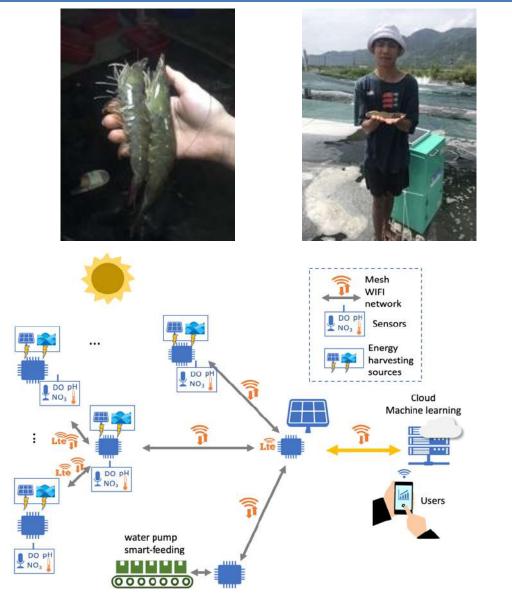


Project Title: Resilient AloT Green Energy System with Real-time Solution for Effective Aquaculture (REAS-SEA)

Background :


- Current *global climate change* together with a series of upstream dams placed by China on the Mekong River
- Adoption of shrimp farming is a potential and *natural* solution for traditional farmers

Targets

- **To support** Southeast Asia and Vietnam's fast growth aquaculture industry with a real-time and holistic control solution
- **To help** farmers optimize their feeding pattern for growth, controlling dissolved oxygen, chemical and antibiotic use, reducing water pollution and mortality rate and feed cost.

Speaker:

Tran Thi My Hanh, Nha Trang University, Vietnam (Project leader)

Project Title: Resilient AloT Green Energy System with Real-time Solution for Effective Aquaculture (REAS-SEA)

Project Members :

Party	Name	Division			
PTIT, Vietnam	*Vo Nguyen Quoc Bao	Faculty of Telecommunications			
UTokyo, Japan	*Nguyen Ngoc Mai Khanh	Systems Design Lab (d.lab), Japan			
SOITEC, Singapore	*Nguyen Bich Yen	Innovation			
NTU, Vietnam	*Tran Thi My Hanh	Department of Research Affairs			
	Nguyen Tan Sy	Institute of Aquaculture			
	Ngo Van Manh	Institute of Aquaculture			
	Sayfon BOUTCHANTHALATH	Director General, Institute of Information and Communication Technology			
	*Padapxay SAYAKHOT	Deputy Director General, Institute of Information and Communication Technology			
IICT, Laos	Aromhack SAYSANASONGKHAM	Deputy Director, Planning, Cooperation and Finance Division			
	Phonexay NAMSAVANH	Technical Officer, Institute of Information and Communication Technology			
	Phuangkeo KEOPHENGTHONG	Technical Officer, Institute of Information and Communication Technology			

MMU, *Foo Yee Loo Faculty of E		Faculty of Engineering	
BLU,	*Luu Ngo Duc	Faculty of Information Technology	
Vietnam	Nguyen Thi Hong Van	Faculty of Aquaculture	
LEO, Japan	*SATOSHI YOSHINO	R&D Division	
CADT,	* Sopheakmanith Chhoun	Research & Innovation Center	
Cambodia	Chin Vannak	Research & Innovation Center	
	Kann Bonpagna	Research & Innovation Center	

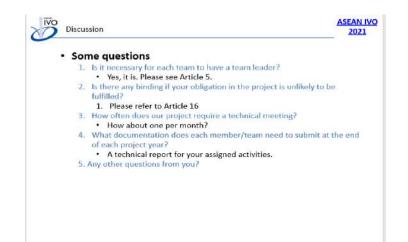
Project Duration :

- First year: April 1st, 2021 March 31st, 2022
- Second year: April 1st, 2022 Mar 31st, 2023
- Third year: April 1st, 2023 Mar 31st, 2024

Project Budget:

