

Background :

Tracking of public bus location requires a GPS device to be installed, and many bus operators in developing countries do not have such a solution in place to provide an accurate estimated time of arrival (ETA)

This project proposes an innovative IoT solution to track the location of buses to collect transportation data without requiring the deployment of GPS devices. It uses Bluetooth Low Energy (BLE) proximity beacon to track the journey of a bus by deploying an *Estimote* proximity beacon on the bus

Targets:

Project Members :

Members	Affiliation	Members	Affiliation
Sharul Kamal bin Abdul Rahim (Project Leader), Abu Sahmah bin Md Supa'at, Jafri Bin Din, Mohd Adib bin Sarijari, Omar bin Abdul Aziz, Olakunle Elijah, Siti Fatimah Bte Ausordin, Muhammad Zairil bin Muhammad Nor	UTM, Malaysia	Achmad Basuki, Adhitya Bhawiyuga, Eko Setiawan, Agung Setia Budi	UB, Indonesia
Sye Loong Keoh, Chee Kiat Seow, Qi Cao	UGS, Singapore	Yung-Wey Chong, Mohd Najwadi Yusoff, Noor Farizah Binti	USM, Malaysia
Somnuk Phon-Amnuaisuk, Md Saiful bin Haji Omar, Soon-	UTB, Brunei	lbrahim	
Jiann Tan, Haji Idham Maswadi bin Haji Mashud		Kok Chin Khor, Mau Luen Tham	UTAR, Malaysia

اونيۇرسيتى تيكنولوڭي بروني UNIVERSITI TEKNOLOGI BRUNEI

Project Duration :

June 2022 – May 2025 (2 years + 1 year Extension)

Project Budget:

US\$80,000

- 1. Batteries for the sensing system have been deployed for over 1+ years, and many of them had degraded.
- 2. Several power outage have caused some batteries to be drained without re-charging. The team had to travel to the sites to replace the batteries.
- 3. An alternative approach to replace the battery with a 40,000 mAh powerbank is being tested in Johor.

Johor Deployment

Source: ThingsBoard

Project Activities: Improving the Reliability of the BLE Sensing System (UGS / UTM / UB)

- Malang's school bus system lacks real-time monitoring.
- 2. The map shows a typical bus route.
- 3. Inside metal box, we put Rpi 4 for detection and android phone for internet connection.
- 4. We use CCTV pole as source of electricity.
- 5. We put BLE Beacon Inside bus

- Yellow Star = RSU (Installed On CCTV pole
- Red Dot = School Bus Stop & Blue line = Bus Route

- UB hosted a site-visit meeting on 25-26 Jan 2024 to inspect the installation of RPi for the school bus service location tracking system.
- 2. We discussed the challenges faced, and the reliability of Internet connectivity.
- 3. The UB team also demonstrated the range/distance of BLE detection on site.

- 1. Developed bus arrival time dashboard's Interface for bus stop and bus terminal.
- 2. Extended collaboration with myBAS Johor to track two additional bus services: T30 and T31.

1065	Kulai Hos	pital
Bus Services	Destination	Arrival Times
P411	Kulai Bus Terminal	10 mins 🛐 15:27 😭
T30	Kulai Bus Terminal	21 mins 🔲 40 mins 😭
	🏂 涉 🛒 🐻	.

10 s	12 Pekan Sen unday, 8th September 2024, 12:47:43 PM	
Bus Services	Destination	Arrival Times
P411	Larkin Sentral Terminal	13:48 醇 16:18 聲
T30	JB Sentral Bus Terminal	10 mins (••) 29 mins 😭
	💩 涉 🚊 🐻 💆	

Project Activities: Deployment of Prediction Model in Johor (UGS / UTM)

- Training journey prediction models based on GPS dataset (obtained from PAJ) and BLE dataset (collected from this project) using ANN, LightGBM, XGBoost.
- 2. Integrate the LightGBM model with the current BLE bus tracking system deployed on Heroku using PHP. The model is deployed using Python and Flask for two bus services P411 and P211.
- 3. Once the location of the bus is updated, the PHP will query the model to predict the ETA for the remaining bus stops.

