as a base model. Then, the trained
DarkNet-53 backbone will be frozen, and used as the
backbone for the disaster classification head model. After the
training, the head models will be attached to the trained
YOLOv3, resulting a unified model. All models in this paper
are trained on the NVIDIA GeForce RTX 2070 SUPER
Graphic Cards. Table III shows the complete configuration of
the experimental platform.

A YOLOv3 model pretrained on the COCO dataset is used
for transfer learning. The weights for DarkNet-53 and FPN
layers will be transferred to our model. These weights are
frozen and will not be trained. On the other hand, the three
head models will be initialized randomly. We trained the
model for 100 epochs with 0.99 momentum and 0.0005

Fig. 4. The architecture of the unified model for victim detection and disaster classification. YOLOv3 is used as the base model, where a custom layer for
victim counting after the NMS layer. A disaster classification head model is added to the second output feature maps from the DarkNet-53 backbone.

TABLE III. CONFIGURATION OF EXPERIMENTAL PLATFORM.

Names Configuration

Operating System Ubuntu 18.04

CPU Intel Core i7-10875H CPU, 2.30 gigahertz

RAM (GB) 64

GPU NVIDIA GeForce RTX 2070 SUPER

GPU Acceleration

Libray
CUDA9.1, CUDNN7.6.5

0410

Authorized licensed use limited to: Universiti Tunku Abdul Rahman. Downloaded on October 17,2022 at 08:47:59 UTC from IEEE Xplore. Restrictions apply.

weight decay. A batch size of 64 is used on one graphic
processing unit only. Adam optimizer is used with the initial
learning rate set to 0.001. To avoid over-fitting, adaptive
learning rate method is used. The learning rate is reduced by a
factor of 0.1 when the validation loss stops decreasing after
three epochs. Similar training procedures are repeated for the
disaster classification, except that the three head models are
replaced by the customized MobileNetv2 like head model.

C. Performance Evaluation

The performance of the two tasks will be evaluated
separately. For victim detection task, average prevision (AP)
is used as the evaluation metric to evaluate the performance of
the victim detection model. AP is derived from precision and
recall. The definition of precision (P) and recall (R) are as
shown in (1) and (2):

 � �
��

�����
 (1)

 � �
��

�����
 (2)

where TP, FP and FN are true positive count, false positive
count, and false negative count, respectively. Based on the
precision and recall, the AP can be expressed as the integral
of function P of R as shown in (3).

 	� �
 � ����
�

�
 (3)

 The train, validation and test PR curves of the victim
detection model are plotted in Fig. 5. The train, validation and
test AP of the model are 0.7814, 0.6907 and 0.6938,
respectively. Also, the average frame per second is 20.31,
making it suitable for real-time disaster monitoring.

Fig. 6 shows some examples of victim detection using our
model. On the other hand, the performance of the disaster
classification head model will be evaluated using accuracy,
precision, recall and F1 score. Table IV compares the results
with those extracted from [17].

TABLE IV. DISASTER CLASSIFICATION USING DIFFERENT MODELS.

Backbone Accuracy Precision Recall F1 Score

ResNet18 0.812 0.807 0.809 0.809
ResNet50 0.817 0.810 0.812 0.812
ResNet101 0.819 0.815 0.816 0.816
AlexNet 0.755 0.753 0.753 0.753
VGG16 0.803 0.797 0.798 0.798
DenseNet (121) 0.817 0.811 0.813 0.813
SqueezeNet 0.726 0.719 0.717 0.717
InceptionNet (v2) 0.808 0.801 0.802 0.802
MobileNet (v2) 0.793 0.788 0.793 0.789
EfficientNet (b1) 0.838 0.834 0.838 0.835

Proposed
Solution

0.792 0.827 0.769 0.766

 Interestingly, the proposed solution is comparable with
most CNN models that are specifically trained for single task.
The ability to detect victim on top of disaster classification
comes at the cost of only 2 % accuracy performance loss. As
for precision, our model has the second highest precision and
approximate the best model within 0.7 % gap. With regards to
recall and F1 score, the proposed algorithm performs slightly
worse than other models. Again, such performance drop is
contributed by the hard parameter sharing setup. Overall, our
solution is flexible and robust enough to handle both victim
detection and disaster classification.

Fig. 5. Precision-recall curves of the YOLOv3 for victim detection.

Fig. 6. Victim detection at different areas. (a) Flood. (b) Landslide. (c)
Earthquake.

(a)

(b)

(c)

0411

Authorized licensed use limited to: Universiti Tunku Abdul Rahman. Downloaded on October 17,2022 at 08:47:59 UTC from IEEE Xplore. Restrictions apply.

V. CONCLUSION

In this paper, we propose a multi-task model for disaster
classification and victim detection. The model has a high AP
of 0.6938 for victim detection, with precision and recall as
high as 0.98 and 0.7. As for the disaster classification task, the
performance does not surpass the best benchmark
performance. However, the trade-off is acceptable since our
backbone is shared for multi-tasking. In future works, the
proposed models can be optimized using OpenVINO.
OpenVINO performs static model analysis and redesign the
model for optimal execution on an edge device. Then, the
model can be deployed in an IoT framework for disaster
response.

ACKNOWLEDGEMENT

This work is the output of the ASEAN IVO
(http://www.nict.go.jp/en/asean_ivo/index.html) project titled
“Context-Aware Disaster Mitigation using Mobile Edge
Computing and Wireless Mesh Network” and financially
supported by NICT (http://www.nict.go.jp/en/index.html).

REFERENCES

[1] S. Evans, “Claims paid for Japan’s M7 quake in Feb 2021 nearing
$900m,” Artemis.bm, 2021. https://www.artemis.bm/news/claims-
paid-for-japans-m7-quake-in-feb-2021-nearing-900m/ (accessed Oct.
14, 2021).

[2] United Nations Office for the Coordination of Humanitarian Affair,
"Five essentials for the first 72 hours of disaster response," OCHA,
2017. https://www.unocha.org/story/five-essentials-first-72-hours-
disaster-response (accessed Aug. 20, 2021).

[3] S. A. Shah, D. Z. Seker, S. Hameed and D. Draheim, "The Rising Role
of Big Data Analytics and IoT in Disaster Management: Recent
Advances, Taxonomy and Prospects," in IEEE Access, vol. 7, pp.
54595-54614, 2019, doi: 10.1109/ACCESS.2019.2913340.

[4] S. Khan, K. Muhammad, S. Mumtaz, S. W. Baik, and V. H. C. de
Albuquerque, "Energy-Efficient Deep CNN for Smoke Detection in
Foggy IoT Environment," IEEE Internet Things J., vol. 6, no. 6, pp.
9237–9245, 2019, doi: 10.1109/JIOT.2019.2896120.

[5] Y. Yang, H. Ha, F. Fleites, S. Chen, and S. Luis, “Hierarchical disaster
image classification for situation report enhancement,” in 2011 IEEE
International Conference on Information Reuse Integration, 2011, pp.
181–186, doi: 10.1109/IRI.2011.6009543.

[6] A. Vetrivel, M. Gerke, N. Kerle, and G. Vosselman, “Identification of
Structurally Damaged Areas in Airborne Oblique Images Using a
Visual-Bag-of-Words Approach,” Remote Sens., vol. 8, no. 3, 2016,
doi: 10.3390/rs8030231.

[7] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, "You Only Look
Once: Unified, Real-Time Object Detection," Jun. 2015, Accessed:
Aug. 16, 2021. [Online]. Available: https://arxiv.org/abs/1506.02640.

[8] W. Liu et al., "SSD: Single Shot MultiBox Detector," in European
Conference on Computer Vision, 2016, pp. 21–37, doi: 10.1007/978-3-
319-46448-0_2.

[9] J. -a. Kim, J. -Y. Sung and S. -h. Park, "Comparison of Faster-RCNN,
YOLO, and SSD for Real-Time Vehicle Type Recognition," 2020

 FPS versus processing unit. (a) YOLOv4. (b) YOLOv4 tiny. IEEE
International Conference on Consumer Electronics - Asia (ICCE-
Asia), Nov. 2020, pp. 1-4.

[10] D. T. Nguyen, F. Ofli, M. Imran, and P. Mitra, "Damage Assessment
from Social Media Imagery Data During Disasters," in 2017
IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining (ASONAM), 2017, pp. 569–576.

[11] H. Mouzannar, Y. Rizk, and M. Awad, "Damage Identification in
Social Media Posts Using Multimodal Deep Learning," Proc. Int.
ISCRAM Conf., vol. 2018-May, no. May, pp. 529–543, 2018.

[12] F. Alam, F. Ofli, and M. Imran, "CrisisMMD: Multimodal twitter
datasets from natural disasters," in 12th International AAAI Conference
on Web and Social Media, ICWSM 2018, 2018, pp. 465–473, [Online].
Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-

85050637466&partnerID=40&md5=0fb528332fb3182d641214df5e8
54665.

[13] M. Imran, C. Castillo, J. Lucas, P. Meier, and S. Vieweg, "AIDR:
Artificial Intelligence for Disaster Response," in Proceedings of the
23rd International Conference on World Wide Web, 2014, pp. 159–
162, doi: 10.1145/2567948.2577034.

[14] F. Alam, F. Ofli, M. Imran, T. Alam, and U. Qazi, "Deep Learning
Benchmarks and Datasets for Social Media Image Classification for
Disaster Response," in 2020 IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining (ASONAM), 2020,
pp. 151–158, doi: 10.1109/ASONAM49781.2020.9381294.

[15] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” arXiv preprint arXiv:1409.1556,
2014.

[16] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T.
Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient
convolutional neural networks for mobile vision applications,”
arXiv:1704.04861, 2017.

[17] F. Alam, T. Alam, F. Ofli, and M. Imran, "Social Media Images
Classification Models for Real-time Disaster Response," CoRR, vol.
abs/2104.0, 2021, [Online]. Available:
https://arxiv.org/abs/2104.04184.

[18] S. Ruder, "An Overview of Multi-Task Learning in Deep Neural
Networks," CoRR, vol. abs/1706.0, 2017, [Online]. Available:
http://arxiv.org/abs/1706.05098.

[19] N. Dvornik, K. Shmelkov, J. Mairal, and C. Schmid, “BlitzNet: A Real-
Time Deep Network for Scene Understanding,” in 2017 IEEE
International Conference on Computer Vision (ICCV), 2017, pp. 4174–
4182, doi: 10.1109/ICCV.2017.447.

[20] Y. Qian, J. M. Dolan, and M. Yang, "DLT-Net: Joint Detection of
Drivable Areas, Lane Lines, and Traffic Objects," IEEE Trans. Intell.
Transp. Syst., vol. 21, no. 11, pp. 4670–4679, 2020, doi:
10.1109/TITS.2019.2943777.

[21] C. Wen et al., "Multi-scene citrus detection based on multi-task deep
learning network," in 2020 IEEE International Conference on Systems,
Man, and Cybernetics (SMC), 2020, pp. 912–919, doi:
10.1109/SMC42975.2020.9282909.

[22] W. Zhang, K. Wang, Y. Wang, L. Yan, and F.-Y. Wang, "A loss-
balanced multi-task model for simultaneous detection and
segmentation," Neurocomputing, vol. 428, pp. 65–78, 2021, doi:
https://doi.org/10.1016/j.neucom.2020.11.024.

[23] Y. Chen, D. Zhao, L. Lv, and Q. Zhang, "Multi-task learning for
dangerous object detection in autonomous driving," Inf. Sci. (Ny)., vol.
432, pp. 559–571, 2018, doi: https://doi.org/10.1016/j.ins.2017.08.035.

[24] W. Lee, J. Na, and G. Kim, "Multi-Task Self-Supervised Object
Detection via Recycling of Bounding Box Annotations," in 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2019, pp. 4979–4988, doi: 10.1109/CVPR.2019.00512.

[25] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, "YOLOv4: Optimal
Speed and Accuracy of Object Detection," Apr. 2020, Accessed: Aug.
17, 2021. [Online]. Available: https://arxiv.org/abs/2004.10934.

[26] J. Redmon and A. Farhadi, "YOLOv3: An Incremental Improvement,"
Apr. 2018, Accessed: Aug. 16, 2021. [Online]. Available:
https://arxiv.org/abs/1804.02767.

[27] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
"MobileNetV2: Inverted Residuals and Linear Bottlenecks," in 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2018, pp. 4510–4520, doi: 10.1109/CVPR.2018.00474.

[28] A. G. Howard et al., "MobileNets: Efficient Convolutional Neural
Networks for Mobile Vision Applications," Apr. 2017, Accessed: Aug.
22, 2021. [Online]. Available: https://arxiv.org/abs/1704.04861.

0412

Authorized licensed use limited to: Universiti Tunku Abdul Rahman. Downloaded on October 17,2022 at 08:47:59 UTC from IEEE Xplore. Restrictions apply.