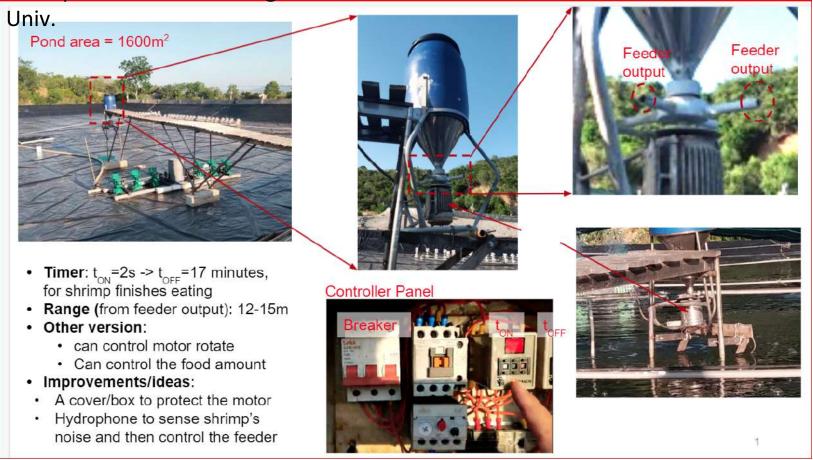
80,000 USD

Project Activities #1: REAS-SEA Kick-Off Meeting


Time: June 15, 2021 Place: online by Google meet https://meet.google.com/rza-pfcy-qwr Attendance: All members

Agenda:

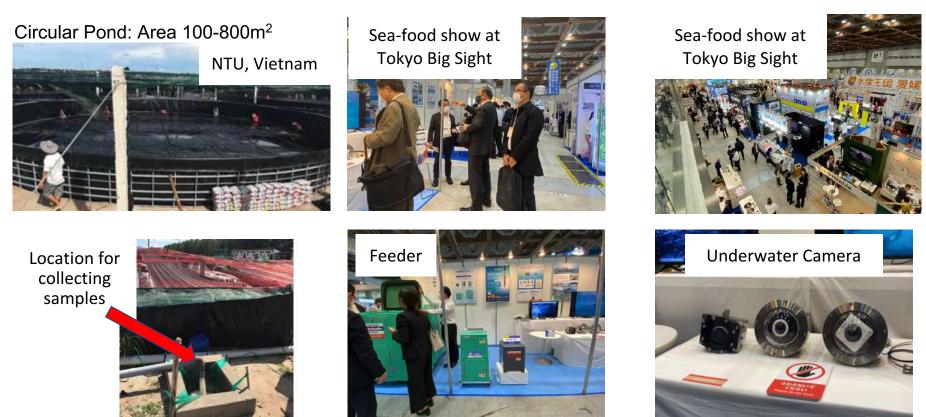
- Short introduction of members (1 minute for each with your slide): ~15 minutes
- Overview and plan: 10 minutes
- Other procedures and information
- CRDA
- Shared drive & communication tool/channel: 10 minutes
- Discussion: 10 minutes
- Group photos in Google meet and closing: 5 minutes


2

З

Discussion on shrimp feeder with sensors

Shrimp feeder in Nha-Trang


ASEAN IVO Final Report 2024

Δ

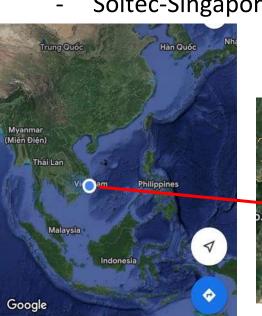
Project Activities #3:

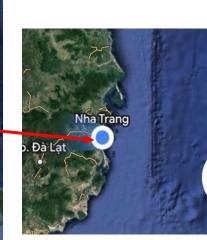
- Propose and host a Special Session entitled "Advanced Communication and Signal Processing Technologies for IoT-based Smart Farming" at IEEE Nafosted NICS conference
- Visit seafood show in Tokyo, Japan
- Design two **experiments** (indoor & outdoor) for recording **shrimp noise** in Nha-Trang Univ.