IVO

Project Activities: ETA Concept Solution Using Data Analytics (UTB/UTAR)

bus_id	route_id	place1	timestamp1_in	timestamp1_out	place2	timestamp2_in	timestamp2_out	place3	timestamp3_in	timestamp3_out	place4	timestamp4_in	timestamp4_out	place5	timestamp5_in	timestamp5_out	place6	timestamp6_in	timestamp6_out	place7	timestamp7_in	timestamp7_out	place8	timestamp8_in	timestamp8_out	place9	timestamp9_in	timestamp9_out
																	6	06:02:49	06:02:49									
31	8													5	06:03:40	06:03:40												
31	8										4	06:04:28	06:04:28															
31	8	1	06:10:39	06:10:39	2	06:14:19	06:14:19	3	06:15:38	06:15:40	4	06:22:10	06:22:11				6	06:24:49	06:24:49	7	06:30:41	06:30:41	8	06:32:17	06:32:17	9	06:34:39	06:35:1
31	8	1	07:18:39	08:10:38	2	08:15:37	08:15:40	3	08:17:08	08:17:11	4	08:23:45	08:23:45	5	08:26:02	08:26:02	6	08:27:05	08:27:05	7	08:34:30	08:34:30	8	08:36:22	08:36:40	9	08:38:37	08:39:1
31	8	1	09:41:39	10:11:09	2	10:17:16	10:17:16	3	10:19:09	10:19:11	4	10:26:30	10:27:14	5	10:28:40	10:28:40	6	10:29:47	10:29:47	7	10:38:54	10:39:11	8	10:41:42	10:41:42	9	10:44:26	10:44:2
31	8	1	12:10:40	12:10:40	2	12:17:57	12:17:57	3	12:19:33	12:19:33	4	12:27:06	12:27:06	5	12:29:19	12:29:19	6	12:30:40	12:30:40	7	12:41:36	12:41:40	8	12:43:11	12:43:11	9	12:46:49	12:46:5
31	8	1	14:10:41	14:10:41	2	14:17:17	14:17:17	3	14:19:12	14:19:12	4	14:26:49	14:26:49				6	14:29:00	14:29:00	7	14:41:26	14:41:40	8	14:43:39	14:43:41	9	14:47:34	14:47:3
31	8	1	16:02:11	16:11:41	2	16:17:56	16:17:56	3	16:19:22	16:19:22	4	16:26:59	16:27:36	5	16:29:08	16:29:10	6	16:30:13	16:30:13	7	16:40:22	16:40:40	8	16:42:37	16:42:39	9	16:46:47	16:46:5
31	8	1	18:19:42	18:19:42	2	18:27:06	18:27:06	3	18:28:34	18:28:41	4	18:35:42	18:35:42				6	18:37:53	18:37:53	7	18:48:47	18:48:47	8	18:50:53	18:50:53			
31	8	1	20:14:13	20:14:13				3	20:21:58	20:22:12																		
31	8				2	20:22:45	20:22:46				4	20:29:19	20:29:19	5	20:30:45	20:30:45	6	20:31:53	20:31:53									
31	8				2	20:33:08	20:33:12		-											7	20:39:27	20:39:27						
31	8	1	21:57:45	22:15:17	2	22:21:30	22:21:30	3	22:22:43	22:22:43	4	22:30:31	22:30:40	5	22:32:07	22:32:07	6	22:33:17	22:33:17	7	22:43:18	22:43:18	8	22:46:49	22:46:49	9	22:50:26	22:50:2
31	8	1	23:39:47	23:42:45							4	23:52:31	23:52:31				6	23:54:32	23:54:32									

- A. Data collection
- B. Data cleaning and conversion to a tabular format dataset
- C. Apply regressors (KNN, DT, RF) and an ANN predictor to estimate ETAs
- D. Finalize ETA
- E. The ETA operation can work as5follows: The ETA for all stops is4published at the start of the service,3and the subsequent ETAs for each2stop are adjusted each time the bus1arrives at the expected stop.1

Apply Non-linear regression models: Decision Tree regressor (DT), Random Forest regressor
(RF), and K-Nearest Neighbor regressor (KNN). Apply Artificial Neural Network predictor (ANN).

R&D results: Model Development (Malang Data) – USM Data Analytics Team

Model Design: 3 layers of feature selection were performed: Correlationbased Filtering (Pearson Correlation), Filter-based and Embedded Selection (F-regression, MIC, Lasso Larsic), and Wrapper-based Optimization (RFE, GA). The selected features were then fed into various machine learning algorithms, including CatBoost, XGBoost, Random Forest, Decision Tree, Ridge Regression, and Polynomial Regression.

