

Coastal Erosion Monitoring Platform Based on Wireless Sensor Networks and 3D Point Clouds from Airborne LiDAR

- Concern of coastal erosion is growing due to habitat destruction, loss of biodiversity.
- Sustainable coastal management is necessary but lack of sufficient information.
- A data center platform that offers both raw and processed data is indispensable.
 - Sensors, video monitoring systems, 3D point clouds, and weather stations.
- In this project, we propose a platform for collecting, monitoring, and processing environmental data of coastal areas.
- This platform is designed to support decision-making by providing recommendations or predictions based on data analysis.

Objectives: 1) built a data center and data collection platform to provide information to policy maker and general people and 2) research data collection and processing techniques, models for prediction, classification, segmentation, etc. related to coastal erosion.

Speaker: Mr. Surasak Boonkla, PhD., National Electronics and Computer Technology Center (NECTEC), Thailand

Coastal Erosion Monitoring Platform Based on Wireless Sensor Networks and 3D

Point Clouds from Airborne LiDAR

Institution	Name
National Electronics and Computer Technology Center, Thailand	Dr. Surasak Boonkla*, Dr. Jessada Karnjana, Dr. Kasorn Galajit, Dr. Sutat Saetang
School of Engineering, Thammasat University, Thailand	Dr. Akkharawoot Takhom, Mr. Pasut Insung, Mr. Pasut Insung
School of Information, Computer, and Communication Technology (ICT), Sirindhorn International Institute of Technology, Thammasat University, Thailand	Dr. Somrudee Deepaisarn
Faculty of Informatics, Burapha University, Thailand	Dr. Waranrach Viriyavit, Dr. Pichet Wayalun
Coastal Resources Conservation Division, Department of Marine and Coastal Resources, Thailand	Mr. Paramin Sansongsak, Mr. Parinya Tongkrathok
Universiti Teknologi Malaysia, Malaysia	Dr. Sharifah Hafizah Syed Ariffin, Dr. Shafishuhaza Sahlan
Institut Teknologi National Bandung, Indonesia	Dr. Soni Darmawan, Dr. Didin Permadi, Dr. Dian Noor Handiani, Dr. Yessi Nirwana Kurniad
Cambodia Academy of Digital Technology, Cambodia	Dr. Phut Phalla Kong, Dr. Hongly VA
Research Center for Oceanography - National Research and Innovation Agency, Indonesia	Dr. Johan Risandi, Dr. Yaya Ihya Ulumuddin, Mrs. Terry Louise Kepel

Project Budget: 40000 USD/year

Project Duration : 2 years, Apr. 2024 – Mar. 2026

Nearshore dynamics, erosion and sediment transportation, beach profile, coastal vulnerability, shoreline detection

Project Activities: (Prior Work) Dominant Wave Height Estimation Based on Spectral

Analysis for Coastal Erosion Monitoring System in Real Time

Parin Jatesiktat , Kasorn Galajit , Thanaphat Khemniwat , PatthranitKaewcharuay , Pannathorn Sathirasattayanon , Jessada Karnjana, iSAI-NLP-AIoT, November, 2023

November 7, 2024 at Phnom Penh

IVO

Project Activities: Utilizing a Classification Tree for Rocky Terrain Detection in 3D Point

Clouds for Coastal Erosion Studies

Pasut Insung, Peerapat Supasri, Phattarakorn Limsuwat, Setthanan Thitathanapat, Akkharawoot Takhom, Kasorn Galajit, Surasak Boonkla, Jessada Karnjana, SICE, Aug. 2024

November 7, 2024 at Phnom Penh

Project Activity Plan: Coastal Change Monitoring Using 3D point cloud by NECTEC,

DMCR, and TU

Apr	May	Jun	July	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar
				Data collec	tion before a	nd after rainy	season using	g UAV LiDAI	2		
		Develop so	and volume cl	hange estimat	ion method fr	om 3D point	cloud data wi	ithin controlle	d conditions	I	
a fait					Apply the s	and volume c	hange estima	tion method t	o the data co	bllected on the	e beaches.
						Develop lov	v-cost UAV L	_iDAR, 3D pc	int cloud date	<u>aset</u>	1
Develop la	ow-cost UAV	LiDAR, 3D p	<u>point cloud da</u>	i <u>taset</u>						-	1
Apply the	sand volume	change estin	nation method	l to the data (collected on t	he beaches.					
Expecte two pul	ed output: plications,	one 3D po and a low	oint cloud -cost UAV	dataset of with LiDAF	a beach, R.		All Coorter to Manual Annument				