Efficient Device-Edge Inference for Disaster
Classification

Nathaniel Tan Sze Yang
Department of Electrical and

Electronic Engineering
Universiti Tunku Abdul Rahman

Kajang, Malaysia
nat980718@1utar.my

Ying Loong Lee
Department of Electrical and

Electronic Engineering
Universiti Tunku Abdul Rahman

Kajang, Malaysia
leeyingl@utar.edu.my

Mau-Luen Tham
Department of Electrical and

Electronic Engineering
Universiti Tunku Abdul Rahman

Kajang, Malaysia
thamml@utar.edu.my

Yasunori Owada
Resilient ICT Research Center

National Institute of Information and
Communications Technology (NICT)

Tokyo, Japan
yowada@nict.go.jp

Sing Yee Chua
Department of Electrical and

Electronic Engineering
Universiti Tunku Abdul Rahman

Kajang, Malaysia
sychua@utar.edu.my

Suvit Poomrittigul
Software Engineering and Information

System
Pathumwan Institute of Technology

Bangkok, Thailand
suvit@pit.ac.th

Abstract—Image classification can learn useful insights from
crisis incidents and is gaining popularity in the field of disaster
management. This is fueled by the recent advances in computer
vision and deep learning techniques, where accurate neural
network models for disaster type classification can be accrued.
However, these studies quite commonly neglect the prohibitive
inference workload which may hamper its wide-spread
deployment, especially for model execution on low-powered
edge devices. In this paper, we propose a lightweight disaster
classification model that recognizes four types of natural
disaster plus one non-disaster class. To support real-time
applications, the proposed model is optimized with OpenVINO,
which is a neural network acceleration platform. Different from
existing works which focus on benchmarking at training stage,
our experimental results reveal the actual performance at
inference stage. Specifically, the optimized version achieves up
to 23.93 frames per second (FPS), which is more than doubled
the speed achieved by the original model, while sacrificing only
0.935 % of classification accuracy.

Keywords—natural disaster, deep learning, disaster image
classification, OpenVINO, benchmarking

I. INTRODUCTION
Artificial intelligence (AI) algorithms are developed with

the intention of making decisions in real life. Moving forward,
convolutional neural network (CNN), which is an advanced
version of AI, is able to learn more meaningful insights from
images. The training process of these neural network models
can be facilitated by open-source deep learning (DL)
frameworks such as TensorFlow [1] and Keras [2]. The
growing popularity of CNN have paved the way for new
computer vision applications. One specific area would be
disaster management [3], where video surveillance cameras
and sensors can be leveraged to gain situational awareness.

A natural disaster is an incident caused by nature’s threat.
It can be defined as a natural phenomenon that causes the
health impacts of mankind, loss of livelihoods and services,
social and economic disruption, or properties and
environmental damage [4]. Some examples are tornadoes,
earthquakes, floods, and wildfires. Monitoring these disasters
at large-scale coverage would require a plethora of Internet of
things (IoT) devices [5], which often have long-range
transmission range but low computational power.

Existing works for disaster classification quite commonly
neglect the prohibitive inference workload which may hamper

its wide-spread deployment, especially for model execution
on low-powered edge devices. In this paper, we propose a
lightweight disaster classification model that identifies four
types of natural disasters and one non-disaster class. The
optimized model facilitates edge computing, which is one of
goals of the ASEAN IVO project titled “Context-Aware
Disaster Mitigation using Mobile Edge Computing and
Wireless Mesh Network”.

The contributions in this study are threefold. First, we
consolidate a dataset which consists of natural disaster and
non-disaster images (natural sceneries). Second, we employ
the transfer learning approach to output a disaster
classification model before optimizing the model with
OpenVINO. Third, we provide benchmark results for both
training and inference stages, which sheds more insights into
the actual implementation performance.

The rest of the paper is organized as follows. Section II
discusses the related works. Section III describes the proposed
solution. Section IV presents the experimental results and
discussions. Section V concludes the article.

II. RELATED WORK
DL, especially CNN has gained momentum in disaster

monitoring. According to [6], majority works have focused on
CNN instead of machine learning (ML) methods due to its
superior performance. Such gain, however, are only possible
under the availability of abundant labelled datasets.

Recognizing the importance of datasets, the authors in [7]
consolidated a substantial amount of human detection and
action detection dataset for disaster management application.
The goal was to develop a DL-based drone surveillance
framework. However, the framework did not consider disaster
event classification. A similar work can be found in [8], where
the authors utilized various CNN architectures including
ResNet50, Inception V3 and AlexNet in identifying survivors
in debris. This time, the annotated images were focused on
earthquake-hit regions.

The work in [9] focused on classifying disaster events after
collecting more than 7000 images consisting of cyclones,
drought, earthquakes, floods, landslides, thunderstorms,
snowstorms, and wildfires, from social media platforms. The
burden of annotating data was relieved by adopting active
learning, which automatically chooses and labels the data

314978-1-6654-8550-0/22/$31.00 ©2022 IEEE ICUFN 2022

20
22

 T
hi

rte
en

th
 In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 U
bi

qu
ito

us
 a

nd
 F

ut
ur

e
N

et
w

or
ks

 (I
C

U
FN

) |
 9

78
-1

-6
65

4-
85

50
-0

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
D

O
I:

10
.1

10
9/

IC
U

FN
55

11
9.

20
22

.9
82

96
68

Authorized licensed use limited to: Universiti Tunku Abdul Rahman. Downloaded on July 23,2022 at 13:44:15 UTC from IEEE Xplore. Restrictions apply.

from which it learns without human interaction. The authors
in [10] further divided disaster-related images into four
different categories, namely disaster type detection,
informativeness, humanitarian and damage severity. By
setting binary and multiclass classification labels on a
consolidated dataset, benchmark results using several CNN
architectures were provided.

Apart from the disaster-related images, text messages
contain critical information such as infrastructural damages,
casualties, and help requests. The usefulness of such social
media data has motivated the authors in [11] to develop a
multimodal fusion model, which combines both visual and
textual features to classify relevant disaster images. However,
all the above studies focused on accuracy measurement, where
high-end graphics processing unit (GPU) such as NVIDIA
Tesla P100 GPU was utilized. Deploying these trained models
directly on resource-constrained edge devices remains a
challenging task [12]. This is especially true for real-time
disaster monitoring applications.

Different from the aforementioned works, the authors in
[13] assessed the CNN performance in terms of accuracy and
speed. Results showed that their proposed model was able to
achieve 9 frames per second (FPS) on a low-powered
embedded device, while maintaining reasonable accuracy.
However, they did not explore the potential of neural network
optimization on target devices at the inference stage. Such
performance acceleration is made possible with an open-
source CNN model inference engine called OpenVINO
Toolkit [14]. The study in [15] benchmarked several
pretrained CNN models under the OpenVINO settings.
However, it remains unaddressed as in how much
improvement can be brought to implementation by
OpenVINO, as compared to the unoptimized version.

III. DL MODEL DEPLOYMENT
To achieve a robust DL model, training and inference

phases must be analyzed correctly. To this end, we propose
the methodology shown in Fig. 1, where the three stages are
necessary to evaluate the actual performance.

A. Model Training
A new natural disaster classification model is trained using

the transfer learning approach. Without loss of generality, we
select VGG16 to be the neural network architecture due to its
high accuracy [6,10,11,13,14, 15]. The results are also
expectably applicable to other architectures such as DarkNet-

53 [16]. The collected dataset contains natural disaster and
non-disaster images, which were downloaded from public
sources: [17] and [18], respectively. The natural disaster data
consists of cyclones, earthquakes, floods, and wildfires. On
the other hand, the non-disaster images comprise of nature
scenes such as coast, mountain, forest, open country, as well
as man-made scenes like street, inside city, buildings, and
highways. Table I summarizes the data distribution among
training, testing, and validation.

 The dataset split is 67.5 % for training, 25 % for testing,
and 7.5 % for the validation split. The parameters to fine-tune
the VGG16 model are shown in Table II. The batch size means
the number of images from the dataset that are selected from
the beginning and used to train the natural disaster
classification model in each iteration throughout the training
dataset. The number of steps is the number of iterations. After
each step or iteration, the gradient of the natural disaster
classification model will be updated. Once all images of the
training dataset are gone through, one epoch is completed. The
values of the minimum and maximum learning rates are used
by the cyclical learning rate (CLR) technique to improve the
accuracy of the model [19].

 CLR requires the minimum and maximum boundary
values before it can be used. A test on the learning rate range
is executed whereby training starts at a lowest learning rate of
10 𝑒𝑒𝑒𝑒−10 . After each batch update, the learning rate will
increase exponentially until it reaches a rate of 10𝑒𝑒𝑒𝑒1, and the
current learning rate and loss will be logged simultaneously.
The loss gives the idea of how the model performs in the
training and validation datasets as shown in Fig. 2. The CLR
technique makes the learning rate moves cyclically between
the set boundaries as shown in Fig 3.

Fig. 1. Methodology for performance evaluation of the proposed model using OpenVINO Deep Learning Workbench.

Fig. 2. Learning rate range test

Fig. 3. CLR plot

315

Authorized licensed use limited to: Universiti Tunku Abdul Rahman. Downloaded on July 23,2022 at 13:44:15 UTC from IEEE Xplore. Restrictions apply.

TABLE I. DATA SPLIT FOR DISASTER CLASSIFICATION

Disaster Label Train Validation Test Total

Cyclone 599 78 251 928
Earthquake 923 86 341 1350

Flood 741 80 252 1073

Wildfire 724 68 285 1077

Non-Disaster 1821 223 652 2696

TABLE II. PARAMETERS AND ITS VALUES FOR FINE-TUNING THE
VGG16 MODEL

Parameter Value
Batch Size 32
Number of Steps 8
Epoch 48
Min Learning Rate 1e-6
Max Learning Rate 1e-4

Along with the immediate responses, the correctness of the
result is also a very crucial parameter for such applications.

B. Model Optimization
To reach the goal of this study, we proposed the method

shown in Fig. 1. There are five processes to get the output
predictions for each image in the inference stage. Each stage
will be discussed in the following sections.

1) Obtaining the trained model. A transfer learning approach
is applied to the pre-trained VGG16 model to output a
new natural disaster classification model. Fine-tunings
and parameters are modified with the intention of
minimizing execution time and increasing accuracy.

2) Freezing the model. The model is saved as a .pb file with
the weights frozen during the training stage. TensorFlow
version 2.0 is used to execute the training and freeze the
model.

3) Model conversion to a compatible format. Conversion of
the trained model into Intermediate Representation (IR)
format needs to be done in order for it to be used in the
OpenVINO environment [20]. OpenVINO’s model
optimizer tool is used to perform the conversion, with the
following code and parameter:

The parameter –input_shape [1,224,224,3] defines the
input data properties of the model in the training as
follows: Number of images [N] × Height [H] × Weight
[W] × Channels [C]. Note that [N,H,W,C] is for a
TensorFlow model. After a successful conversion of the
model to IR format, a .xml (describes the network
topology) and a .bin (contains the weights and biases
binary data) file will be generated [21][22].

4) Executing inferences. In this stage, OpenVINO’s
Inference Engine tool is used to perform the inference. A
custom Python script is executed to initiate plugins, load

IR model, read the label, input data, infer and process the
output. The alternative of using a python script is the
Deep Learning Workbench (DL Workbench).

5) Performance evaluation. The original (TensorFlow)
model and optimized (OpenVINO) model are evaluated
based on the 25 % test dataset, for precise and accurate
measurements. For the original model, it is evaluated
using the classification_report function in TensorFlow
while the optimized model uses DL Workbench. The
precision of the TensorFlow’s natural disaster
classification model is floating-point (FP) 32. In the
optimized model, the precision can be FP 32, FP 16, and
integer (INT) 8. In theory, a higher precision gives a
higher accuracy but requires higher computational power,
and vice versa.

C. Model Inference
There are two inference modes: synchronous and

asynchronous. The data were fed into the inference engine in
a synchronous manner, allowing only one image to be
processed per inference. Asynchronous inference, on the other
hand, speeds up the process by inferencing one image while
pre-processing the next image.

The script to run the inference of the TensorFlow model is
in asynchronous mode. By default, the inference model in the
Inference Engine of OpenVINO also uses asynchronous
mode. However, there are certain disadvantages to this
method, as acquiring the predictions comes after all of the
flow is completed.

IV. EXPERIMENTAL RESULTS
The proposed model is evaluated using the dataset

provided in [16] and [17]. Sample images from the dataset can
be seen in Fig 1. The dimension of the images varies
throughout the dataset. Image pre-processing based on the
required input size of 224 × 224 pixels is done before the
training or inferencing of the model.

Regarding the hardware used, there are two environments
that are used to carry out the experiments. Their main
specifications are described in the following items.

1) Hardware on training phase: The hardware used in this
phase is an Intel NUC equipped with a 10th–generation
i7-10710U 6-core Intel processor with 64 GB of memory
and 1 TB of a solid-state drive as the storage. The
operating system in the Intel NUC is the Ubuntu 18.04
LTS version. The software used for training is
TensorFlow version 2.0.

2) Hardware on the inference phase: The hardware is similar
to that of the training phase. The difference is that the
inference for the optimized model is able to take
advantage of the Intel integrated graphics, which is Intel
UHD Graphics. The optimized model is executed in the
OpenVINO environment, and the version is OpenVINO
2021.4.

A. Training Performance
Once the training of the model is completed, a

performance test of precision, recall, f1-score, and accuracy is
executed by the function classification_report. The 25 % test
dataset is used for the performance evaluation and has a total
number of 1781 images.

python3 mo_tf.py --saved_model_dir <model-path>
--output_dir <output-dir> --input_shape
[1,224,224,3]

316

Authorized licensed use limited to: Universiti Tunku Abdul Rahman. Downloaded on July 23,2022 at 13:44:15 UTC from IEEE Xplore. Restrictions apply.