NICS 2021

Hanoi, Vietnam, Dec 21-22, 2021

4


5



Project Activities #4: Work with Rector of Nha Trang University and Reseacher Team

Time: Apr. 20, 2022 Place: NhaTrang University, Khanh Hoa Province, Vietnam Members:

- LEO Electronics, Japan
- NhaTrang University, _ Vietnam
- UTokyo, Japan
- Soitec-Singapore

November 7, 2024 at Phnom Penh

ASEAN IVO Final Report 2024

Time: Apr. 18, 2022 Place: Hai Duong, Vietnam

Members:

- LEO Electronics, Japan
- NhaTrang
 University,
 Vietnam
- UTokyo, Japan

Project Activities #6: Visit Chinh-My Shrimp Farm, Khanh-Hoa Province, Vietnam

Time: Apr. 2022 Place: Khanh-Hoa, Vietnam Members:

- NhaTrang University,
 Vietnam
- Soitec, Singapore
- LEO Electronics, Japan
- UTokyo, Japan

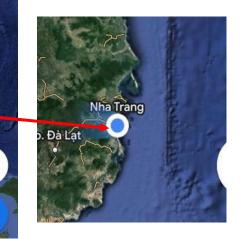
November 7, 2024 at Phnom Penh

Time: Apr. 21 2022 Place: Cam Ranh, Vietnam Members:

- NhaTrang University,
 Vietnam
- Soitec, Singapore
- LEO Electronics, Japan
- UTokyo, Japan

Time: September 14, 15. 2023 **Place**: Nha Trang University, Khanh Hoa Province, Vietnam

Members:


- NTU, Vietnam
- Soitec-Singapore
- IICT, Laos
- CADT, Cambodia

Philippines

- UTokyo, Japan (online)
- MMU, Malaysia (online)

November 7, 2024 at Phnom Penh

Indonesia

Myanmar (Miến Điện)

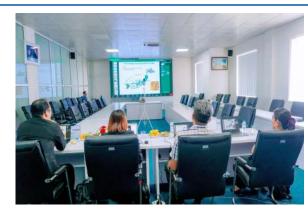
Google

Thai Lan

Malaysia

Time: Sept. 15 2023 Place: Cam Ranh, Vietnam Members:

- NTU, Vietnam
- Soitec-Singapore
- IICT, Laos
- CADT, Cambodia



Project Activities #10: Face to face meeting at Bac Lieu University, Vietnam

Time: March 27&28. 2024 Place: Bac Lieu University, , Vietnam Members:

- NTU, Vietnam
- BLU, Vietnam
- UTokyo, Japan
- Soitec-Singapore (online)
- IICT, Laos (online)
- CADT, Cambodia (online)
- MMU, Malaysia (online)

November 7, 2024 at Phnom Penh

ASEAN IVO Final Report 2024

Content 1: Experiment indoor

1.1. Recording sound of shrimp at different nutritional status (hungry state, average eating state, satiation stage) in anechoic chamber and normal tanks (8m)

1.2. Measure environmental parameters (pH; DO, temperature; Total Ammonia) use automatic sensor.

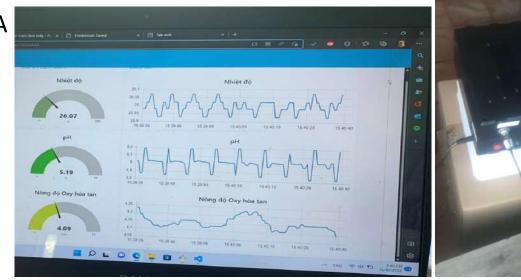
Content 2: Experiment outdoor (Field trip)

- 2.1 Shrimp sound Recording in pond.
- 2.2 Test environment parameters in shrimp pond (pH; temperature; DO; TAN) by automatic sensor.
- 2.3 Trail feeder machine.
- 2.4 Use underwater Camera to check shrimp feeding.

