

Background: ASIAN countries have a large share of agriculture in their economies, so ICT for food is the totally right approach as part of the IVO project's goals. The overall aim of this project is to develop an IoT-based framework with intelligent computing and implementation for an indoor smart farm.

Targets: This project aims to build an agricultural IoT framework based on edge computing, with a focus on solving existing challenges for agricultural IoT systems for both academic and practical aspects at the network edge.

1. New intelligent edge computing solutions for data collection and local response control in smart farming.

2. A security framework based on authentication, data preservation, and encryption, suitable for smart IoT applications such as smart farming.

3. An automatic agricultural system for indoor smart farms with the involvement of robot arms and drones.

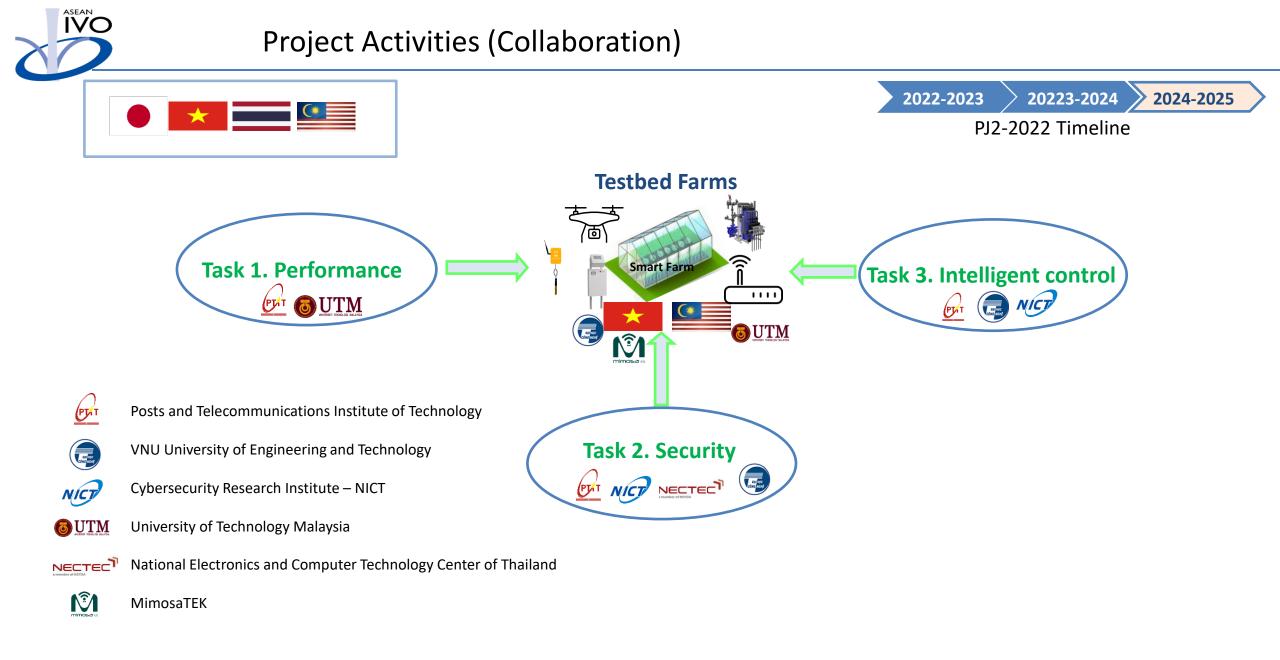
Speaker: Dr. Hoang Trong Minh

Project Members:

PTIT, VIETNAM: Dr. Hoang Trong Minh (project leader), Assoc. Prof. Hoang Dang Hai, Dr. Pham Anh Thu, MSc. Nguyen Thanh Tra.

VNU, VIETNAM: Assoc. Prof. Nguyen Linh Trung, Assoc. Prof. Nguyen Viet Ha, Dr. Dinh Tran Hiep, Dr. Tran Thi

Thuy Quynh, Dr. Pham Minh Trien, Dr. Nguyen Le Khanh, Dr. Chu Duc Ha, Msc. Quach Cong Hoang, Dr. Ngo Khac Hoang.

