

Background :

- Breast cancer: Most common cancer in women
- Early detection methods can improve overall survival
- Current risk assessment models do not accurately predict individual risk
- Radiographic image features in mammograms change as suspicious breast abnormalities develop

Example of segmented fibro-glandular tissue volume on a BIRADS D digital

mammogram

Targets:

- Develop new image feature analysis-based cancer risk prediction model
- New risk model that takes prior screenings into account
- New model for short-term individualized screening recommendations (e.g., 1 to 2 years)

Speaker:

• Dr. Maxine Tan, Monash University Malaysia

Project Members :

Maxine Tan Monash University Malaysia

Hwee Kuan Lee A*STAR Singapore

Kartini Rahmat UM Malaysia

Project Duration :

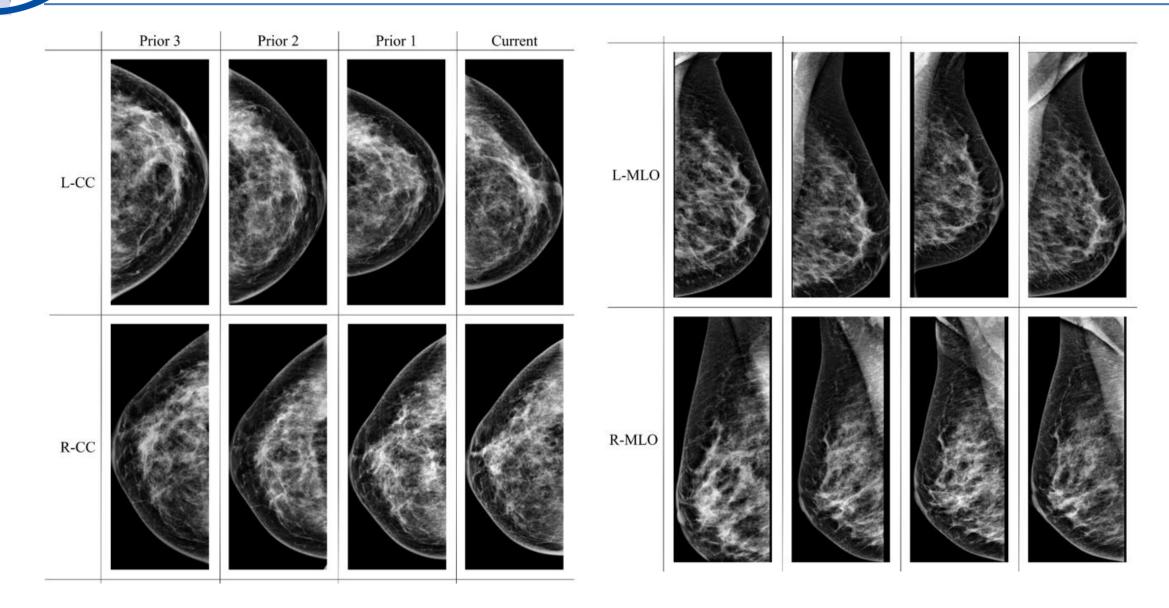
• 17 months

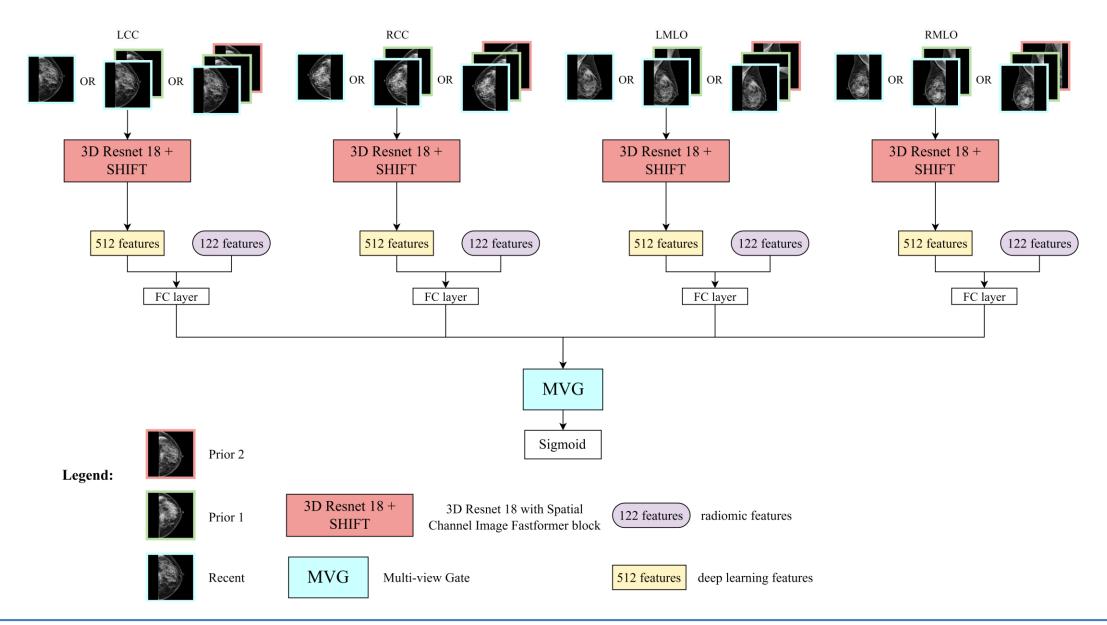
Project Budget:

• USD 29,510

Dataset compilation/collation

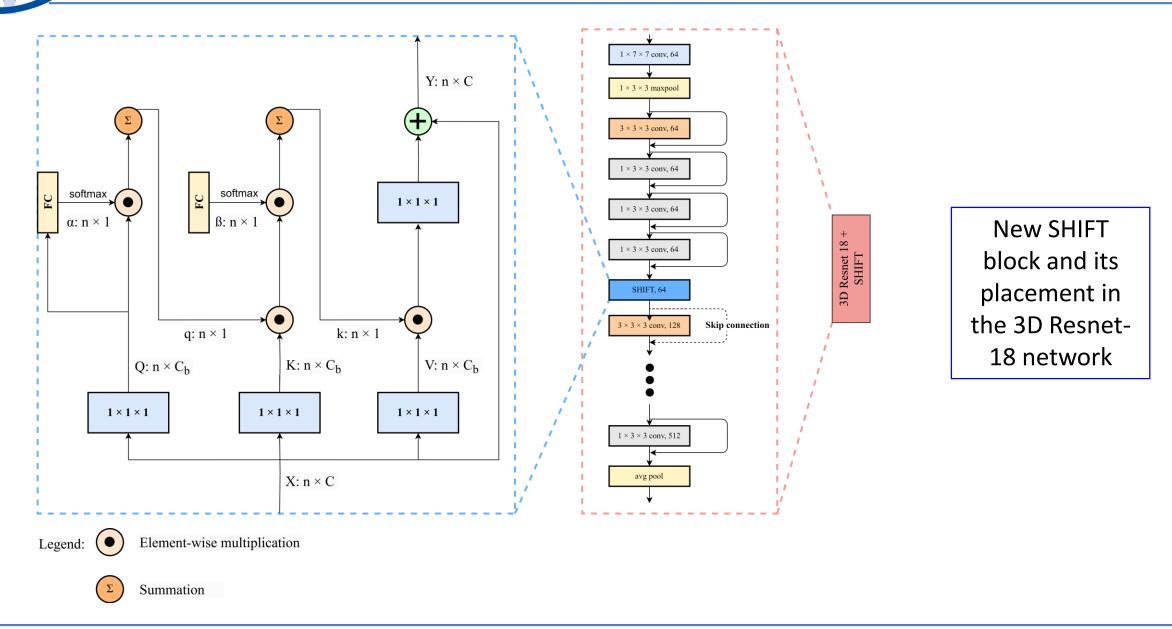
- Dr. Maxine Tan (Monash University Malaysia)
- Prof. Kartini Rahmat (University of Malaya)


Multi-radiomics deep learning cancer risk prediction model


- Dr. Maxine Tan (Monash University Malaysia)
- Prof. Kartini Rahmat (University of Malaya)