Result : Measure environment parameters in tanks

Second step:

Time: Apr to June -2023


- Total tanks: 03 tanks

Volume 8 m³/tank.

- **Density**: 200 con/m²
- Time for trail: 30 60 days.
- Environment parameters : DO; pH; ORP
- Measure Device: ASIA

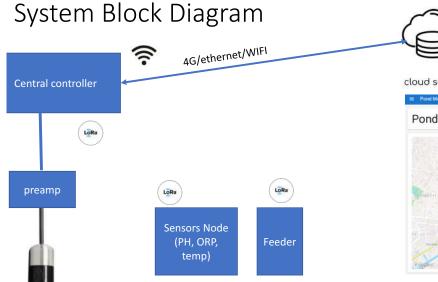
Result : Environment outdoor

Measure Device: ASIA IVO. Environment parameters: DO; pH; temperature; ORP

Pond Systerm:

2 ponds; Size 200m/pond.

Time:


From June to Oct – 2023.

cloud server Pond management

Phase 1: 4/2023

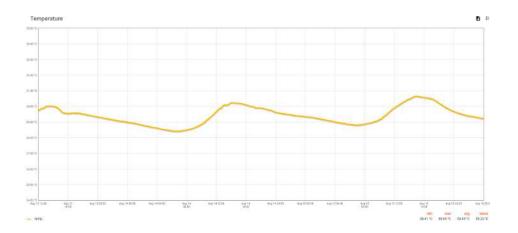
Focus on indoor monitoringMonitored PH, ORP and temperature

- Connection is unstable after 1 week → change the communication module
- PH, ORP and temperature value was stable in door

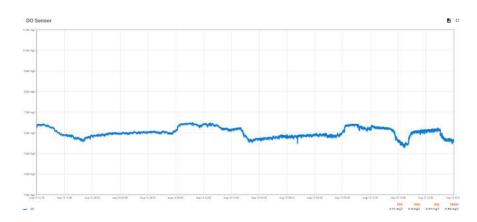
Phase 2: 7/2023

- Outdoor Monitoring
- Monitored PH, DO and temperature
- Record shrimp sound in door

Outdoor Water Quality Monitoring System

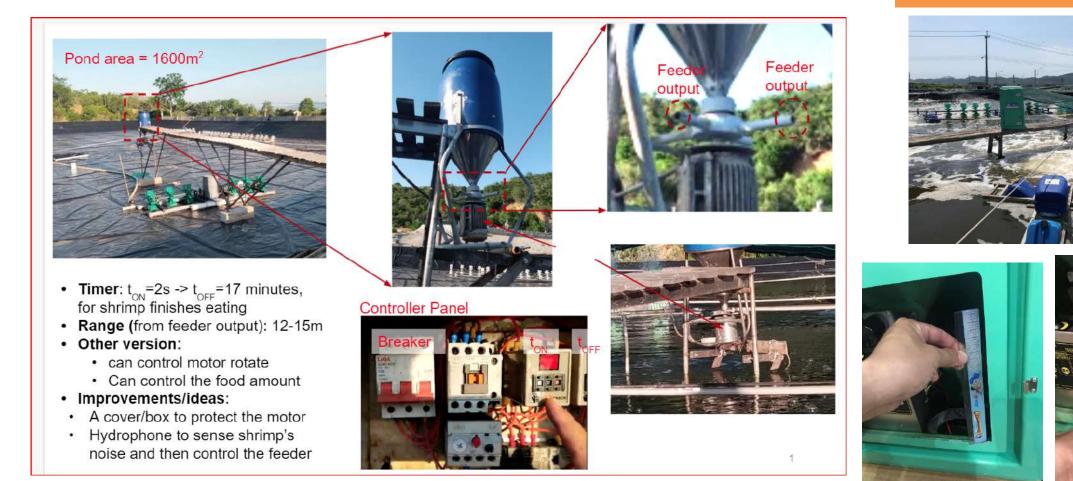

E D	Updating 11/9/2023 10:13-59	Tinseatamp 🖕 🚯
		2123-09-08.12:42:49 Last Value
	pH Sensor	ß
6 :	128	
	1 10 10 10 10 10 10 10 10 10 10 10 10 10	
128 N	10	
10110 AV 48 15 41 AV	2021 2354 2258	2240 2254 2550 1 mm ruo arg ta
B D	- pi	6.92 7.33 7.14 7
24900	DO Sensor	8
	70.00 mg/d	
6.0	870 mil	