Table III shows the performance results of the TensorFlow
model. It is noteworthy that precision gives us an idea of how
well the model classifies a natural disaster when it
output/classify a natural disaster; recall ratio gives us an idea
of how well the model classifies a natural disaster, given an
input of natural disaster scenario; F1-score is the harmonic
mean between precision and recall; support is the number of
occurrences (or images used) in each class to produce the
results; and accuracy is the ratio of the correct predictions to
all of the predictions.

The performance of TensorFlow’s model has achieved an
accuracy of 93 %. A few videos have been used as inputs to
the model and it achieved an average of 7.70 FPS. Note that
the same test dataset is used to evaluate the performance of the
optimized model in the subsequent sub-section.

B. Inferences Performance
Once the trained model is converted successfully into

OpenVINO IR format, the optimized model is used by the
Inference Engine to do inferencing. The DL Workbench tool
is used to obtain the inference performance of the optimized
model. Figs. 4 - 7 shows the inference performance overview
obtained from the DL Workbench.

TABLE III. RESULTS OF TENSORFLOW NATURAL DISASTER
CLASSIFICATION MODEL

Disaster Class Precision Recall F1-Score Support

Cyclone 96% 98% 97% 251
Earthquake 94% 92% 93% 341

Flood 84% 90% 87% 252
Wildfire 93% 93% 93% 285

Non-Disaster 96% 93% 95% 652

Fig. 4. Performance overview of the optimized FP32 model on Intel CPU

Fig. 5. Performance overview of the optimized INT8 model on Intel CPU

Fig. 6. Performance overview of the optimized FP32 model on Intel GPU

Fig. 7. Performance overview of the optimized FP16 model on Intel GPU

TABLE IV. RESULTS OF OPENVINO OPTIMIZED MODEL RUNNING ON
CPU

Precision FP 32 FP 16 INT 8

Throughput (FPS) 11.81 - 21.35
Accuracy (%) 92.19 - 92.30

TABLE V. RESULTS OF OPENVINO OPTIMIZED MODEL RUNNING ON
INTEGRATED GPU

Precision FP 32 FP 16 INT 8

Throughput (FPS) 9.15 23.93 -

Accuracy (%) 92.19 92.13 -

Table IV presents the performance results of the optimized
model that runs on an Intel CPU. The INT 8 precision model
has achieved an increase of 80.8 % FPS and 0.119 % accuracy,
showing higher performance as compared to the FP 32
precision model. Hence, the best performance with Intel CPU
is the INT 8 precision model. The FP 16 precision model is
not available as it will upscale the model to the FP 32 to
perform inference due to the limitation of DL workbench and
the particular Intel CPU used in this study.

Table V shows the performance results of the optimized
model that runs on an Intel integrated GPU. The FP 16
precision model has obtained 162 % higher FPS while
sacrificing 0.0650 % accuracy, compared to the FP 32
precision model. The INT 8 precision model is not supported
on the integrated GPU model [25]. Since the accuracy drop in
the FP 16 precision model is very low, along with the
considerable increase of throughput, the FP 16 precision
model provides the best performance on Intel integrated GPU
hardware.

Since TensorFlow’s model runs on the CPU, to ensure
reliable and accurate results, the comparison is done on the
optimized FP 32 and INT 8 precision models of the optimized
model that ran on the same CPU. The optimized FP 32
precision model achieves an increase of 53.4 % in throughput
with a loss of 0.871 % in accuracy. Meanwhile, the optimized
INT 8 precision model achieves an increase of 177 % in
throughput at the cost of 0.753 % in accuracy.

On the other hand, if the program is implemented on an
edge device, which is the Intel NUC in our study, and the
optimized model is able to run on the Intel integrated GPU
hardware. Only the optimized FP 32 and FP 16 precision
model is able to take advantage of the GPU hardware. Since
the optimized FP 16 precision model provides the best
performance on GPU hardware, it achieves a substantial
improvement of 211 % in throughput while only sacrificing
0.935 % accuracy as compared to the TensorFlow’s model.

The comparisons show that the OpenVINO optimized
models have a better performance enhancement over the
TensorFlow’s model in terms of frame rate inference while
losing a negligible amount of accuracy.

DL Workbench is able to display the results of the
performance summary of the model as shown in Figs. 8 - 11.
This allows us to identify the throughput, latency, batch, and
streams values of the model.

317

Authorized licensed use limited to: Universiti Tunku Abdul Rahman. Downloaded on July 23,2022 at 13:44:15 UTC from IEEE Xplore. Restrictions apply.

Fig. 8. Performance results of the optimized FP32 model on Intel CPU

Fig. 9. Performance results of the optimized INT8 model on Intel CPU

Fig. 10. Performance results of the optimized FP32 model on Intel GPU

Fig. 11. Performance results of the optimized FP16 model on Intel GPU

 In this part, we evaluate the performance in terms of
throughput and latency. It is noteworthy that throughput is the
number of images processed in a certain amount of time,
which is one second, and latency is the amount of time used
to perform an inference for a single image [23]. The INT8
model on the CPU and the FP16 model on the Intel GPU
achieve a high throughput while only the INT8 model
achieves the lowest latency of 44.12 milliseconds.

V. CONCLUSION AND FUTURE LINES
Natural disasters happen all around the world. Early

detection of natural disasters for the people staying around the
danger zone can enable safe evacuation of the people to a
nearby shelter. The main issue that the current study aims to
address is the unbalanced dataset and the need of powerful
hardware for performing inference. To overcome the dataset
limitation, we have consolidated a natural disaster dataset, and
trained a new natural disaster classification model to classify
natural disaster and non-disaster scenarios. We have
addressed the need for powerful hardware by deploying the
trained model into the OpenVINO platform. Lastly, we have
evaluated the performance of the trained model and concluded
that the model performs significantly better in the OpenVINO
environment as compared to the TensorFlow environment.
DL Workbench is a great tool for conversion of model,
analysis of the converted model, as well as the performance

measurement that can be done on it. As for future research
works, the power consumption of the model running in
different environments can be measured and it will be used as
one of the performance metrics.

ACKNOWLEDGMENT
This work is the output of the ASEAN IVO

(http://www.nict.go.jp/en/asean_ivo/index.html) project titled
“Context-Aware Disaster Mitigation using Mobile Edge
Computing and Wireless Mesh Network” and financially
supported by NICT (http://www.nict.go.jp/en/index.html).

REFERENCES
[1] "TensorFlow", [online] Available:
https://www.tensorflow.org/overview.

[2] "Keras", [online] Available: https://keras.io/

[3] Lopez-Fuentes, L., van de Weijer, J., González-Hidalgo, M. et
al. Review on computer vision techniques in emergency
situations. Multimed Tools Appl 77, 17069–17107 (2018).
https://doi.org/10.1007/s11042-017-5276-7

[4] Chen, Y., Li, C., Chang, C. and Zheng, M., 2021. Identifying the
influence of natural disasters on technological innovation. Economic
Analysis and Policy, 70, pp.22-36.

[5] M. A. Al-Mashhadani, M. M. Hamdi and A. S. Mustafa, "Role
and challenges of the use of UAV-aided WSN monitoring system in
large-scale sectors," 2021 3rd International Congress on Human-
Computer Interaction, Optimization and Robotic Applications
(HORA), 2021, pp. 1-5, doi: 10.1109/HORA52670.2021.9461292.

[6] R. R. Arinta and E. Andi W.R., "Natural Disaster Application on
Big Data and Machine Learning: A Review," 2019 4th International
Conference on Information Technology, Information Systems and
Electrical Engineering (ICITISEE), 2019, pp. 249-254, doi:
10.1109/ICITISEE48480.2019.9003984.

[7] B. Mishra, D. Garg, P. Narang and V. Mishra, "Drone-
surveillance for search and rescue in natural disaster", Computer
Communications, 2020.

[8] Chaudhuri N, Bose I (2020) Exploring the role of deep neural
networks for post-disaster decision support. Decis Support Syst
130:113234. https://doi.org/10.1016/j.dss.2019.113234

[9] L. Ahmed, K. Ahmad, N. Said, B. Qolomany, J. Qadir and A. Al-
Fuqaha, "Active Learning Based Federated Learning for Waste and
Natural Disaster Image Classification," in IEEE Access, vol. 8, pp.
208518-208531, 2020, doi: 10.1109/ACCESS.2020.3038676.

[10] F. Alam, F. Ofli, M. Imran, T. Alam and U. Qazi, "Deep
Learning Benchmarks and Datasets for Social Media Image
Classification for Disaster Response," 2020 IEEE/ACM
International Conference on Advances in Social Networks Analysis
and Mining (ASONAM), 2020, pp. 151-158, doi:
10.1109/ASONAM49781.2020.9381294.

[11] Zou, Z.; Gan, H.; Huang, Q.; Cai, T.; Cao, K. Disaster Image
Classification by Fusing Multimodal Social Media Data. ISPRS Int.
J. Geo-Inf. 2021, 10, 636

[12] Z. Jiang, T. Chen, and M. Li, “Efficient Deep Learning Inference
on Edge Devices”, in Proceedings of ACM Conference on Systems
and Machine Learning (SysML’18), 2018.

[13] C. Kyrkou and T. Theocharides, "Deep-learning-based aerial
image classification for emergency response applications using
unmanned aerial vehicles", Proc. IEEE Conf. Comput. Vision
Pattern Recognit. Workshops, pp. 517-525, Jun. 2019.

[14] A. Rosebrock, Detecting Natural Disasters with Keras and Deep
Learning:PyImagesearch, 2019, [online] Available:
https://pyimagesearch.com/2019/11/11/detecting-natural-disasters-
with-keras-and-deep-learning/.

318

Authorized licensed use limited to: Universiti Tunku Abdul Rahman. Downloaded on July 23,2022 at 13:44:15 UTC from IEEE Xplore. Restrictions apply.

[15] K. Simonyan and A. Zisserman, "Very deep convolutional
networks for large-scale image recognition", arXiv:1409.1556, 2014.

[16] Joseph Redmon and Ali Farhadi. Yolov3: An incremental
improvement. arXiv preprint arXiv:1804.02767, 2018

[17] Gautam Kumar, Google Images, 2019 (accessed March 23,
2022). [Online]. Available:
https://drive.google.com/file/d/1NvTyhUsrFbL91E10EPm38IjoCg6
E2c6q/view

[18] Gautam Kumar, Google Images, 2019 (accessed March 23,
2022). [Online]. Available:
https://drive.google.com/file/d/11KBgD_W2yOxhJnUMiyBkBzXD
PXhVmvCt/view

[19] L. N. Smith, "Cyclical Learning Rates for Training Neural
Networks," 2017 IEEE Winter Conference on Applications of
Computer Vision (WACV), 2017, pp. 464-472, doi:
10.1109/WACV.2017.58.

[20] Docs.openvinotoolkit.ai. 2022. Converting a Model to
Intermediate Representation (IR). [online] Available at:

<https://docs.openvino.ai/latest/openvino_docs_MO_DG_prepare_
model_convert_model_Converting_Model.html> [Accessed 21
March 2022].

[21] Docs.openvinotoolkit.ai. 2022. Model Optimizer Developer
Guide. [online] Available at:
<https://docs.openvino.ai/latest/openvino_docs_MO_DG_Deep_Le
arning_Model_Optimizer_DevGuide.html> [Accessed 21 March
2022].

[22] Docs.openvinotoolkit.ai. 2022. Converting a Model Using
General Conversion Parameters. [online] Available at:
<https://docs.openvino.ai/2021.1/openvino_docs_MO_DG_prepare
_model_convert_model_Converting_Model_General.html>
[Accessed 24 March 2022].

[23] Docs.openvinotoolkit.ai. 2022. DL Workbench Key Concepts.
[online] Available at:
<https://docs.openvino.ai/2021.3/workbench_docs_Workbench_DG
_Key_Concepts.html> [Accessed 28 March 2022].

319

Authorized licensed use limited to: Universiti Tunku Abdul Rahman. Downloaded on July 23,2022 at 13:44:15 UTC from IEEE Xplore. Restrictions apply.

Artificial Intelligence of Things (AIoT) for Disaster Monitoring
using Wireless Mesh Network

Mau-Luen Tham
Department of Electrical and

Electronic Engineering, Lee Kong
Chian Faculty of Engineering and
Science, Universiti Tunku Abdul
Rahman, Selangor 43000, Malaysia

thamml@utar.edu.my

Yi Jie Wong
Department of Electrical and

Electronic Engineering, Lee Kong
Chian Faculty of Engineering and
Science, Universiti Tunku Abdul
Rahman, Selangor 43000, Malaysia

yjwong1999@1utar.my

Ban-Hoe Kwan
Department of Mechatronics and
Biomedical Engineering, Lee Kong
Chian Faculty of Engineering and
Science, Universiti Tunku Abdul
Rahman, Selangor 43000, Malaysia

kwanbh@utar.edu.my

Xin Hao Ng
Department of Electrical and

Electronic Engineering, Lee Kong
Chian Faculty of Engineering and
Science, Universiti Tunku Abdul
Rahman, Selangor 43000, Malaysia

penguinng0928@gmail.com

Yasunori Owada
Resilient ICT Research Center,

Network Research Institute, National
Institute of Information and

Communications Technology (NICT),
Tokyo 184-8795, Japan
yowada@nict.go.jp

ABSTRACT
The inherent characteristics of Internet of things (IoT) such as low
computation power of IoT nodes and transmission reliability of IoT
links demand a new paradigm for efficient data processing and dis-
semination. This is especially true for disaster situations with high
possibility of communication breakdowns. On one hand, the con-
cept of artificial intelligence of things (AIoT) has been introduced
as a technology to push data storage and computing closer to the
network edge. On the other hand, wireless mesh network offers a
strong self-healing capability and network robustness against disas-
ter damages. To enable smart disaster monitoring applications, we
first implement a lightweight multi-task model that performs joint
disaster classification and victim detection. These AI outputs are
then wirelessly synchronized via a mesh network solution called
NerveNet. All the experiments are conducted in a real urban envi-
ronment, including static and mobile nodes. Experimental results
validate the effectiveness of the proposed solution, where text and
images can be synchronized within two minutes across a multi-hop
Wi-Fi network. Furthermore, the optimized AI model has ultra-low
power consumption around 1.23 W with frames per second (FPS)
of 2.01.