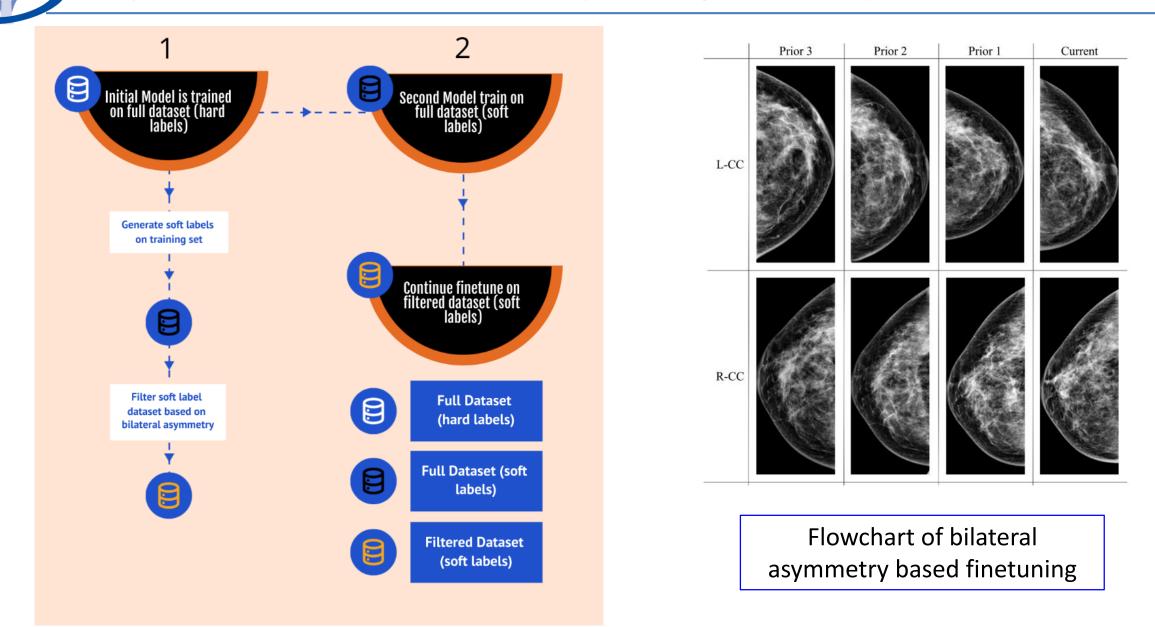
New deep learning networks combined with clinical risk factors to improve risk prediction

- Dr. Maxine Tan (Monash University Malaysia)
- Prof. Kartini Rahmat (University of Malaya)
- Dr. Hwee Kuan Lee (A*STAR, Singapore)