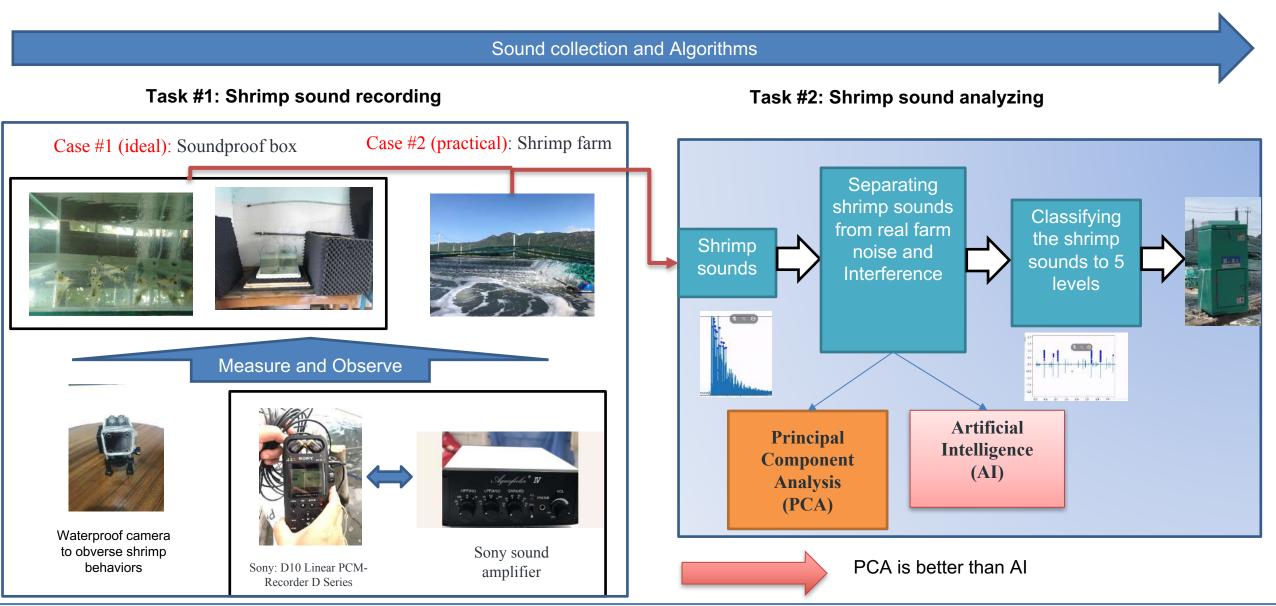
Sensors and measurement node


DO	RK500-04
РН	HAOSHI H-101
Temp	PT100

Water temperature chart

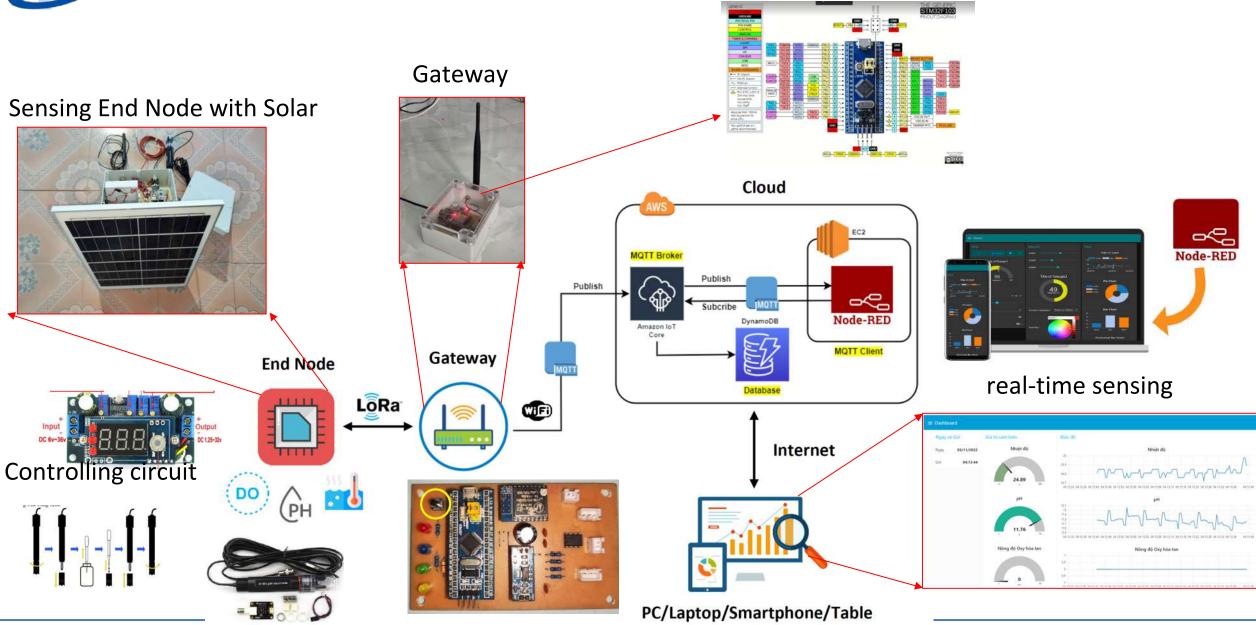
DO chart




Project results: **Design and testing shrimp feeder**

The conventional Shrimp feeder in Nha-Trang Univ.

The proposed shrimp feeder: filed test with shrimp foods



November 7, 2024 at Phnom Penh

ASEAN IVO Final Report 2024

R&D results: Sensing Node Design and Implementation

November 7, 2024 at Phnom Penh

IVO

ASEAN IVO Final Report 2024

Shrimp eating sound recording

- Utilize a hydrophone to record under water sound
- Design a preamp device to amplify the hydrophone output
- Use smartphone to record the sound
- Upload result to cloud storage for later analyzing

Request for sound processing

At least 1000 files:

- Indoor shrimp only with cleaner quality
- 2. Specific recordings of **natural shrimp behavior** vs **eating**
- 3. Recordings of varying **amount** of shrimp.
- 4. Different time domain of eating period
 - 5. 10+ files of outdoor noises: single and mixed