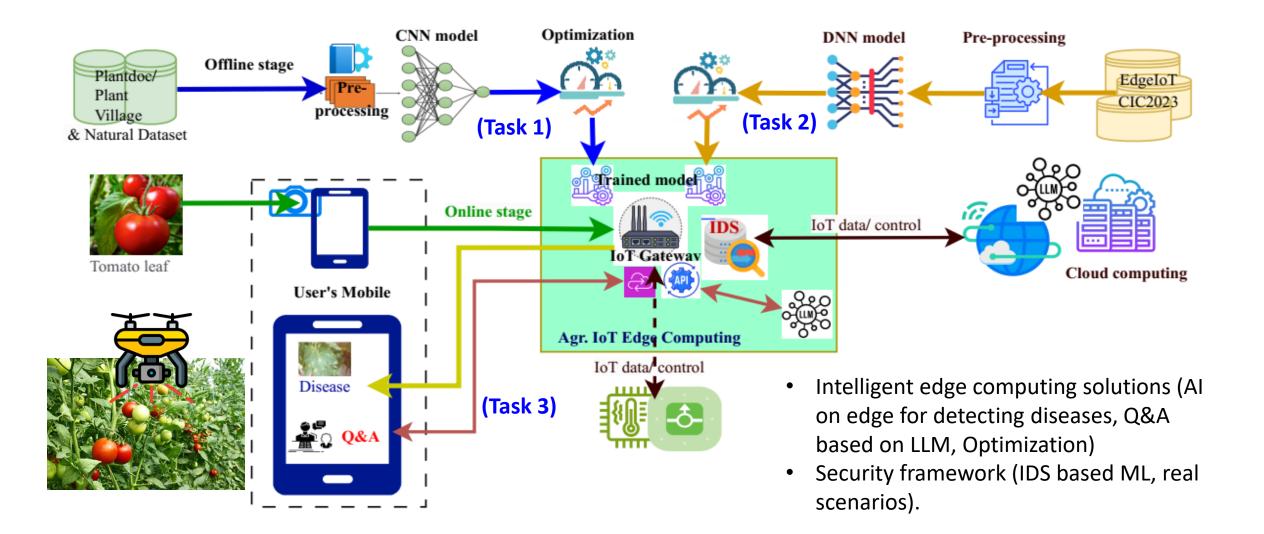

UTM, MALAYSIA: Prof. Norliza Mohd Noor, Dr. Norulhusna Ahmad, Dr. Hazilah Mad Kaidi.

NECTEC, THAILAND: Dr. Chalee Vorakulpipat, Dr. Montida Pattaranantakul, Dr. Soontorn Sirapaisan.

NICT, JAPAN: Dr. Takeshi Takahashi.