Using Machine Learning by UTM

lo Tas Invi lea cloi Dis Sat 3D Pla Tec	Month ask evestigate suitable deep earning for 3d point loud data Discussion with Geo satellite Lab on usage of D point cloud Lidar	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	 Scan LiDA LiDA LiDA 	nning area : 500m x 300m = R sensor point density: 200 R Measurement accuracy: R Absolute accuracy: <15c	= 150000m2 = 15ha 0 points/ meter squared +/- 5cm
lo Tas Inv. lea cloi Dis Sat 3D Pla Tec	ask nvestigate suitable deep earning for 3d point loud data Discussion with Geo satellite Lab on usage of D point cloud Lidar									 Scar. LiDA LiDA LiDA 	nning area : 500m x 300m = R sensor point density: 200 R Measurement accuracy: R Absolute accuracy: <15c	= 150000m2 = 15ha 0 points/ meter squared +/- 5cm cm
Dis Dis Sat 3D	ask hvestigate suitable deep earning for 3d point loud data Discussion with Geo eatellite Lab on usage of D point cloud Lidar									LiDA LiDA LiDA	R sensor point density: 200 R Measurement accuracy: R Absolute accuracy: <15c	0 points/ meter squared +/- 5cm cm
Invi lea cloi Dis Sat 3D Pla Tec	nvestigate suitable deep earning for 3d point loud data Discussion with Geo Gatellite Lab on usage of D point cloud Lidar									LiDA LiDA	R Measurement accuracy: R Absolute accuracy: <15c	+/- 5cm cm
lea cloi Dis Sat 3D Pla Teo	earning for 3d point loud data Discussion with Geo satellite Lab on usage of D point cloud Lidar									• LiDA	R Absolute accuracy: <15c	cm
Dis Sat 3D Pla Tec	Discussion with Geo atellite Lab on usage of D point cloud Lidar											
Dis Sat 3D Pla Teo	Discussion with Geo Satellite Lab on usage of D point cloud Lidar									• Estat	blishing base station for da	ata accuracy control.
Sat 3D Pla Teo	Satellite Lab on usage of D point cloud Lidar			I I						• Estat	blishing check point for da	ata accuracy checking.
Pla										Proce	essing LIDAR data in terms	s or point cloud and trajecto
Pla										Perro	orming ortho rectification	process of aerial image
Tec	Plan data collection &									• Final	data will be delivered in LA	AS format (Industry standa
	ech acquisition									data))	
Dat)ata Analysis & Paper									Li	iDAR data collection of	
writ	riting										Desaru site for 4 times throughout the year	
										C		
Aug Mo	Nugmented data &										↓ ↓	
Pa	aper presentation									P	reprocessing of LiDAR	
Mo	Addel Evaluation									dat	a collected from the four scheduled collection	
Rei	Penort Writing								Ú.		↓ ↓	
										A	ugmentation of LiDAR	<u> </u>

November 7, 2024 at Phnom Penh

Expected output: one 3D point cloud dataset of Desaru beach and one publication

ASEA

OK

Analysis of data collected &

documentation

OK

Training of LiDAR data

using AI model to detect

beach corrosion of Desaru

site

Project Activity Plan: Coastal Vulnerability Index Assessment, Coastal Line Changes

Monitoring, and Rip Current Identification by ITENAS

- Coastal Vulnerability in North Coast of Bekasi Regency using Composite Vulnerability Index (CVI), PI: Dr. rer. nat. Dian N Handiani + Meteorological prediction (Dr. Didin Agustian P)
- Using remote sensing for monitoring of coastal line changes (Cirebon), PI: Dr. Soni Darmawan
- Rip current identification at the southern coastal areas in Java Island (Ciamis, Pangandaran), PI: Yessi Nirwana, Ph.D
 Itenas

- Erosion and accretion very fast in the study area.
- Need more investigation on the quantitative approach for estimating erosion and accretion, as well as its impact on the environment.

No	Activity	July	Augt	Sept	Oct	Nov	Dec
1.	Testing site-Field survey						
2.	International conference						
3.	Journal submission						
4.	Book chapter (draft)						

Expected output: 2 submitted articles to international journals, 2 Scopus indexed international proceeding, and 1 book chapter draft

November 7, 2024 at Phnom Penh

ASEAN

Project Activity Plan: Develop a Visualization and Clustering Technique

for Segmenting Temporal 3D Point Cloud Data by CADT

Expected output: Clustered and segmented dat visualization, and a research manuscript

Main Activity	Activity in Detail	Indicative Timeline (month)																	
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	1.1 Resource Allocation																		
1. Project Initialization	1.2 Tool and Setup																		
	1.3 initial literature review																		
	2.1 Data Source Identification																		
2. Data Acquisition	2.2Data Collection																		
	2.3Point Cloud Visualization																		
2 Data Bro processing	3.1 Data Cleaning and Normalization																		
5. Data Pre-processing	3.2 Data Annotation and Labeling																		
	4.1 Clustering Algorithm Selection																		
1 Clustering and Segmentation	4.2 Clustering Implementation																		
4. Clustering and Segmentation	4.3 Segmentation Technique Selection																		
	4.4 Segmentation Implementation																		
E. Dant Dua annuin a	5.1 Down-sampling																		
5. Post-Processing	5.2 Visualization Development																		
	6.1 Manuscript Preparation																		
o. Reporting and Documentation	6.2 Presentation Preparation																		