Getty Images/iStockphoto

Scientific Contribution: Presentations at International Conferences

No :	Paper title:	Author names	Affiliation	Conference name:	The date of the conference	The venue of the conference
1	Application of sensing and electronic systems for automatic management of environmental factors and diseases in intensive shrimp farming	Nguyen Tan Sy ¹ , Nguyen Ngoc Mai Khanh ² , Nguyen Thi Bich Yen ³ , Nguyen Dinh Huy ¹ , Bui Quoc Bao ⁴ , Hoang Nguyen ⁵ , Nguyen Thi Kim Cuc ¹ , Tran Thi My Hanh ¹ .	 ¹Nha Trang University, Vietnam ²The University of Tokyo, Japan ³Soitec, France ⁴Ho Chi Minh City University of Technology, Vietnam ⁵MnM System Designs LLC, United States 	Aquaculture Vietnam 2023	11- 13/10/202 3	Ho chi Minh city, Vietnam
2	Application of sensing and electronic systems for automatic management of environmental factors and diseases in intensive shrimp farming	Nguyen Tan Sy ¹ , Nguyen Ngoc Mai Khanh ² , Nguyen Thi Bich Yen ³ , Nguyen Dinh Huy ¹ , Bui Quoc Bao ⁴ , Hoang Nguyen ⁵ , Nguyen Thi Kim Cuc ¹ , Tran Thi My Hanh ¹ .	 ¹Nha Trang University, Vietnam ²The University of Tokyo, Japan ³Soitec, France ⁴Ho Chi Minh City University of Technology, Vietnam ⁵MnM System Designs LLC, United States 	Current status and solutions for sustainable development of Ca Mau shrimp industry	12/2023	Ca Mau Province, Vietnam
3	Integrated Monitoring System for Shrimp Farming: Combining Acoustic and Water Quality Analysis	Bao Bui ¹ , Khanh Nguyen ² , Sy Nguyen ³ , Yen Nguyen ⁴ , Hoang Nguyen ⁵ , Huy Nguyen ³ , Le Nguyen ³ , Binh Nguyen ¹ , Hung Nguyen ¹ , Hieu Cao ¹ , Sang Nguyen ¹ and Hanh Tran ^{6*}	¹ Department of Electronics Ho Chi Minh City University Of Technology (HCMUT), Vietnam ² Systems Design Lab (d.lab), The University of Tokyo, Japan ³ Institue of Aquaculture, Nha Trang University, Vietnam ⁴ Soitec, France ⁵ MnM System Design LLC, United States ⁶ Department of Science and Technology, Nha Trang University, Vietnam	EAI ICRESM 2023	16- 17/12/202 3	Ho chi Minh city, Vietnam
4	Some results of "Resilient AloT Green Energy System with Real-time Solution for Effective Aquaculture "	Tran Thi My Hanh ¹ , Nguyen Tan Sy ¹ , Nguyen Ngoc Mai Khanh ² , Nguyen Thi Bich Yen ³ , Nguyen Dinh Huy ¹ , Bui Quoc Bao ⁴ , Hoang Nguyen ⁵ , Nguyen	 ¹Nha Trang University, Vietnam ²The University of Tokyo, Japan ³Soitec, France ⁴Ho Chi Minh City University of Technology, Vietnam ⁵MnM System Designs LLC, United States 	Towards green technology for agriculture, forestry and	15- 17/8/2024	Can Tho City, Vietnam

EAI/Springer Innovations in Communication and Computing

Nguyen Thanh Hai Nguyen Xuan Huy Khalil Amine Tran Dai Lam *Editors*

EAI International Conference on Renewable Energy and Sustainable Manufacturing

Integrated Monitoring System for Shrimp Farming: Combining Acoustic and Water Quality Analysis

Check for updates

Bao Bui, Khanh Nguyen, Sy Nguyen, Yen Nguyen, Hoang Nguyen, Huy Nguyen, Le Nguyen, Binh Tran, Hung Nguyen, Hieu Cao, Sang Nguyen, and Hanh Tran

Abstract The aquaculture industry is a cornerstone of Vietnam's economy, with the cultivation of white-leg shrimp (*Penaeus vannamei*) as a significant contributor to its growth. Efficient feeding practices are paramount in optimizing shrimp growth and reducing waste, which accounts for a substantial portion of the production cost. The paper presents an integrated monitoring system that collects acoustic sound of shrimp feeding behavior and water quality characteristics. Acoustic data, recorded manually and streamed to the cloud, provides insights into shrimp feeding patterns, while continuous monitoring of parameters like pH, dissolved oxygen (DO), temperature, and oxidation-reduction potential (ORP) offers a comprehensive view of water conditions. The system was deployed at a commercial shrimp pond at Cam Ranh, Nha Trang to collect data over a shrimp crop cycle.