CCS CONCEPTS
• Artificial intelligence; • Network experimentation; •Wire-
less integrated network sensors;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICSIM 2023, January 31–February 02, 2023, Palmerston North, New Zealand
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9823-7/23/01. . . $15.00
https://doi.org/10.1145/3584871.3584905

KEYWORDS
AIoT, OpenVINO,Multi-Task Learning, DisasterManagement,Wire-
less Mesh Network

ACM Reference Format:
Mau-Luen Tham, Yi Jie Wong, Ban-Hoe Kwan, Xin Hao Ng, and Yasunori
Owada. 2023. Artificial Intelligence of Things (AIoT) for Disaster Monitoring
using Wireless Mesh Network. In 2023 The 6th International Conference on
Software Engineering and Information Management (ICSIM 2023), January
31–February 02, 2023, Palmerston North, New Zealand. ACM, New York, NY,
USA, 6 pages. https://doi.org/10.1145/3584871.3584905

1 INTRODUCTION
Internet of things (IoT) is a network of a cluster of connected em-
bedded devices with identifiers. IoT provides many functions such
as intelligent information processing, reliable information trans-
mission and overall information perception. These characteristics
of IoT can provide an effective guarantee for disaster forecasting,
detection, and precaution ahead of time through the IoT-based early
warning system so that the impact of a disaster can be reduced.

In the traditional IoT framework, these data are transmitted to
a remote central cloud platform through the Internet to be pro-
cessed. However, there is an issue where the big data transmission
process consumes enormous energy, time, cost, and bandwidth.
Therefore, edge computing is introduced to process and analyze
the valuable information from the raw sensor data at the network
edge in real-time [1]. Thus, it can improve the quality of service
(QoS) of applications and reduce the task latency [2].

The evolution of edge computing technology has driven the
smart applications towards the use of artificial intelligence (AI) /
machine learning (ML) / deep learning (DL) algorithms such as con-
volutional neural networks (CNN) in image analysis, and recurrent
neural network (RNN) in semantic analysis. The fusion technology
of AI and IoT is referred to as artificial intelligence of things (AIoT).
The feasibility of this new paradigm has been demonstrated in var-
ious personal and business applications [3]. However, the limited

https://doi.org/10.1145/3584871.3584905
https://doi.org/10.1145/3584871.3584905

ICSIM 2023, January 31–February 02, 2023, Palmerston North, New Zealand Mau-Luen Tham et al.

processing capacity constraints of IoT devices present a challenge
to integrate AI into AIoT applications [4]. Therefore, various efforts
have been put to improve the AI performance in terms of speed
and power consumption. For example, the work in [5] shows how
ML can be used for flood detection based on weather data recorded
by IoT sensors such as (i) relative humidity, (ii) temperature, (iii)
pressure, (iv) month, and (v) estimated rainfall range.

When disaster events happen, an efficient rescue operation re-
quires the detected disaster type and number of victims. A straight-
forward approach would be deploying two single-task AI models
that perform the disaster classification and victim detection sepa-
rately. Such approach is ill-suited for AIoT applications due to high
memory footprint and computing power. A better candidate would
be using a multi-task learning model, as proposed in [6], which
offers faster frames per second (FPS) and more accurate prediction.

Transmission reliability is another challenge that deserves fur-
ther study in the context of AIoT. This is especially relevant for
disaster situations, where communications infrastructure, such as
cellular base stations (BSs) may be destroyed. Mesh network can
combat against node failures by using several redundant links and
paths to the destination node. If one of these node fails, then other
nodes can be used to reroute the data until it reaches the destina-
tion sink node. In this paper, we implement a mesh networking
solution called NerveNet, which enables fast route switching on
layer 2 [7]. The main contribution of this paper is that we assess
the experimental performance of AIoT based disaster monitoring
application with real implementation of edge AI and wireless mesh
network. Note that the proposed solution facilitates mesh network
database synchronization, which is one of goals of the ASEAN IVO
project titled ”Context-Aware Disaster Mitigation using Mobile
Edge Computing and Wireless Mesh Network”.

The rest of the paper is organized as follows. Section 2 describes
the related work. Section 3 discusses the hardware and configura-
tion used to build the testbed. Section 4 presents the experimental
performance evaluation. Section 5 concludes the paper.

2 RELATEDWORK
2.1 Artificial Intelligence of Things (AIoT)
Several existing works [8]–[10] explored the potential of AIoT for
situational awareness and disaster recovery operations. An ideal
disaster resilient smart cities model is one that could utilize IoT
devices such as smart cameras, drones, radio frequency identifi-
cation (RFID), and sensors in the cities for rapid data collection,
coupled with mobile edge computing for real-time computing. AIoT
has shown its potential in disaster response for both real time data
collection and inferencing. The authors in [11] demonstrated how
sequence model could predict the flow rates in downstream gaug-
ing station based on the flow rate in upstream station. The study
in [12] utilized signals from fire detection system to predict the
potential of house fire and alert the appropriate authorities using
IoT networks.

Edge AI is a special type of AIoT, which brings computing closer
to the data sources, which could be the connected IoT devices or
local edge servers [13]. In edge AI applications, IoT devices will de-
ploy the AI model locally, bypassing the need of sending the input
data to a cloud server for model inferencing before obtaining the

inference output. This could significantly reduce the latency, espe-
cially if the input data is bandwidth-hungry such as high-resolution
images. However, IoT devices generally are low-powered devices
with limited computational capacity, which might inhibit the large-
scale deployment of edge AI. Thus, recent efforts have focused
on optimizing ML models via methods such as model compres-
sion and knowledge distillation [14-15]. Among these efforts, Intel
OpenVINO toolkit emerges as an extremely useful tool for edge
AI facilitation. It is an open-source and production-ready that opti-
mizes DLmodels across any target Intel hardware while minimizing
the inference time [16]. It also comes with a complementary tool
called OpenVINO DL Workbench, which provides a user-friendly
dashboard for model’s performancemeasurement, optimization and
deployment using OpenVINO. A plethora of works exploited Open-
VINO for inference optimization, such as license plate detection
[17].

Arduino and Raspberry Pi are both suitable candidates for AIoT,
However, Raspberry Pi is preferred for complicated projects [18], es-
pecially when dealing with edge AI deployment. In fact, OpenVINO
provides a detailed documentations on OpenVINO installation for
Raspberry Pi [19].

2.2 Disaster Classification and Victim Detection
Literature on disaster classification often surrounds the dataset
since the robustness of disaster monitoring is tightly correlated
with the quality and quantity of training data. There are five major
datasets for disaster classification, which are Artificial Intelligence
for Disaster Response (AIDR) [20], Damage Multimodal Dataset
(DMD) [21], Damage Assessment Dataset (DAD) [22], CrisisMMD
[23] dataset, and Crisis Image Benchmark Datasets (CrisisIBD) [24].
The most notable dataset among all is the CrisisIBD dataset, which
comprises of all the aforementioned dataset. It is labelled for four dif-
ferent tasks: (i) disaster type classification, (ii) informativeness, (iii)
humanitarian categories, and (iv) damage severity. The consolidated
dataset is meant for benchmarking in deep learning tasks related
to disaster response, to address the lack of benchmark datasets for
disaster response domain.

For victim detection task, there is a lack of a proper benchmark
dataset. However, victim detection is essentially an object detection
task. Thus, pretrained object detection models such as You Only
Look Once (YOLO) and Single Shot Multi-Box Detector (SSD) can
be directly adopted without further fine-tuning. In [6], a pretrained
YOLOv3 was used for transfer learning, and fine-tune the model
for a custom victim detection dataset. Meanwhile, [25] explored
similar problem by considering a thermal camera-based victim
detection. Similarly, a MobileNet-SSD pretrained on VOC dataset
was fine-tuned on a custom thermal dataset. Generally, all of the
above works [6], [25] could achieve a robust victim detection model
without needing a large size victim detection dataset, since they
are adopted from pretrained object detection model.

2.3 Multi-Task Learning
Another pool of literature focuses on solving multiple tasks using
one unified model, which is termed as multi-task learning (MTL).
MTL can be categorized into two types, which are hard parameter
sharing and soft parameter sharing. In the first category, different

Artificial Intelligence of Things (AIoT) for Disaster Monitoring using Wireless Mesh Network ICSIM 2023, January 31–February 02, 2023, Palmerston North, New Zealand

Figure 1: Proposed multi-task learning model.

tasks share the same backbone for feature extraction, while having
separate head models (added on top of the backbone) for individ-
ual prediction. Whereas for soft parameter sharing, each task is
allowed to have its own backbone. Clearly, hard parameter sharing
approach is more suitable for edge AI, as it requires lesser computa-
tion workload since each task shares the same backbone. Examples
of hard parameter sharing can be found in [26] and [27]. In [26],
a MTL model adopted four head models for joint citrus detection
and segmentation with citrus maturity and quality classification.
Meanwhile, [27] proposed a MTL model for traffic object detection,
with road segmentation and lane line detection.

There are limited works in disaster response domain that address
multiple tasks together. Research work in [28] was the first to
address the need of MTL model for (i) disaster classification, (ii)
informativeness, (iii) humanitarian categories, and (iv) damage
severity assessment on a given input image. On the other hand,
our previous work [6] is the first to propose a MTL model for joint
disaster classification and victim detection, as shown in Figure 1.
This eliminates the straightforward approach of running multiple
separate DL models for each task, reducing the total latency with
while preserving the accuracy of all tasks. This facilitates real-time
disaster detection on the edge using any camera sensors in an IoT
network.

2.4 NerveNet
NerveNet is a resilient network developed by Japan’s National In-
stitute of Information and Communications Technology (NICT).
NerveNet is a specially developed network for the regional area to
provide reliable network access and a stable, resilient information-
sharing platform in emergencies, even if the base station is de-
stroyed in a disaster. The base stations of NerveNet are intercon-
nected by the Ethernet-based wired or wireless transmission sys-
tems such as satellite, Wi-Fi, LoRa and so on. They will form a
mesh-topological network.

Nowadays, the current trend of the common network infras-
tructures uses the tree topology. As compared to it, NerveNet has
the characteristic that is more tolerant to the faults such as node
failures, disconnections, and destruction of the base station. Since
the base station in the NerveNet supports basic services such as SIP
proxy, DNS, and DHCP, the NerveNet can continuously provide
connectivity services to the devices.

NerveNet has the feature of database synchronisation. It uses a
hearsay daemon to synchronize the database of every node within

the NerveNet network. Specifically, hearsay daemon synchronizes
MySQL databases by updating the queries only and will not delete
any actions when there is a lack of queries in another node’s data-
base. When the NerveNet node is connected to the NerveNet net-
work, it will seek the difference in the table with other nodes.

After that, the database will be updated with the latest data.
However, suppose all the NerveNet nodes are shut down. In that
case, the data in the database will be deleted, and they cannot relieve
the data back by using the hearsay daemon synchronisation since
all the existing databases are empty.

3 AIOT IMPLEMENTATION
The aim of this section is to describe the basic hardware and soft-
ware building blocks needed to establish an AIoT platform for
disaster monitoring. The testbed consists of one Raspberry Pi 4
(RP4) serving as NerveNet monitoring node and five Intel next unit
of computing (NUC) serving as NerveNet base station nodes. The
testbed composition is depicted in Figure 2.

In default, NerveNet is configured to operate in the 172.16.0.0/16
network. The IP address of each node is 172.16.n.1 where n is the
node id of the node defined during the network installation. For
instance, the node in Figure 2a with a label of 208 has a NerveNet
IP of 172.16.208.1.

The wireless links of the NerveNet are established using the
Ethernet remote bridge (ERB) feature of NerveNet. To establish
an ERB link between two nodes, one node must have a wireless
interface configured as a wireless access point (AP) while the other
node must have a wireless interface configured as a station (STA).
Each ERB link is static and definedwith a collection of configuration
files included in the NerveNet distribution. To avoid the Wi-Fi
interference, a different channel is assigned for each NerveNet link.
Alfa wireless adapter is used to establish the NerveNet wireless
links thanks to their superiority in long-range transmission. The
module transmission power of RP4 and Intel NUC are set to 12
dBm and 15 dBm, respectively. All NerveNet nodes except the link
between 210 and 204 are equipped with an omnidirectional antenna
of 9 dBi. The positions of 210 and 204 are located at ground floor
and 8th floor, respectively. Their connectivity is established based
on a pair of 10 dB directional antenna.