Project Duration: 04/2022-03/2024

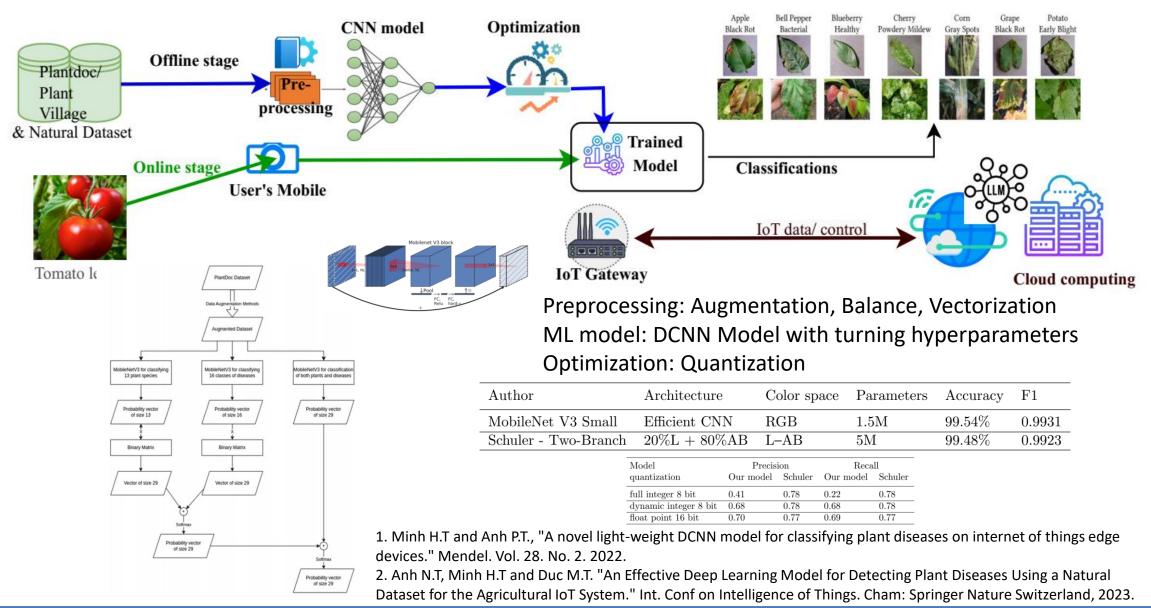
Project Budget: 82.000 USD



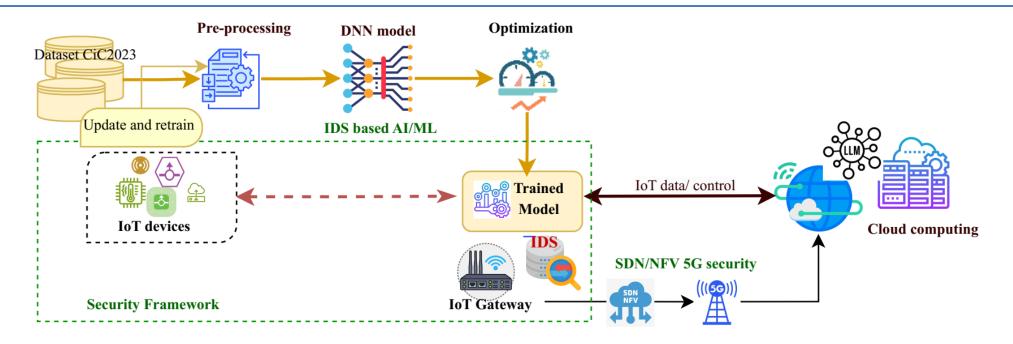
Project Activities (Task assignment)

Work package No1		Work packag	e No2	Work package No3		
Design an IoT monitoring system with drones and edge computing capabilities	Design an IoT Develop and monitoring optimize edge system with computing drones and edge solutions to the computing system		Develop the security solutions	Develop the fertilizing and watering systems	Develop the pollinating system and the plant disease predictor.	

Work Package	Tasks	Year 1	Year 2 Responsibility					
				PTIT	VNU-UET	UTM	NECTEC	NICI
WP1	Task 1.1	х		2	1			
	Task 1.2		x	1	2	3	3	
WP2	Task 2.1	x		1	2	3	2	2
	Task 2.2		x	1	2	3	2	2
WP3	Task 3.1	x		3	2	1		
	Task 3.2		x	3	1	2		
(1) = responsible (2) = supportive (3) = exploited								



2024-2025


Project Activities (Scientist contributions)

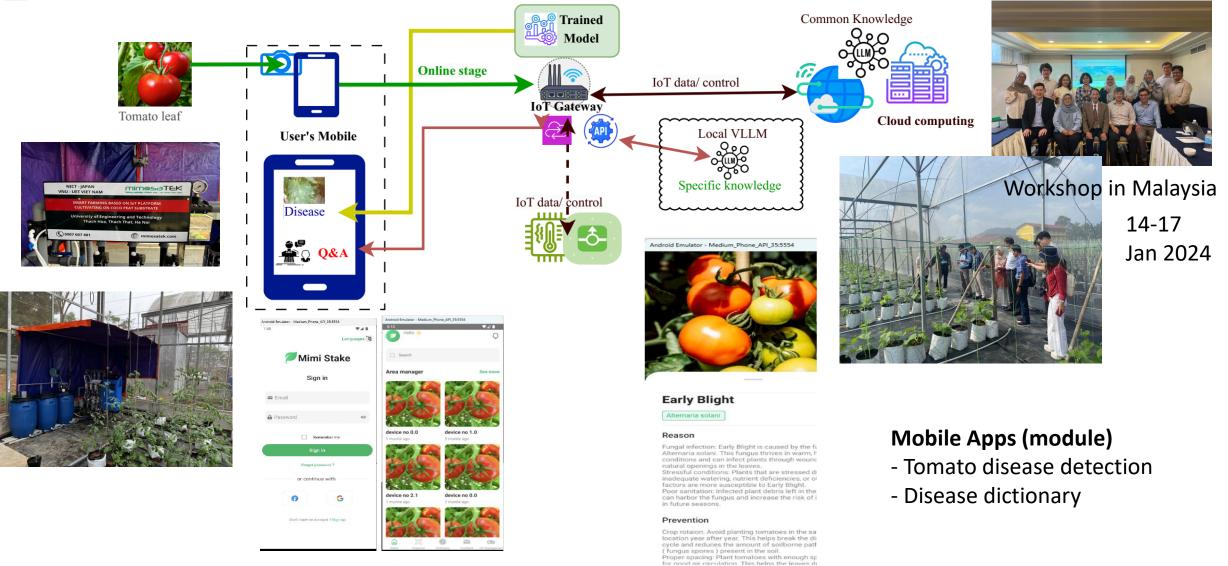
ASEAN IVO Project Review 2023

Project Activities (Scientist contributions)

Security framework for agricultural IoT on Edge computing: IoT devices/networks security; SDN/NFV 5G connected networks; IDS based on AI/MLs.