The results reveal that acoustic analysis can accurately detect distinct feeding behaviors, suggesting opportunities for precision feeding strategies. Additionally, water quality parameters, especially DO and temperature, follow consistent daily patterns that correspond to solar activity that can be used to optimally control oxygen aerator. It paves the way for further research into precision feeding using

B. Bui · B. Tran · H. Nguyen · H. Cao · S. Nguyen

Department of Electronics Engineering, Faculty of Electrical-Electronics Engineering, Ho Chi Minh City University of Technology (HCMUT), VNU-HCM, Ho Chi Minh City, Vietnam

K. Nguyen Systems Design Lab (d.lab), The University of Tokyo, Tokyo, Japan

S. Nguyen · H. Nguyen · L. Nguyen Institute of Aquaculture, Nha Trang University, Nha Trang, Vietnam

Y. Nguyen MnM System Design LLC, Palmdale, CA, USA

H. Nguyen Soitec, Bernin, France

H. Tran (ﷺ) Department of Science and Technology, Nha Trang University, Nha Trang, Vietnam e-mail: mvhanhtt@ntu.edu.vn

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 N. T. Hai et al. (eds.), *EAI International Conference on Renewable Energy and Sustainable Manufacturing*, EAI/Springer Innovations in Communication and Computing, https://doi.org/10.1007/978-3-031-60154-5_39

TỜ KHAI ĐĂNG KÝ SÁNG CHÉ	CUC SOANDHANDONUE INTELLECTURE PROPERTY OFFICE OF VIET NAM	
Kinh gửi: Cục Sở hữu trí tuệ 386 Nguyễn Trãi, Hà Nội	NGÀY DATE 20-12-2021	
Chủ đơn dưới đây yêu cầu Cục Sở hữu trí tuệ xem xét đơn và cấp": [] Bằng độc quyền sáng chế [x] Bằng độc quyền giải pháp hữu ích	s(2-2021-00561	
a NGUỎN GÓC ĐƠN		
 []Đơn này được nộp trên cơ sở đơn PCT số: Công bố quốc tế số: Ngày: Ngày chọn Việt Nam (nếu [] Có sửa đổi, bổ sung tại thời điểm vào pha quốc gia (thuyết n 		
Don tách: Đơn này được tách ra từ đơn số:	Ngày nộp đơn:	
Don chuyển đối: Đơn này được chuyển đối từ đơn số:	Ngày nộp đơn:	
① TÊN SÁNG CHÉ Hệ thống quan trắc môi trường nước ao nuôi tôm và cho tôm ăn tự động theo cảm biến âm thanh bắt mồi của tôm	PHÂN LOẠI SẢNG CHẾ QUỐC TẾ (IPC) (chi tiết đến chỉ số hạng thứ ba) A01K 61/59; A01K 63/04	

(patent)

615

Phu luc A - Mẫu số: 01-SC

Societal Impact:

- **Provide** early warning to aquaculturists of detrimental changes in critical environmental parameters affecting aquatic animals, mitigating risks
- **Minimize** mortality loss, reducing feed cost, and promoting sustainable and profitable adoption for aquaculture farming for areas along the Mekong river including Lao, Cambodia, and Vietnam including 3M small shrimp farmers
- **Support** the training of students, master's students and farmers:
 - students (11 bachelors, 5 engineers) in NTU and 4 bachelors students in PTIT, 4 bachelors students in HCMUT
 - two master's students and farmers
- **Reduce** environmental contamination by reducing chemical and antibiotics usage in both aquaculture and agricultural farming
- **Help** students have a good opportunity to have access to new technology, and enhance their practical ability as well as creativity in the process of conducting experiments to apply this technology in shrimp farming.

November 7, 2024 at Phnom Penh

No.	Main activities	Members	Status/Remarks
1	System and algorithm design	PTIT, Soitec, UTokyo	Done
2	Sensing node design and testing	PTIT & IICT	Done
3	Controllers design and testing	UTokyo	Done
4	Gateway design and testing	UTokyo & IICT	Done
5	Cloud and database	MMU & BLU	Done
6	System fabrication and verification	LEO	Done
7	Field test	NTU, BLU	Done
8	System optimization	All	Done

✓ Publication

- ✓ System optimization
- Research and Development and Technology
- ✓ Finding Funds to Develop the System

Thanks you