Once the wireless mesh network is established, NerveNet
Hearsay daemon can synchronize the data within the MySQL
database based on the checksum of tables defined in the
‘/writable/etc/tables.d/’ directory. In other words, any telemetric
data from any node placed into this database will be automatically
synchronized among all nodes. In this paper, we assume all the data
stems from the NerveNet monitoring node, where RP4 is selected
due to its high portability. Intel Neural Compute Stick 2 (NCS 2) is
a dedicated hardware accelerator, and it is plugged into RP4 so that
it can run deep neural network models optimized by Intel Open-
VINO toolkit [18]. Here, we will run the multitask model [6] in the
Intermediate Representation (IR) format. It can classify a total of
seven categories: fire, hurricane, flood, earthquake, landslide, other
disaster and not disaster.

ICSIM 2023, January 31–February 02, 2023, Palmerston North, New Zealand Mau-Luen Tham et al.

Figure 2: AIoT testbed implementation. (a) Testbed. (b) NerveNet monitoring node (front view). (c) NerveNet monitoring node
(rear view). (d) NerveNet base

Figure 3: Working flow of AIoT monitoring.

4 PERFORMANCE EVALUATION
4.1 Disaster Monitoring
A video clip containing various types of disaster is used for the
inference. Its duration and resolution are 38 s and 720 x 1072, respec-
tively. There are a total of 14 disaster events from this video clip.
Figure 4 displays one of the screenshots, where the FPS, disaster
type and total victims are reported as 2.01, flood and 5, respectively.
To demonstrate the ultra-low power consumption of our AIoT solu-
tion, we adopted an USB power meter for the measurement purpose.
Figures 5a and 5b show the power consumption recorded during
idle time and multitask execution time, respectively. From the fig-
ure, it can be observed that the AIoT model consumes around 1.23
W.

4.2 NerveNet Database Synchronization
Figure 6 displays the NerveNet database related to text and image
synchronization. The columns “time update” and “timestamp_sync”
indicate the time generated by the source and the time received by
this specific node, respectively. By comparing the “timestamp_sync”

Figure 4: Detection screenshot.

Figure 5: Power Measurement. (a) Idle time. (b) Execution
time.

of each NerveNet node, the synchronization latency can be calcu-
lated and plotted in Figure 7. From the figure, it can be observed
that the closer the NerveNet node to source node 202 and first
NerveNet base station node 210, the shorter the network latency.

Artificial Intelligence of Things (AIoT) for Disaster Monitoring using Wireless Mesh Network ICSIM 2023, January 31–February 02, 2023, Palmerston North, New Zealand

Figure 6: Database synchronization. (a) Text. (b) Image.

Figure 7: Synchronization Latency with respect to node 210. (a) Text. (b) Image.

Surprisingly, the latency for text synchronization is larger than that
of the image synchronization. This is because both text and screen-
shots are pushed to the NerveNet database at the same time. In this
case, NerveNet may attempt to synchronize the images first before

the text. The size of total synchronized images is 647168 bytes. Nev-
ertheless, both text and images can be synchronized within two
minutes across a multi-hop Wi-Fi network.

ICSIM 2023, January 31–February 02, 2023, Palmerston North, New Zealand Mau-Luen Tham et al.

5 CONCLUSIONS
In this paper, we have proposed a AIoT-based disaster monitor-
ing using NerveNet wireless mesh network. To reduce the heavy
workload of AI inference, we utilized OpenVINO to accelerate the
process so that it can be executed on low-powered Raspberry Pi de-
vice. As for the data robustness, we invoked the feature of data syn-
chronization to disseminate the data among NerveNet nodes. The
effectiveness of the solution has been demonstrated via a testbed
implementation. In future, we plan to test the framework in a LoRa
based mesh network.

ACKNOWLEDGMENTS
This work is the output of the ASEAN IVO
(http://www.nict.go.jp/en/asean_ivo/index.html) project, Context-
Aware Disaster Mitigation using Mobile Edge Computing and
Wireless Mesh Network, and financially supported by NICT
(http://www.nict.go.jp/en/index.html).

REFERENCES
[1] Rausch, T., Nastic, S. and Dustdar, S., 2018. EMMA: Distributed QoS-aware

MQTT middleware for edge computing applications. Proceedings - 2018 IEEE
International Conference on Cloud Engineering, IC2E 2018, pp.191– 197. https:
//doi.org/10.1109/IC2E.2018.00043.

[2] Chen, M., Li, W., Hao, Y., Qian, Y. and Humar, I., 2018. Edge cognitive computing
based smart healthcare system. Future Generation Computer Systems, 86, pp.403–
411. https://doi.org/10.1016/J.FUTURE.2018.03.054.

[3] Shi Q, Zhang Z, Yang Y, Shan X, Salam B, Lee C. Artificial Intelligence of Things
(AIoT) Enabled Floor Monitoring System for Smart Home Applications. ACS
Nano. 2021 Nov 23;15(11):18312-18326. doi: 10.1021/acsnano.1c07579. Epub 2021
Nov 1. PMID: 34723468.

[4] S. Basu, M. Karuppiah, K. Selvakumar, K. Li, S.H. Islam, M.M. Hassan, and M.Z.
Bhuiyan, An intelligent/cognitive model of task scheduling for IoT applications
in cloud computing environment. Future Gener. Comput. Syst., 88, 254-261. 2018.

[5] S. P. M. K. W. Ilukkumbure, V. Y. Samarasiri, M. F. Mohamed, V. Selvaratnam,
and U. U. Samantha Rajapaksha, “Early Warning for Pre and Post Flood Risk
Management by Using IoT and Machine Learning,” ICAC 2021 - 3rd International
Conference on Advancements in Computing, Proceedings, pp. 252–257, 2021, doi:
10.1109/ICAC54203.2021.9671141.

[6] Y. J. Wong, M. -L. Tham, B. -H. Kwan, E. M. A. Gnanamuthu and Y. Owada, "An
Optimized Multi-Task Learning Model for Disaster Classification and Victim
Detection in Federated Learning Environments," in IEEE Access, vol. 10, pp.
115930-115944, 2022, doi: 10.1109/ACCESS.2022.3218655.

[7] M. Inoue and Y. Owada, “NerveNet Architecture and Its Pilot Test in Shirahama
for Resilient Social Infrastructure,” IEICE Transactions on Communications, vol.
E100–B, no. 9, pp. 1526–1537, 2017.

[8] S. A. Shah, D. Z. Seker, M. M. Rathore, S. Hameed, S. ben Yahia, and D. Draheim,
“Towards Disaster Resilient Smart Cities: Can Internet of Things and Big Data
Analytics Be the Game Changers?,” IEEE Access, vol. 7, pp. 91885–91903, 2019,
doi: 10.1109/ACCESS.2019.2928233.

[9] S. H. Alsamhi, O. Ma, M. S. Ansari, and F. A. Almalki, “Survey on collaborative
smart drones and internet of things for improving smartness of smart cities,”
IEEE Access, vol. 7, pp. 128125–128152, 2019, doi: 10.1109/ACCESS.2019.2934998.

[10] N. Suri et al., “Exploiting smart city IoT for disaster recovery operations,” IEEE
World Forum on Internet of Things, WF-IoT 2018 - Proceedings, vol. 2018-January,
pp. 458–463, May 2018, doi: 10.1109/WF-IOT.2018.8355117.

[11] F. S. Mousavi, S. Yousefi, H. Abghari, and A. Ghasemzadeh, “Design of an IoT-
based Flood Early Detection System using Machine Learning,” 26th Interna-
tional Computer Conference, Computer Society of Iran, CSICC 2021, Mar. 2021, doi:
10.1109/CSICC52343.2021.9420594.

[12] M. Sultan Mahmud, M. S. Islam, and M. A. Rahman, “Smart Fire Detection Sys-
tem with Early Notifications Using Machine Learning,” https://doi.org/10.1142/
S1469026817500092, vol. 16, no. 2, May 2017, doi: 10.1142/S1469026817500092.

[13] Q. Xia, W. Ye, Z. Tao, J. Wu, and Q. Li, “A survey of federated learning for edge
computing: Research problems and solutions,” High-Confidence Computing, vol.
1, no. 1, p. 100008, 2021, doi: https://doi.org/10.1016/j.hcc.2021.100008.

[14] C. Bucilua, R. Caruana, and A. Niculescu-Mizil, “Model Compression,” in Proceed-
ings of the 12th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, 2006, pp. 535–541. doi: 10.1145/1150402.1150464.

[15] J. Gou, B. Yu, S. J. Maybank, and D. Tao, “Knowledge Distillation: A Survey,” CoRR,
vol. abs/2006.0, 2020, [Online]. Available: https://arxiv.org/abs/2006.05525

[16] Intel, “Intel®Distribution of OpenVINOTM Toolkit,” intel.com. https://www.intel.
com/content/www/us/en/developer/tools/openvino-toolkit/overview.html (ac-
cessed Mar. 15, 2022).

[17] M. L. Tham and W. K. Tan, “IoT Based License Plate Recognition System Using
Deep Learning and OpenVINO,” ACM International Conference Proceeding Series,
pp. 7–14, Oct. 2021, doi: 10.1145/3502814.3502816.

[18] R. S. Abhishek, A. Dhanus Kanth, S. Hariharan, S. Hariharasudhan, and S. Sara-
vanan, “Design of Solar PV Emulator using Raspberry Pi Controller,” 5th Interna-
tional Conference on Inventive Computation Technologies, ICICT 2022 - Proceedings,
pp. 581–584, 2022, doi: 10.1109/ICICT54344.2022.9850727.

[19] OpenVINO, “Install OpenVINOTM Runtime for Raspbian OS —OpenVINOTM doc-
umentation — Version(latest),” 2022. https://docs.openvino.ai/latest/openvino_
docs_install_guides_installing_openvino_raspbian.html (accessed Dec. 10, 2022).

[20] M. Imran, C. Castillo, J. Lucas, P. Meier, and S. Vieweg, “AIDR: Artificial Intelli-
gence for Disaster Response,” in Proceedings of the 23rd International Conference
on World Wide Web, 2014, pp. 159–162. doi: 10.1145/2567948.2577034.

[21] H. Mouzannar, Y. Rizk, and M. Awad, “Damage Identification in Social Media
Posts Using Multimodal Deep Learning,” Proceedings of the International ISCRAM
Conference, vol. 2018-May, no. May, pp. 529–543, 2018.

[22] D. T. Nguyen, F. Ofli, M. Imran, and P. Mitra, “Damage Assessment from Social
Media Imagery Data During Disasters,” in 2017 IEEE/ACM International Conference
on Advances in Social Networks Analysis and Mining (ASONAM), 2017, pp. 569–576.

[23] F. Alam, F. Ofli, and M. Imran, “CrisisMMD: Multimodal twitter
datasets from natural disasters,” in 12th International AAAI Confer-
ence on Web and Social Media, ICWSM 2018, 2018, pp. 465–473. [On-
line]. Available: https://www.scopus.com/inward/record.uri?eid$=$2-s2.0-
85050637466&partnerID$=$40&md5$=$0fb528332fb3182d641214df5e854665

[24] F. Alam, F. Ofli, M. Imran, T. Alam, and U. Qazi, “Deep Learning Benchmarks and
Datasets for Social Media Image Classification for Disaster Response,” in 2020
IEEE/ACM International Conference on Advances in Social Networks Analysis and
Mining (ASONAM), 2020, pp. 151–158. doi: 10.1109/ASONAM49781.2020.9381294.

[25] M. I. Perdana, A. Risnumawan, and I. A. Sulistijono, “Automatic Aerial Victim
Detection on Low-Cost Thermal Camera Using Convolutional Neural Network,”
2020 International Symposium on Community-Centric Systems, CcS 2020, Sep. 2020,
doi: 10.1109/CCS49175.2020.9231433.

[26] C.Wen, H. Zhang, H. Li, H. Li, J. Chen, H. Guo, and S. Cheng, “Multiscene citrus de-
tection based on multi-task deep learning network,” in Proc. IEEE Int. Conf. Syst.,
Man, Cybern. (SMC), Oct. 2020, pp. 912-919, doi:10.1109/SMC42975.2020.9282909.

[27] Y. Qian, J. M. Dolan, and M. Yang, “DLT-Net: Joint detection of drivable areas,
lane lines, and traffic objects,” IEEE Trans. Intell. Transp. Syst., vol. 21, no. 11, pp.
4670-4679, Nov. 2020, doi: 10.1109/TITS.2019.2943777.