Project Activities: Dataset compilation/collation

IVO

ASEAN IVO Project Review 2024



IVO

Feature group/type	Feature number/quantity	Description					
First Order	18	Energy, Total Energy, Entropy, Minimum, 10 th Percentile, 90 th Percentile, Maximum, Mean, Median, Interquartile Range, Range, Mean Absolute Deviation, Robust Mean Absolute Deviation, Root Mean Squared, Skewness, Kurtosis, Variance, Uniformity	(Ç		omics features from
Gray Level Co-occurrence Matrix (GLCM)	23	Autocorrelation, Joint Average, Cluster Prominence, Cluster Shade, Cluster Tendency, Contrast, Correlation, Difference Average, Difference Entropy, Difference Variance, Joint Energy, Joint Entropy, Informational Measure of Correlation 1, Informational Measure of Correlation 2, Inverse Difference Moment, Maximal Correlation Coefficient, Inverse Difference Moment Normalized, Inverse Difference, Inverse Difference Normalized, Inverse Variance, Maximum Probability, Sum Entropy, Sum Squares		L		Pyr	adiomics library
Gray Level Size Zone Matrix (GLSZM)	16	Small Area Emphasis, Large Area Emphasis, Gray Level Non-Uniformity, Gray Level Non- Uniformity Normalized, Size Zone Non-Uniformity, Size Zone Non-Uniformity Normalized, Gray Level Variance, Zone Variance, Zone Entropy, Low Gray Level Zone Emphasis, High Gray Level Zone Emphasis, Small Area Low Gray Level Emphasis, Small Area High Gray Level Emphasis, Large Area Low Gray Level Emphasis, Large Area High Gray Level Emphasis					CT and FFT frequency n statistical features
Gray Level Run Length Matrix (GLRLM)	14	Short Run Emphasis, Long Run Emphasis, Gray Level Non-Uniformity, Gray Level Non- Uniformity Normalized, Run Length Non-Uniformity, Run Length Non-Uniformity Normalized, Run Percentage, Gray Level Variance, Run Variance, Run Entropy, Low Gray Level Run Emphasis, High Gray Level Run Emphasis, Short Run Low Gray Level Emphasis, Short Run High Gray Level Emphasis, Long Run Low Gray Level Emphasis, Long Run High Cravel Gund Emphasis, Long Run Low Gray Level Emphasis, Long Run High		Feature			
Neighbouring Gray Tone	Neighbouring Gray Tone 5 Coarseness, Contrast, Busyness, Complexity, Strength			group/type Discrete Cosin		number/ quantity	Description Mean, Maximum, Variance, Skew, Kurtosis, Entrop
Difference Matrix (NGTDM)	NGTDM)	Small Dependence Emphasis, Large Dependence Emphasis, Gray Level Non-Uniformity, Dependence Non-Uniformity,		Transform (D Fast Fourie Transform (F	DCT) er	30	Energy, Root Mean Square, Uniformity, Minimum, Median, Range, Interquartile Range, Mean Absolut Deviation, Median Absolute Deviation
Gray Level Dependence Matrix (GLDM)	15	Dependence Non-Uniformity Normalized, Gray Level Variance, Dependence Variance, Dependence Entropy, Low Gray Level Emphasis, High Gray Level Emphasis, Small Dependence Low Gray Level Emphasis, Small Dependence High Gray Level Emphasis, Large Dependence Low Gray Level Emphasis, Large Dependence High Gray Level Emphasis		Transionin (r			

ASEAN IVO Project Review 2024

IVO

Table 1: Patient distribution in Training, Validation and Testing sets of 5-fold CV setup

	Training set		Validat	ion set	Testing set	
CV fold	Cases	Controls	Cases	Controls	Cases	Controls;
1	552 (10%)	5021 (90%)	143 (10%)	1258 (90%)		1571 (90%)
2	553 (10%)	5023 (90%)	142 (10%)	1256 (90%)		
3	558 (10%)	5024 (90%)	137 (10%)	1255 (90%)	178 (10%)	
4	558 (10%)	5024 (90%)	137 (10%)	1255 (90%)		
5	559 (10%)	5024 (90%)	136 (10%)	1255 (90%)		

Table 2: Tabulated results by taking different numbers of mammographic screenings

Model	Number of Screenings	1-year AUC (95% Cl)	2-year AUC (95% Cl)	> 2-year AUC (95% Cl)
	3	0.882 (0.853-0.913)	0.855 (0.829-0.886)	0.849 (0.823-0.878)
Baseline	2	0.879 (0.85-0.91)	0.839 (0.811-0.871)	0.835 (0.81-0.866)
	1	0.877 (0.849- 0.909)	0.831 (0.798-0.863)	0.823 (0.793-0.853)

Table 3: Results summary for Non-Local networks, SHIFT and no attention mechanisms

Attention Mechanism	Resnet Layer	1-year AUC (95% Cl)	2-year AUC (95% Cl)	> 2-year AUC (95% Cl)		
	-	0.879 (0.85-0.91)	0.839 (0.811-0.871)	0.835 (0.81-0.866)		
	1	Out of Memory				
Non-Local	2	0.881 (0.822-0.91)	0.840 (0.811-0.875)	0.837 (0.81-0.867)		
CLUET	1	0.887 (0.86-0.917)	0.848 (0.82-0.876)	0.844 (0.818-0.872)		
SHIFT	2	0.880 (0.85-0.911)	0.842 (0.811-0.873)	0.839 (0.812-0.867)		