IDS based on Edge devices: Reduce dataset for retraining, hyperparameters, dimensionality and features.

Edge computing in collaboration: Expert systems/clustering problems


^{3.} Hoang, Trong-Minh, et al. "A Novel DNN-Based IDS System Combined with an LR-GA Method to Detect Attacks." Proceedings of SAI Intelligent Systems Conference. Cham: Springer Nature Switzerland, 2023. SCOPUS Indexed. (Financially supported by NICT)

^{4.} Vorakulpipat, Chalee, et al. "Safeguarding Devices and Edge Computing: A Responsive Anti-Scam Approach." 2023 IEEE Intl Conf on DASC/PiCom/CBDCom/CyberSciTech. IEEE, 2023. IE indexed. (Financially supported by NICT)

^{5.} Kosuke, Tanizaki; Keisuke, Furumoto; Kohei, Masumi; Trong-Minh, Hoang; Yoshiaki, Shiraishi; Takeshi, Takahashi. "Investigating Agricultural IoT devices and services from cybersecurity perspectives", ITU Kaleidoscope, 21-23 October 2024, New Delhi, India. IE indexed.

Project Activities (Technological development)

ASEAN IVO Project Review 2023

 \ge

1. Scientific and technological

- Figured out the main challenges of 6 packets of the project's aim.
- Security issues: IDS based ML, SDN/NFV security, IoT devices.
- Disease detection: Image processing, lightweight ML/AI models.
- 2. Application (or system) development
 - Deployed main components/devices of the greenhouse and the agricultural IoT system
 - Collected real IoT data for caring plants
 - 3. Experiments including field testing

Develop mobile Apps (ML module for disease detection and disease dictionary based on VLLM)

Presentations at International Conferences:

No:	Paper title:	Author names	Affiliation	Conference name:	The date of the conference	The venue of the conference
1	A lightweight DNN-based ids for detecting IoT cyberattacks in edge computing	Minh H.T, Anh T.P, Viet V.D, Nhan NV, Hung N.M.	PTIT	Advanced Technologies for Communications (ATC)	20-22 October 2022	Hanoi, Vietnam
1	Agricultural IoT based on Edge computing	Chalee Vorakulpipat, Ekkachan Rattanalerdnusorn, Sasakorn Pichetjamroen	NECTEC	(ICCAIS 2022)	21-24 November 2022	Hanoi, Vietnam
3	A novel DNN-based IDS System Combined with an LR-GA Method to Detect Attacks	Trong-MinhHoang,Thanh-TraNguyen,DucNguyen,DucNguyen,Nguyen	PTIT	The Intelligent Systems Conference (IntelliSys) 2023	7-8 September 2023	Amsterdam, The Netherlands

Presentations at International Conferences:

No:	Paper title: Author names		Affiliation	Conference name:	The date of the conference	The venue of the conference
4	Safeguarding Devices and Edge Computing: A Responsive Anti-Scam Approach	Chalee Vorakulpipat, Montida Pattaranantakul, Soontorn Sirapaisan, Soontaree Songserm	NECTEC	CyberSciTech 2023	14-17 November 2023	Abu Dhabi, UAE
5	Investigating Agricultural IoT devices and services from cybersecurity perspectives	Kosuke, Tanizaki; Keisuke, Furumoto; Kohei, Masumi; Trong-Minh, Hoang; Yoshiaki, Shiraishi; Takeshi, Takahashi	NICT-PTIT	TU Kaleidoscope	21-23 October 2024	New Delhi, India
6	Structural Analysis of Asian and African Rice Panicles via Transfer Learning	Cong H.L, Lam T.N, Trung K.P, Le K.N, Tran H.D, Stefan J., Helene A., Pierre D., Nguyen L.T, and Hoang T.M	UET - PTIT	APSIPA ASC	December 3 - 6, 2024	Macau, China

- The project will contribute to the technical proficiency of research in IoT monitoring for smart agriculture in Vietnam, edge computing in Malaysia and Thailand, and security in Vietnam and Malaysia.
- The collected dataset can be used among our members.
- The disease detection

- 1. Scientific and technological
 - Security framework development
- 2. Application (or system) development
 - Tomato disease detection over Drone image captures
 - 3. Experiments including field testing
- Deploy Apps on the farmer's mobile

- 1. Scientific and technological
 - Security framework development
- 2. Application (or system) development
 - Deploy optimized ML model into the IoT gateway.
 - 3. Experiments, including field testing

Integrated Apps into the Mimosatek system

- 1. Finish almost tasks in the project
- 2. Transfer the proposed models into the real farms.
- 3. Organize the workshop and final meeting