[28] F. Alam, T. Alam, M. Imran, and F. Ofli, “Robust training of social media image
classification models for rapid disaster response,” 2021, arXiv:2104.04184.

https://doi.org/10.1109/IC2E.2018.00043
https://doi.org/10.1109/IC2E.2018.00043
https://doi.org/10.1016/J.FUTURE.2018.03.054
https://doi.org/10.1142/S1469026817500092
https://doi.org/10.1142/S1469026817500092
https://doi.org/10.1016/j.hcc.2021.100008
https://arxiv.org/abs/2006.05525
https://www.intel.com/content/www/us/en/developer/tools/openvino-toolkit/overview.html
https://www.intel.com/content/www/us/en/developer/tools/openvino-toolkit/overview.html
https://docs.openvino.ai/latest/openvino_docs_install_guides_installing_openvino_raspbian.html
https://docs.openvino.ai/latest/openvino_docs_install_guides_installing_openvino_raspbian.html
https://www.scopus.com/inward/record.uri?eid$=$2-s2.0-85050637466&partnerID$=$40&md5$=$0fb528332fb3182d641214df5e854665
https://www.scopus.com/inward/record.uri?eid$=$2-s2.0-85050637466&partnerID$=$40&md5$=$0fb528332fb3182d641214df5e854665
arXiv:2104.04184

Flood Forecasting using Edge AI and LoRa Mesh
Network

Mau-Luen Tham
Department of Electrical and Electronic

Engineering
Universiti Tunku Abdul Rahman

Kajang, Malaysia
thamml@utar.edu.my

Yasunori Owada
Resilient ICT Research Center

National Institute of Information and
Communications Technology (NICT)

Tokyo, Japan
yowada@nict.go.jp

Xin Hao Ng
Department of Electrical and Electronic

Engineering
Universiti Tunku Abdul Rahman

Kajang, Malaysia
penguinng0928@gmail.com

Rong-Chuan Leong
Department of Electrical and Electronic

Engineering
Universiti Tunku Abdul Rahman

Kajang, Malaysia
lrongchuan@1utar.my

Abstract—Remote flood forecasting has exponentially
grown over the past decade together with the unprecedented
expansion of Internet of Things (IoT) network. This is feasible
with the use of long range wireless communication technology
such as LoRa. Ideally, each LoRa device shall process the
sensor data locally and trigger warnings to the remote server
based on prediction results. However, conventional prediction
methods rely on highly computational artificial intelligence
(AI) algorithms, which are not suitable for low-powered LoRa
network. In this paper, the LoRa device is integrated with an
edge AI model, which is based on long short-term memory
(LSTM) neural network. OpenVINO is adopted to optimize the
LSTM model, before executing the solution on a Raspberry Pi
4 in combination with Intel Movidius Neural Computing Stick
2 (NCS2). Experimental results demonstrate the feasibility of
deployment of the customized model on low-cost and power-
efficient embedded hardware.

Keywords—Edge AI, LSTM, Flood Forecasting, LoRa Mesh
Network, IoT

I. INTRODUCTION

Flood forecasting models have been researched in the
hydrological engineering area for many years. Recently,
there has been increased research interest in river flood
prediction and modelling, defined as data-driven approaches.
The artificial neural network (ANN) model is the most
famous usual data-driven approach. Most conventional
statistical methods require a lot of data for their models, and
they can generate no assumptions for both linear and non-
linear systems. Hence, the data-driven approach, ANN, is an
alternative to hydrological flood forecasting instead of the
existing methods [1].

Artificial intelligence (AI) has made essential
development in modelling hydrological forecasting and
dynamic hydrological issues. With the advancement of
information technology, the application of ANN models in
many aspects of science and engineering is increasingly
becoming common due to its simplicity of structure. Diverse
neural network modelling approaches have been applied, like
implementing the model approaches individually or
combining process-based approaches to minimize mistakes
and increase the models' forecasting accuracy. The study in
[2] applied AI model to forecast river flow for 15 years
starting from 2000.

However, there are some limitations of the ANN model.
One of them is lacking understanding of watershed
processes. Furthermore, the limitation of memory in
calculating sequential data exposes the disadvantages of the
ANN model. The breakthrough in computational science has
recently increased the interest in deep neural network (DNN)
approaches. In addition, the most recent DNN applications,
such as the long short-term memory (LSTM) [3] and gated
recurrent unit (GRU) [4] neural networks, have been
efficiently implemented in diverse areas and fields, such as
time sequence problems. Those models can apply to machine
translation, speech recognition, tourism field, language
modelling, rainfall-runoff simulation, stock prediction and
river flow forecasting.

On 11th March 2011, around 29000 cellular towers were
damaged in the East Japan Great Earthquake. These damages
have restricted the broadcast of evacuation notices and the
collection of historical information for disaster forecasting.
Hence, it can be known that the resilience of a network
remains an open issue in the deployment of the fault-tolerant
network during an emergency disaster. Fortunately, a
disaster-resilient mesh-topological network called NerveNet
was developed by Japan NICT. Each NerveNet node is
independent and tolerant to system failure and link
disconnection due to its mesh structure.

In this paper, a flood forecasting model is proposed. In
the study area, rainfall and river water levels collected at
hydrological stations serve as dataset for the training and
testing process of the AI models. Then, the forecasted flood
water level will be processed to generate the flood warning
message. It will be sent through the NerveNet LoRa mesh
network. Note that the proposed solution facilitates edge
computing, which is one of goals of the ASEAN IVO project
titled “Context-Aware Disaster Mitigation using Mobile
Edge Computing and Wireless Mesh Network”.

The rest of the paper is organized as follows. Section II
discusses the related works. Section III describes the system
architecture. Section IV presents the experimental results and
discussions. Section V concludes the article.

II. RELATED WORK

A. Edge AI

Several existing works [5]–[6] explored the potential of
edge AI for various applications. The authors in [5] focused
on real-time apple detection with the implementation of
YOLOv3-tiny algorithm on various embedded platforms.
However, they did not consider the communication aspects.
Recognizing the importance of LoRa, the authors in [6]
proposed an edge AI in LoRa-based fall detection system
with fog computing and LSTM. The processing burden is
placed on an LoRa-based edge gateway, where the collected
sensor information is transmitted from an edge node via
Bluetooth Low Energy (BLE). Differently, our solution
integrates both edge AI and LoRa functionalities into one
single device, which simplifies the deployment effort.

B. NerveNet

NerveNet is a resilient network developed by Japan
National Institute of Information and Communications
Technology (NICT) [7]. NerveNet is a specially developed
network for the regional area to provide reliable network
access and a stable, resilient information-sharing platform in
emergencies, even if the base station is destroyed in a
disaster. The base stations of NerveNet are interconnected by
the Ethernet-based wired or wireless transmission systems
such as satellite, Wi-Fi, LoRa and so on. They will form a
mesh-topological network.

Nowadays, the current trend of the common network
infrastructures uses the tree topology. As compared to it,
NerveNet has the characteristic that it is more tolerant to the
faults such as node failures, disconnections, destruction of
the base station and so on. Since the base station in the
NerveNet supports basic services such as SIP proxy, DNS,
DHCP, the NerveNet can also continuously provide
connectivity services to the devices.

III. SYSTEM ARCHITECTURE

A. Dataset

The dataset we employ is the Abashiri River watershed
[8], located northeast of Hokkaido, Japan. The area of the
watershed is around 1380 km2. It has a 115 km long main
river to the North Pacific and a range of elevation from 0 m
to 978 m [9]. All AI models are trained and tested using the
datasets observed at the downstream stations called 'Hongou'.
The used datasets are hourly datasets with the water level
and rainfall variables from 1st January 2019 to 31st
December 2020.

During data pre-processing, the rainfall and water level
data undergo a train-test split, separated into 70 % of the data
as training dataset and 30 % as a testing dataset, as listed in
Table I. The training data calculates the training process
error and estimates the AI models' parameters. The testing
data provides an independent performance evaluation of the
AI models after training.

Next, the hydrological dataset has also undergone data
standardisation where the values' distribution is rescaled to a

mean value of 0 and a standard deviation value of 1. Data
scaling is essential to fasten the training process of the AI
model because the AI models can converge more rapidly if
the dataset features are closer to the normal distribution.
Prior to the AI model training, the time series dataset is
converted into sequential data with 24-time steps as the
sequence length. The model performs equally well when the
sequence length is between five to 15 or more. Therefore, in
this paper, the sequence length value of 24 is used in the
model to represent 24 hours in one day.

B. AI Model Training in Google Colab

In this paper, four types of AI models, namely Random
Forest, SVM, LSTM and GRU, are trained and tested on the
dataset to benchmark the performance of the system in terms
of flood water level forecasting. Trained in in Google Colab
platform, the best AI model will be selected as the edge AI.

For Random Forest, the parameter 'max_depth' represents
each tree's depth in the forest. Here, we set the max_depth
value to 2. There are several hyperparameters in the LSTM
model-building process. Firstly, the optimisation algorithm is
the stochastic gradient descent procedure's extension to
update the weights iterative of the network according to the
training dataset. Secondly, an epoch is defined as the whole
dataset transferring forward and backwards across the
model's neural network once. Thirdly, the batch size is the
number of samples propagating throughout the entire neural
network. Table II demonstrates the hyperparameter settings
of the LSTM model. For fair comparison, the same
hyperparameters are adopted to train the GRU models.

C. AI Model Optimization using OpenVINO

The immediate output format of the LSTM model is .h5,
which will be converted to pb format. The intention is to
utilize the OpenVINO toolkit [10], which enables the faster
running of the AI model in edge device. There are two main
components in the OpenVINO toolkit, which are the model
optimiser and inference engine. Firstly, when the trained
model in pb format is fed into the model optimiser, it
converts them to the IR format. At the same time, it
optimises the performance, space, and hardware-agnostic
with conservative topology transformations. The outputs of
the model optimiser are .xml and .bin.

Secondly, the AI inferencing process is performed at the
edge device by setting the inference engine to Intel Neural
Compute Stick 2 (NCS2), which is a hardware accelerator.
Before feeding to the inference engine, the data is scaled
using the scaler.gz exported from the training process. The
scaled data is then reframed. The historical time series data
representing the last 24 hours is extracted from the scaled
dataset by retrieving the top 24 values of the rainfall and
water level data. After that, the sequence data and the trained
model in IR format are fed into the inference engine to
generate the water levels ahead of 1 hour in text form and the
result graph in image form.

D. Evaluation Metrics

The mean absolute error (MAE) is the mean of the
differences between the original value with the forecasted
value. On an excellent flood forecast, the MAE should be
smaller. Mathematically, it can be expressed as

 MAE1

∑ |𝑒|

ୀ1

The mean absolute percentage error (MAPE) is the
percentage of the mean of the total error. On an excellent
flood forecast, the MAPE should be smaller. It is written as

 MAPE1

∑ ቚ

௬
ቚ

ୀ1 × 100

The root mean squared error (RMSE) is the square root
of the mean of the squared deviation of the forecasted flood
water level value. On an excellent flood forecast, the RMSE
should be smaller. It is written as

 RMSEට1

∑ 𝑒

2
ୀ1

Rଶ is the coefficient of determination and goodness of fit.
With an excellent flood forecast, the 𝑅2 should be larger.

 R2 = 1 −
sum squared regression (SSR)

total sum of squares (SST)

The NerveNet LoRa data transmission performance is
evaluated by calculating the packet delivery ratio (PDR) of
LoRa packets.

 PDR =
number of packets received

number of packets sent

IV. RESULTS AND DISCUSSIONS

Table III compares the water level forecasting
performance of the aforementioned five AI model types on
the testing dataset. Theoretically, the deep learning methods
outperform the conventional machine learning methods when
the big data comes into its input. This is consistent with the
result, where the LSTM and GRU models have a lower value
of MAE, MAPE and RMSE than the Random Forest and
SVM models. This indicates that the deep learning models
have a lower deviation of the forecasted results from the
ground truth and a lower error percentage. A higher R2 value
indicates a more excellent time series forecasting
performance from the deep learning models.

From the table, it can be observed that the LSTM model
has more excellent performance than the GRU model since it
has lower MAE, MAPE, RMSE and higher R2. This finding

is consistent with the findings in [11], where the LSTM
model performs better than the GRU model in the case of
short text processing and large-size datasets. In this paper,
there is a huge amount of rainfall and water level dataset
where both types of variables are short integers. They act as
the inputs to the LSTM and GRU models. Therefore, it can
be seen that the LSTM is more appropriate than the GRU
models in these scenarios.

All in all, the LSTM has the best performance in the AI
water level forecasting since it has the lowest MAE, MAPE
and RMSE while the highest R2 among all the proposed AI
models. Therefore, LSTM is chosen as the AI water level
forecasting model. Specifically, OpenVINO is used to
convert the .h5 model to .xml and .bin format. It can be seen
that there is a performance degradation of the converted
model in all aspects.

Fig. 1(a) display the prediction versus ground truth for
test dataset by using LSTM variations. As expected, the
prediction using Keras model is close to the actual values. To
reveal more insights, Fig. 1(b) compares the inference time
between these two LSTM models. It can be seen that the
LSTM (OpenVINO) is 28x slower than the Keras version.
The reason is that the Keras model was using the Intel®
Xeon® CPU @ 2.20Ghz provided by the Google Colab. This
hardware has more computational power than the NCS2,
which consumes only around 1.5W.

 Fig. 2 shows the actual deployment of LoRa nodes. For
the LoRa parameters, we adopted spreading factor of 12,
transmission power of 20 mW, and bandwidth of 500 kHz.
Three NerveNet LoRa nodes serve as MQTT subscriber
whereas one NerveNet LoRa node acts as MQTT publisher.

(a)

Fig. 1 LSTM performance benchmarking. (a) Prediction vs ground
truth. (b) Inference time.

(b)

The publisher publishes the MQTT message at three
different locations. At each location, a total of 11 LoRaMesh
packets are transmitted. The quality of service (QoS) level is
set to zero, which guarantees best-effort message delivery. In
other words, the publisher only transmits each packet once
and LoRa message packets may be lost during the
transmission process. Node 208 is located inside the building
in such a way that nodes 203 and 204 can act as relay node.
We implement subscriber and publisher nodes using Intel
next unit computing (NUC) and Raspberry Pi 4, respectively.
The latter is chosen due to its high portability and low cost,
which is suitable for massive deployment of flood
monitoring.