Table 4: Result compilation of new model additions

Model Configuration	Radiomics	1-year AUC (95% CI)	2-year AUC (95% CI)	> 2-year AUC (95% CI)			
SHIFT + Gate + BAF	\checkmark	0.905	0.872	0.866			
SHIFT + Gate	\checkmark	0.902	0.863	0.861			
SHIFT	\checkmark	0.888	0.854	0.853			
Baseline	\checkmark	0.880	0.845	0.844			
Baseline	-	0.879	0.839	0.835			
Radiomics Only	0.719	0.715					
Mirai [8]	0.834	0.830					
SHIFT = Spatial Channel Image Fastformer, BAF = Bilateral Asymmetry based Finetuning							

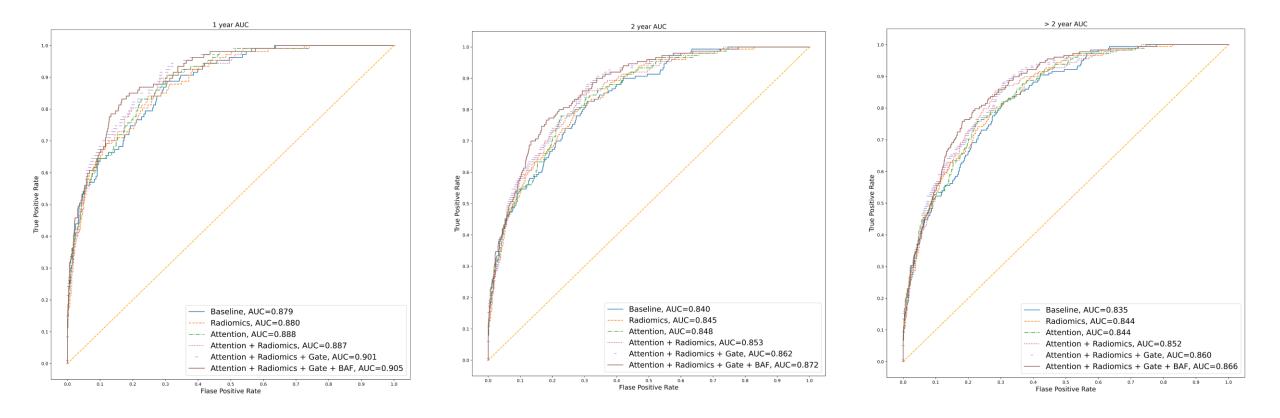


Fig. 1: ROC curves of ablation study results corresponding to 1-year, 2-year and >2-year AUC categories

Since the project has only been running for 6 months, we do not yet have a scientific contribution (international conferences and journal articles).

However, we have submitted a Journal Paper:

No:	Paper title:	Author names	Affiliations	Journal name:	The publisher of the Journal	The volume number and Pages
1	A multi-radiomics deep learning based breast cancer risk prediction model using sequential mammographic images with image attention and bilateral asymmetry refinement	Hong Hui Yeoh, Andrea Liew, Raphaël Phan, Fredrik Strand, Kartini Rahmat, Tuong Linh Nguyen, John L. Hopper, Maxine Tan	Monash University Malaysia, Karolinska Institute, University of Malaya, The University of Melbourne	Engineering Applications of Artificial Intelligence	Elsevier	Submitted

Societal impact of project:

- Breakthrough towards early cancer detection
- Risk assessment model for individualized risk
- Personalized screening recommendations for women
- Reduced patient mortality rates
- Reduced false-positives, over-diagnosis and high healthcare costs through unnecessary biopsies, etc.

Conclusions:

- Using attention-based multiple sequential screenings improves risk prediction performance
- New radiomics features improves overall performance
- New gating mechanism effectively combines both CC and MLO views
- Bilateral asymmetry fine tuning improves model generalizability
- On comprehensive screening dataset consisting of 8,723 patients (34,892 mammograms), new risk model outperforms state-of-the-art methods in literature

Future work:

- We duplicated missing screening mammograms in the dataset (due to patients not going for regular screening)
 - Evaluate our model's performance on larger datasets
- Cases in category 1: Patients diagnosed with cancer at <= 60 days from screening Presented as 1-year AUC results
 - Omit these cases: Perform future studies with bigger datasets
- If possible, perform clinical testing on model's utility and impact in assisting radiologists