CADT

វិទ្យាស្ថានស្រាវជ្រាវ និង នវានុវត្ថន៍ឌីជីថល

Institute of Digital Research & Innovation

Project Activity Plan: Coastal Change Prediction and Shoreline Detection from

Images Recorded by Satellites and Drones by BUU

- Satellite Imagery: Covers multi-spectral analysis, SAR, and high-resolution sensors.
- Drone Imagery: high resolution capabilities, flexible deployment, and 3D mapping.

Expected output: one publication

Project Activity Plan: Processing of 3D Point Cloud Data and Orthogonal Images

RESEARCH PLAN

- Pre-processing of 3D point cloud data.
- Registration of the 3D point cloud on the image acquired from the same area.
- Determine differences in the coastal area over time.
- Applied object detection techniques to detect, e.g. green areas, houses intruding into the coastal area, etc.

• 2,000 USD Approx. to cover registration fees and

travel cost for APSIPA 2025 conference between 22-24 OCT 2025 in Singapore.

COLLABORATION

- Working closely with our NECTEC team and international partners.
- Acquiring a group of students.
- Co-supervise the student participating in this collaborative project.
- An expected international conference paper.

ĨVO

Project Activity Plan: OPTIMIZING WAVE LOGGER DESIGN FOR NEARSHORE

APPLICATION by RCO-BRIN

Expected output: optimized prototype and publication

- Wave is the main driver of coastal erosion
- Wave observation is expensive, lack of in situ data
- A Low-cost wave logger is on going development

Current Problems on the prototype (ver.1)

- Power issues (quick drain, <7days) → larger batteries, microcomputer system replacement, wake-sleep management
- Barnacles inside the sensors ightarrow sensor replacement
- water resistant issue ightarrow better material
- Performance test \rightarrow laboratory testing (2D Flume)
- Accuracy compared to commercial loggers → field testing in mangrove environment

	Month													
Activity	1	2	3	4	5	6	7	8	9	10	11	12		
Preparation	✓	✓												
System development		~	√	✓	✓	√								
Manufacturing					✓	✓	✓	✓	✓	✓				
Field testing								✓	✓	✓				
Paper writing		~	~	~	~	~	~	~	~	✓	✓	~		
Report											✓	✓		

Two-year plan 80000 USD

- Meeting + Forum: 30000 USD
 - Forum 2 times: 2000 USD
 - Onsite 4 times: Indonesia, Malaysia, Cambodia, Thailand: 28000 USD
- Conferences: 10 times (2-3 times for each country): 25,000 USD
 - Estimate cost: 2500 USD per a paper
- Equipment purchase: 12,000 USD
 - Low-cost drone + low-cost LiDAR sensor
- 3D point cloud data collection: 7000 USD
 - Testing site UTM: Desaru beach, Malaysia
- Remains: 6000 USD for spare for unplan activities
 - Testing site travel, Indonesia: North and South Java

First-year plan 40000 USD

- Meeting in Indonesia: 5,700 USD
- ASEAN IVO Forum in Cambodia: 1,000 USD
- Equipment purchase: 12,000 USD
 - Low-cost drone + low-cost LiDAR sensor
- 3D point cloud data collection: 7,000 USD
 - Testing site UTM: Desaru beach, Malaysia
- Publications:
 - ITENAS: 5,000 USD
 - Thailand: 5,000 USD
 - CADT: 2,500 USD
 - Test site travel: 1,800 USD

Scientific Contribution & Social Impact:

No:	Paper title:	Author names	Affiliation	Conference name:	The date of the conference	The venue of the conference
1	Utilizing a Classification Tree for Rocky Terrain Detection in 3D Point Clouds for Coastal Erosion Studies	Pasut Insung, Peerapat Supasri, Phattarakorn Limsuwat, Setthanan Thitathanapat, Akkharawoot Takhom, Kasorn Galajit, Surasak Boonkla, Jessada Karnjana	School of Engineering, Thammasat University, National Electronics and Computer Technology Center	Society of Instrument and Control Engineers (SICE)	30 Aug. 2024	Kochi, Japan

Academics society

- 3D point cloud datasets: Thailand and Malaysia sites
- Orthogonal images and 3D point cloud data processing techniques
- A rip current detection technique

Human society

- Knowledge for people
- Reducing losses