Fig. 3 depicts the overall performance of NerveNet
LoRaMesh. It can be observed from Fig. 3a, only extra hops
are needed at location 3. This is reasonable since the distance
between 204/208 and location 3 is at least 1200 m. In this
case, node 203 which is closer to location 3 acts as relay
node. For LoRaMesh packet to arrive at node 208, the packet
initially sent by node 214 at location 3 is passed to 203,
through 204 to 208. For other two locations, only one hop
transmission is needed. This is because there are less
obstacles, such as trees and buildings. The multi-hop
transmission is affected by the received signal strength
indicator (RSSI), as reported in Fig. 3b. All RSSI values are
measured with respect to the publisher node 214, except the

last two columns. Specially, 204 and 208 measurements are
based on their relay nodes 203 and 204, respectively.

All LoRaMesh packets are received when the publisher
transmits messages at locations 1 and 2. For location 3, two
out of 11 packets are lost during the transmission for nodes
204 and 208. Specifically, when node 204 does not receive
the packets from 203, it could not forward them to 208. Fig.3
d compares the time on air. In LoRaMesh, time on air
defines the elapsed time on air for a LoRaMesh packet
between publisher and subscriber. As expected, the further
the distance, the longer time needed to transmit the
LoRaMesh packets.

V. CONCLUSION

In this paper, we have proposed an edge AI solution that
forecasts flood water level and transmits the packet via LoRa
mesh network. the AI model training and the testing dataset
are obtained from Japan's organisation. Hence, the AI results
may not apply to the local area since the weather, season,
humidity, and geographical condition of Malaysia are
different from Japan. The local dataset can be requested from
the local government to build an AI model that can fit the
situation in Malaysia's local area so that a better
understanding of the feasibility of the AI model in disaster
detection in Malaysia.

Fig. 2 System deployment. (a) The location of three subscriber nodes (203,204 and 208) and one publisher node (214). (b) Subscriber node (Intel NUC).
(c) Publisher node (front view). (d) Publisher node (rear view).

UTAR KB
Block
GPS

coordinate
(3.03960,

101.79418)

(a)

(b) (c) (d)

ACKNOWLEDGMENT

This work is the output of the ASEAN IVO
(http://www.nict.go.jp/en/asean_ivo/index.html) project
titled “Context-Aware Disaster Mitigation using Mobile
Edge Computing and Wireless Mesh Network” and
financially supported by NICT
(http://www.nict.go.jp/en/index.html).

REFERENCES
[1] O. A. Kişi, “A combined generalized regression neural network

wavelet model for monthly streamflow prediction,” KSCE J Civ Eng,
vol. 15, pp. 1469–1479, 2011.

[2] Z. M. Yaseen et al., “Artificial intelligence based models for stream-
flow forecasting: 2000–2015,” Journal of Hydrology, vol. 530, pp.
829–844, 2015.

[3] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[4] K. Cho, B. Van Merri¨enboer, D. Bahdanau, and Y. Bengio, “On the
properties of neural machine translation: Encoder-decoder
approaches,” arXiv preprint arXiv:1409.1259, 2014.

[5] V. Mazzia, A. Khaliq, F. Salvetti and M. Chiaberge, "Real-time apple
detection system using embedded systems with hardware
accelerators: An edge ai application", IEEE Access, vol. 8, pp. 9102-
9114, 2020.

[6] J. P. Queralta, T. N. Gia, H. Tenhunen and T. Westerlund, "Edge-AI
in LoRa-based health monitoring: Fall detection system with fog
computing and LSTM recurrent neural networks", Proc. Int. Conf.
Telecommun. Signal Process. (TSP), pp. 601-604, Jul. 2019.

[7] M. Inoue and Y. Owada, “NerveNet Architecture and Its Pilot Test in
Shirahama for Resilient Social Infrastructure,” IEICE Transactions on
Communications, vol. E100–B, no. 9, pp. 1526–1537, 2017

[8] Ministry of Land, Infrastructure, Transport, and Tourism in Japan
(MLIT Japan). Hydrology and Water Quality Database. Available
online: http://www1.river.go.jp/ (accessed on 30 July 2022).

[9] N. Kimura et al., “Convolutional Neural Network Coupled with a
Transfer-Learning Approach for Time-Series Flood Predictions,”
Water, vol. 12, no. 96, 2020.

[10] OpenVINO Toolkit n.d., accessed 1 July 2022,
<https://software.intel.com/enus/openvinotoolkit>.

[11] S. Yang, X. Yu and Y. Zhou, "Lstm and gru neural network
performance comparison study: Taking yelp review dataset as an
example", 2020 International workshop on electronic communication
and artificial intelligence (IWECAI), pp. 98-101, 2020.

Fig. 3 Performance of NerveNet LoRaMesh. (a) Hop count. (b) RSSI. (c) PDR. (d) Time on air.

(a) (b)

(c) (d)

Performance Study of Disaster-Resilient Mesh
Networking using NerveNet Wi-Fi and LoRa

Mau-Luen Tham
Department of Electrical and Electronic

Engineering
Universiti Tunku Abdul Rahman

Kajang, Malaysia
thamml@utar.edu.my

Rong-Chuan Leong
Department of Electrical and Electronic

Engineering
Universiti Tunku Abdul Rahman

Kajang, Malaysia
lrongchuan@1utar.my

Chee Hong Lean
Department of Electrical and Electronic

Engineering
Universiti Tunku Abdul Rahman

Kajang, Malaysia
lean2051999@gmail.com

Yasunori Owada
Resilient ICT Research Center

National Institute of Information and
Communications Technology (NICT)

Tokyo, Japan
yowada@nict.go.jp

Wei-Sean Lim
Department of Electrical and Electronic

Engineering
Universiti Tunku Abdul Rahman

Kajang, Malaysia
seanlimweisean@gmail.com

Myint Myint Sein

Geographical Information System
University of Computer Studies,

Yangon (UCSY),
Myanmar

myint@ucsy.edu.mm

Abstract— When a natural disaster event happens, it could
trigger regional cellular network outages and hence disable
network communication within the affected area. If a resilient
network is implemented, alert messages with sufficient
information can be sent over the Internet to provide a
nationwide response. Japan National Institute of Information
and Communication Technology (NICT) has invented a resilient
network framework called NerveNet, which supports robust
communications via mesh networking. Using their technology as
the communication platform, disaster nodes could be installed
at disaster hotspots to send out disaster information or even
provide lightweight Internet services. NerveNet can support
data synchronization using Wi-Fi and LoRa. The former is used
to provide wide bandwidth but low-range data transmission,
whereas the latter enables narrow-bandwidth data transmission
in coverage of kilometers, which is suitable for crucial or
emergency disaster data updates.

Keywords—wireless mesh network, disaster resilient network,
LoRa, database synchronization

I. INTRODUCTION

According to [1], the total occurrence of global natural
disasters in 2021 is 13 % higher than the average over the last
30 years. Malaysia, despite its geographically stable region, is
facing similar disasters such as tsunami, floods, drought and
earthquake. In fact, Malaysia had experienced 51 natural
disaster events from the year 1998 to 2018, causing 281 people
to die and more than 3 million people were affected, which
caused around RM8 billion in damages [2]. Flood is the most
common natural disaster in Malaysia, resulting in total
residential and commercial damage of RM455 million and
RM142 million, respectively [3].

To raise the public awareness of the emergency situations,
an efficient communication network should be robust against
infrastructure damage during disasters. Using the existing
cellular communication service, the alert packets are generally
transmitted to the remote cloud via base stations (BSs), which
are vulnerable to disaster damage. Japan, a country with a high
natural disaster rate, has been using a resilient mesh network
named NerveNet to overcome this challenge. NerveNet has
been developed by the National Institute of Information and
Communications Technology (NICT) in Japan since the year

2006. Its resiliency was demonstrated by conducting a large
scale of testbed with 30 BSs constructed within Tohoku
University in Sendai in 2011 [4]. Later in 2014, NICT started
the real deployment of NerveNet for disaster prevention
purposes. The advantage is that the end devices do not rely on
the availability of each other. When one NerveNet node goes
inactive, it does not affect the overall service provided as other
nodes will self-configure a new pathway to transfer data.
Logically, any node can peer with any other nodes if they are
under NerveNet network, which gives it fault-tolerance
property during disaster events.

In this paper, we design and implement a disaster-resilient
mesh networking using NerveNet Wi-Fi and LoRa. The
former is featured with short-range connectivity and high data
rates whereas the latter offers long-range connectivity for low
data rate applications. These two wireless technologies can
complement each other to expand the Internet of things (IoT)
connectivity and provide nation-wide coverage. By invoking
the NerveNet Hearsay daemon, collected sensor data such as
alert text and images can be wirelessly synchronized in
multiple NerveNet nodes' database. This is one of goals of the
ASEAN IVO project titled “Context-Aware Disaster
Mitigation using Mobile Edge Computing and Wireless Mesh
Network”.

The rest of the paper is organized as follows. Section II
discusses the related works. Section III describes the proposed
solution. Section IV presents the experimental results and
discussions. Section V concludes the article.

II. RELATED WORK

In [5], the authors proposed an architecture for a drone-
based communication infrastructure for disaster response. The
formed wireless mesh network, however, relies on the Wi-Fi
technology, which poses transmission range limitations.
Another scheme was presented in [6], where the authors
developed a synchronous content distribution system via Wi-
Fi mesh networking. In an effort to extend the IoT coverage,
the authors in [7] implemented a Device-to-Device (D2D)
based LoRaMAC solution to disseminate the data. However,
the packet transmission scenario considers generic data, not
the multimedia data such as text and image.

219

979-8-3503-9669-0/23/$31.00 ©2023 IEEE

6th Conference on Cloud and Internet of Things Lisbon, Portugal, March 20-22, 2023

20
23

 6
th

 C
on

fe
re

nc
e

on
 C

lo
ud

 a
nd

 In
te

rn
et

 o
f T

hi
ng

s (
C

Io
T)

 |
97

9-
8-

35
03

-9
66

9-
0/

23
/$

31
.0

0
©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

C
Io

T5
72

67
.2

02
3.

10
08

48
90

Authorized licensed use limited to: Universiti Tunku Abdul Rahman. Downloaded on April 06,2023 at 04:44:51 UTC from IEEE Xplore. Restrictions apply.

In [8], the work analyzed the performance of unmanned
aerial vehicle (UAV)-enable LoRa networks for disaster
management applications, from the perspective of ns-3
simulation. Recognizing the complementary benefits of Wi-Fi
and LoRa, the work in [9] designed a hybrid Wi-Fi LoRa ad-
hoc network which leverages smartphones and IoT devices as
nodes in a mesh. However, their data distribution focuses on
plain text string. In contrast, our work focuses on both text and
image synchronization among NerveNet nodes. This
facilitates crowdsourcing during disaster events, where
response team can extract more useful insights from image for
critical decision-making.

III. PROPOSED SOLUTION

The overall system architecture consisting of hardware
and software is depicted in Fig. 1. There is a total of six
NerveNet nodes. Nodes BS203, BS204 and BS205 are
running x86 NerveNet OS in Ubuntu 18.04 of Intel NUC
whereas nodes BS206, BS207 and BS208 are executing armhf
NerveNet OS in Raspbian Buster of Raspberry Pi. Node
BS203 concurrently serves as the NerveNet web application.

A. NerveNet Wireless Mesh Network

Usually, a mesh network is simply adding a redundant
connection for each device within the network topology, then
the device will look up for an alternative pathway to reach its
destination if its primary peer is down. NerveNet Wi-Fi mesh
network framework not only provides the function to look up
every single mesh node in the network, but also adds database
synchronization to share common data within the mesh
network. The lookup feature is built by using a service daemon
called Path Tree Management Generation (PTMGR), which is
installed in the essential node within the mesh network.
PTMGR continuously seeks for peers’ network status to
identify if any node is down or new node has joined the
network. If the connection between nodes is steadily
maintained by PTMGR, the nodes could directly connect or
access to each other and perform NerveNet SQL database
synchronization. The nodes will compare the data rows within
each other to update with the latest data.

NerveNet also supports LoRa mesh network with the use
of specific LoRa equipment. NerveNet LoRa uses a frequency
band of 920 MHz for all LoRa nodes. To overcome the
potential LoRa signal interference, NerveNet LoRa uses time
division multiple access (TDMA). Each node synchronizes

the time from the global positioning system (GPS) receiver to
other nodes in such as way that the node will transmit LoRa
data within the period of the pre-configured time slot. For
example, 10 seconds are divided into five slots to form a cycle,
the time slots are allocated to five nodes, thus each node will
transmit LoRa signal during its time slot only. With properly
configured time slots and channels to reduce disturbance,
NerveNet LoRa nodes are possible to communicate at the
speed of 100 Bytes per second over several kilometers
distance with a power consumption of only tens of milliwatt.

B. Wi-Fi Mesh Network

To install Wi-Fi mesh network, each device is initially
configured with NerveNet IP address, access point (AP)
interface and Wi-Fi Protected Access (WPA) client interface.
These interfaces form Ethernet remote bridge (ERB) tunnel
link, which is used by the PTMGR to enable each node to
communicate. Both x86 and armhf versions of NerveNet OS
are running Docker containers.

C. LoRa Mesh Network

To install LoRa mesh network, we use RFlink-RM92A as
the LoRa module, parameters of which are set as follows: RF-
channel of 41, RF-bandwidth of 500 kHz, and spreading factor
of SF12. The TDMA is set to four slots per minute, granting
each LoRa node (BS203, BS206, BS207, and BS208) around
15 seconds duration. To transmit plain text data, NerveNet
LoRa node uses MQTT service to buffer published data, then
sends out the LoRa data within the allocated time slot with its
best effort. The LoRa data will remain in the MQTT buffer
and waits for the next cycle if the attempt to transmit fails.
However, NerveNet LoRa MQTT communication uses QoS
level zero, LoRa packet loss is still possible. Similar as Wi-Fi,
both x86 and armhf versions of NerveNet OS are running
Docker containers.

D. NerveNet Monitoring Dashboard (NerveDASH)

NerveDASH is a web application for visualizing the
results of disaster detection. The main components to support
NerveDASH are Neo4j, MQTT service, HTTP server, REST
API, WebSocket API, and Nginx server, as shown in Fig. 2.

When NerveNet gateway sends a message, it will first be
handled by MQTT client for JSON encodable data. If the data
is media (image, video), it will be sent to HTTP server instead
of MQTT broker. When the media storage has exceeded its
limit, the oldest stored media will be replaced by the latest
media data. Both MQTT and HTTP service point towards
Neo4j server, a graphical-based NoSQL database server. By
default, MQTT broker will set a count-down timer to receive

Fig. 1 NerveNet network architecture. Fig. 2 NerveDASH.

220
Authorized licensed use limited to: Universiti Tunku Abdul Rahman. Downloaded on April 06,2023 at 04:44:51 UTC from IEEE Xplore. Restrictions apply.

a “heartbeat” message from NerveNet gateway (publisher). If
the message is not received in 20 seconds interval, an inactive
message will be sent to Neo4j (subscriber) to record that the
respective node is down until a new “heartbeat” message is
received.

The data in Neo4j can then be retrieved via a RESTful API
or a WebSocket API. The RESTful API is used for simple text
retrieval, while WebSocket API is used for file streaming.
Finally, the Nginx static file hosting feature is used to serve
the frontend static files of the web application. The Nginx
server can also be configured to provide load balancing for all
HTTP endpoints if needed.

E. Evaluation Metrics

The network latency within NerveNet Wi-Fi domain is
benchmarked using the ping command. We consider two
scenarios: (1) one broken mesh link (2) no broken mesh link.
Both TCP and UDP throughput are measured using the
popular tool Iperf3 [10]. The former uses settings of 100
packets and the latter configures the sender bandwidth and
duration to be 50 Mbps and 10 s, respectively. Clearly, packet
retransmission is only possible at the TCP scenario. When
measuring UDP throughput, we also record the jitter. With
respect to database synchronization, the average time taken to
synchronize images of different resolutions is recorded. The
metadata of images is tabulated in Table I.

IV. RESULTS AND DISCUSSIONS

The NerveNet Wi-Fi mesh network performance within
x86 (BS203, BS204, BS205) and armhf (BS206, BS207,
BS208) are evaluated. Fig. 3 (a) and (b) show the Wi-Fi links
for Intel NUC and Raspberry Pi, respectively. For the
NerveNet LoRa mesh testbed as shown in Fig. 3(c), any
device within the LoRa network could perform LoRa MQTT
data exchange with each other. The NerveNet LoRa mesh
MQTT messaging performance is carried out between BS203
and BS207.

Fig. 4 evaluates the TCP and UDP throughput for P2P and
mesh links in NerveNet x86 Wi-Fi. To activate P2P link, we
shutdown one out of three NerveNet nodes within the Wi-Fi
domain. From the figure, it can be observed that P2P link has
generally higher TCP and UDP throughput as compared with
mesh-link. This is because the sender does not need to
calculate a pathway to transfer the data. Also, when the route
direction is from Wi-Fi client interface to Wi-Fi AP interface
of peer device, the TCP throughput is also higher as compared
with the reverse ordered route direction.

Fig. 4 (c) displays the jitter of NerveNet Wi-Fi within x86
domain in the cases of P2P and mesh links are more or less
similar. The difference between the highest and lowest jitter is
less than two milliseconds. According to [11], the QoS
requirements of jitter for video conferencing is less than 30
ms. Therefore, NerveNet Wi-Fi within triangular x86 nodes

has good fundamentals to handle applications that require low
jitter, such as providing VoIP services.

Fig. 5 measures the NerveNet x86 Wi-Fi latency. It can be
seen that there is no big difference in terms of P2P and mesh
links within NerveNet x86 Wi-Fi domain. However, the
latency is less than 10 ms when the route direction is from Wi-
Fi client interface to Wi-Fi AP interface, while the latency is
five times greater if the route direction is reversed. This can
be explained by NerveNet Wi-Fi in x86 machines having a
lower route cost when the target’s AP interface is the next hop
of its own client interface. Therefore, even if the target is just
located at the next hop of its AP interface, the sender would
still seek for target from its client interface’s next hop, causing
the packet return time to increase.

Similar as in x86 environment, Fig. 6 evaluates the TCP
and UDP throughput for P2P and mesh links in NerveNet
armhf Wi-Fi. From the figure, it is observed that the P2P link
generally has a higher throughput as compared with mesh link.
Unlike x86 machines, the relationship between throughput
and route direction in NerveNet armhf Wi-Fi domain is not
obvious. The highest throughput (BS207 to BS206) and
lowest throughput (BS206 to BS208) via mesh link are both
obtained when the target is located at the next hop of the
sender’s AP interface. Fig. 6 (c) shows the average jitter of
P2P and mesh links within NerveNet armhf Wi-Fi domain.

Fig. 3 NerveNet testbed. (a) x86 Intel NUC Wi-Fi. (b) armhf Raspberry

Pi Wi-Fi. (c) x86 Intel NUC and armhf Raspberry Pi LoRa Mesh

Network.

(a)

(b)

(c)

221
Authorized licensed use limited to: Universiti Tunku Abdul Rahman. Downloaded on April 06,2023 at 04:44:51 UTC from IEEE Xplore. Restrictions apply.

The variance of jitter at each link and route directions is as tiny
as ignorable. However, even the highest jitter is just between
0.5 to 0.6 ms, which is at least three times lesser than the jitter
in NerveNet x86 Wi-Fi domain.

To evaluate the time taken from an image file to be
synchronized in all NerveNet node databases via Wi-Fi mesh,
the cases of all nodes as image senders are tested. The
corresponding time taken for the other two peers to receive the
synchronized image file is recorded in Fig. 7.

From Fig. 7 (a), it is clearly stated that as the image file
size increased, the time taken for the peers to receive the
synchronized file also increased. However, the time taken is
not linear. For example, Node 203 takes 50 seconds to receive
a 2.5 MB image file from BS205. However, it only takes 86
seconds to receive a 10.9 MB image file, which is at least four
times greater than the 2.5 MB image file. The figure also
shows that the image sent by BS203 takes least time to be
synchronized in the peers’ database, this could be due to the
PTMGR daemon running at BS203, therefore it takes the least
time to calculate Wi-Fi pathways. Similar trend can be
observed in Fig. 7 (b).

Since NerveNet LoRa mesh MQTT uses QoS level zero,
the percentage of lost LoRa packets is interested. To test the
NerveNet LoRa mesh MQTT messaging performance, the
number of packets lost with MQTT payload size of 30 Bytes
and 90 Bytes are recorded accordingly. Not only that, the
number of LoRa packets sent at once could affect the ratio of
lost packets, hence the number of LoRa messages published
at once is varied at 10, 20, 40, and 60 messages. After the
LoRa MQTT subscriber has not received any message for 20
minutes, the remaining LoRa packets are considered lost. The
test is carried out using BS203 as LoRa MQTT subscriber
while BS206 as the LoRa MQTT publisher.

Fig. 8. Time taken for NerveNet LoRa packet payload transmission. (a)

30 bytes (b) 90 bytes.

(a)

(b)

Fig. 6 NerveNet armhf Wi-Fi. (a) TCP throughput (b) UDP throughput.

(c) UDP jitter.

(a)

(b)

(c)

Fig. 4 NerveNet x86 Wi-Fi. (a) TCP throughput (b) UDP throughput.

(c) UDP jitter.

(a)

(b)

(c)

Fig. 5. NerveNet x86 Wi-Fi Latency.

222
Authorized licensed use limited to: Universiti Tunku Abdul Rahman. Downloaded on April 06,2023 at 04:44:51 UTC from IEEE Xplore. Restrictions apply.

Fig. 8 shows the time taken for LoRa packet payload
transmission. It can be seen that the number of received LoRa
MQTT messages is almost linear with time. This means the
rate of LoRa MQTT message to be received is almost
constant. However, the time taken to receive LoRa MQTT
message is not a manipulated variable on the subscriber side.
Instead, the published LoRa message is queued and buffered
in MQTT broker to wait for transmission, once the published
message is transmitted over NerveNet LoRa mesh, the over-

the-air duration is short, thus it is almost immediately received
by the subscriber side. The manipulating variable is said to be
LoRa MQTT payload size because the bandwidth is fixed,
higher payload size means a higher bit rate, therefore
increasing the risk of LoRa signals being interfered or
corrupted.

To reveal more insight, Fig. 9 displays the number of
NerveNet MQTT LoRa packet loss. By dividing the total
message sent by the number of packets lost, the percentages
of lost packets with 30 Bytes payload size in 10, 20, 40, and
60 messages are 10%, 10%, 5%, and 11.67% respectively. On
the other hand, with the payload size of 90 Bytes, the
percentage of lost packets in 10, 20, 40, and 60 messages are
20%, 15%, 12.5%, and 13.33% respectively. Hence, it is
concluded that the larger the LoRa MQTT payload size, the
slower the LoRa packet transmission, and the higher the risk
of LoRa packet being lost.

Fig.10 displays the visual design of NerveDASH. The
design phase of the frontend development is separated into
three phases, namely sitemap designing, wireframing and
visual designing.

Fig. 10. NerveDASH. (a) Main page. (b) Node page.

(a)

(b) Fig. 8. Time taken for NerveNet LoRa packet payload transmission. (a)

30 bytes (b) 90 bytes.

(a)

(b)

Fig. 9. Number of LoRa MQTT Packet Loss.

Fig. 7. Time taken for NerveNet image synchronization. (a) x86 Wi-Fi

(b) armhf Wi-Fi.

(a)

(b)

223
Authorized licensed use limited to: Universiti Tunku Abdul Rahman. Downloaded on April 06,2023 at 04:44:51 UTC from IEEE Xplore. Restrictions apply.

V. CONCLUSIONS

A testbed for disaster response and monitoring platform
using NerveNet has been designed and deployed. The tools
such as the Hearsay daemon provided in NerveNet has been
proven beneficial for application services within the regional
local private network. The platform design also meets the
requirements set by the International Telecommunication
Union. The performance of the platform is also within an
acceptable range of a regional disaster response and
monitoring network. The outcome of the real implementation
can serve as a guideline on designing and deploying a disaster
response and monitoring platform using NerveNet. Hopefully,
it will promote disaster-resilient telecommunications and
distributed application development for disaster response.

ACKNOWLEDGMENT

This work is the output of the ASEAN IVO
(http://www.nict.go.jp/en/asean_ivo/index.html) project titled
“Context-Aware Disaster Mitigation using Mobile Edge
Computing and Wireless Mesh Network” and financially
supported by NICT (http://www.nict.go.jp/en/index.html).

REFERENCES
[1] "2021 Global Natural Disaster Assessment Report", [online] Available:

https://reliefweb.int/report/world/2021-global-natural-disaster-
assessment-report.

[2] “Malaysia: Disaster Management Reference Handbook (June 2019)",
[online] Available: https://reliefweb.int/report/malaysia/malaysia-
disaster-management-reference-handbook-june-2019

[3] N. S. Romali and Z. Yusop, “Flood damage and risk assessment for
urban area in Malaysia,” Hydrology Research, vol. 52, no. 1, pp. 142–
159, 2021, doi: 10.2166/nh.2020.121

[4] M. Inoue and Y. Owada, “NerveNet Architecture and Its Pilot Test in
Shirahama for Resilient Social Infrastructure,” IEICE Transactions on
Communications, vol. E100–B, no. 9, pp. 1526–1537, 2017.

[5] S. Ganesh, V. Gopalasamy and N. B. Shibu, “Architecture for Drone
Assisted Emergency Ad-hoc Network for Disaster Rescue
Operations,” in COMSNETS, 2021.

[6] J. C. P. M. Villanueva et al, “Design and Deployment of Content Stacks
and Portable Asynchronous Learning Platforms for Socially Distanced
Learning in a Pandemic or Post Disaster Situation,” in IEEE GHTC
2022.

[7] Y. Dalpathadu et al., “Disseminating Data using LoRa and Epidemic
Forwarding in Disaster Rescue Operations,” in GoodIT 2021.

[8] O. A. Saraereh, A. Alsaraira, I. Khan and P. Uthansakul, “Performance
Evaluation of UAV-Enabled LoRa Networks for Disaster Management
Applications,” Sensors, vol. 20, no. 8, 2020, doi:
https://doi.org/10.3390/s20082396

[9] J. Lohokare and R. Dani, "An Intelligent cloud ecosystem for disaster
response and management leveraging opportunistic IoT mesh
networks," in ICT-DM, 2021, pp. 125-133, doi: 10.1109/ICT-
DM52643.2021.9664137.

[10] ESNET. Iperf. http://software.es.net/iperf/, 2022.

[11] A. Al-Shaikhli, A. Esmailpour and N. Nasser, "Quality of service
interworking over heterogeneous networks in 5G", in 2016 IEEE ICC,
pp. 1-6, 2016.

224
Authorized licensed use limited to: Universiti Tunku Abdul Rahman. Downloaded on April 06,2023 at 04:44:51 UTC from IEEE Xplore. Restrictions apply.