Model Features: Multiple datasets—sensor data, cyclical data, and weather data—were extracted and derived for feature selection in model development

November 7, 2024 at Phnom Penh

IVO

ASEAN IVO Project Review 2024

ASEAN IVO

MODEL AND FS METHOD EVALUATION 2

Model Performance Comparison

Metric: Cross-validated R² Mean

CatBoost_recursive_feature_elimination	0.865
CatBoost_mutual_info	0.864
CatBoost_genetic_algorithm	0.857
XGBoost_mutual_info	0.852
XGBoost_recursive_feature_elimination	0.850
XGBoost_genetic_algorithm	0.845
Random Forest_mutual_info	0.841
Random Forest_recursive_feature_elimination	0.840
Random Forest_genetic_algorithm	0.836
Decision Tree_mutual_info	0.823
Decision Tree_recursive_feature_elimination	0.823
Decision Tree_genetic_algorithm	0.804
Lower R ² Mean	Higher R ² Mean

Model/Algorithm Evaluation: CatBoost with Wrapper Based Optimisation (Recursive Feature Elimination (RFE)) with the R^2 of 0.865 is chosen as the final solution.

FEATURE IMPORTANCE ANALYSIS

feature	cb_feat_imp	rf_feat_imp
distance	47.56%	71.62%
Speed_Category	11.93%	14.04%
minutes_cos	9.90%	2.78%
start_stop_encoded	9.61%	1.66%
route_id	8.00%	0.81%
precip_mm	3.38%	1.21%
pressure	2.76%	1.57%
end_stop_encoded	2.63%	4.13%
humidity	2.61%	1.37%
day_of_week_sin	1.60%	0.81%

4

Feature Importance Experiment to understand the relative impact of different features on model performance: 'distance' is the most important predictor in bus arrival prediction, followed by 'Speed_Category' as the second most significant feature in both models. CatBoost demonstrates a stronger ability to capture temporal patterns, as reflected in the importance of the 'minutes_cos' feature.

November 7, 2024 at Phnom Penh

ASEAN IVO Project Review 2024

Bus Trip Duration Prediction	
oute ID:	
rt Location:	Prediction Result
T01 ~	
estination Location:	
вто2 ~	Estimated trip duration: 8 minutes
tart Time:	
mm/dd/yyyy: ==	
emperature (°C):	Start time: 2024-07-17 07:16:00
8	
recipitation (mm):	Estimated arrival time: 2024-07-17 07:24:0
1.7	
loud Cover (%):	
35	Make Another Prediction
ressure (hPa):	
1011	
Predict Trip Duration	

Model deployment: Development of prediction tool – First page will have list of inputs needed to predict bus arrival times at the bus stops 6

Output Page: Prediction results of bus arrival time at the bus stop

Scientific Contribution:

Presentations at International Conferences:

No:	Paper title:	Author names	Affiliation	Conference name:	The date of the conference	The venue of the conference
1.	An ANN-Based Prediction Model for Public Bus Journey Time	Yong Ting Lim, Sye Loong Keoh, Yung- Wey Chong, Noor Farizah Ibrahim, Sharul Kamal Abdul Rahim	University of Glasgow Singapore, Universiti Sains Malaysia, Universiti Teknology Malaysia	2024 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)	19-22 Feb. 2024	Osaka, Japan
2.	Predicting Estimated Time of Arrival Using Boosting Models	Say-Hong Kam, Yung-Wey Chong, Noor Farizah Ibrahim, Sye-Loong Keoh, Somnuk Phon-Amnuaisuk, Sharul Kamal Abdul Rahim,	Universiti Sains Malaysia, University of Glasgow Singapore, Universiti Teknology Brunei Universiti Teknology Malaysia	2024 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)	19-22 February 2024	Osaka, Japan

Published Journal Papers:

No:	Paper title:	Author names	Affiliation	Journal name:	The publisher of the Journal	The volume number and Pages
1.	Transforming urban mobility with internet of things: public bus fleet tracking using proximity-based bluetooth beacons	Olakunle Elijah, Sye Loong Keoh, Sharul Kamal Abdul Rahim, Chee Kiat Seow, Qi Cao, Mohammad Adib bin Sarijari, Noor Farizah Ibrahim, Achmad Basuki	Universiti Teknologi Malaysia, University of Glasgow, Universiti Sains Malaysia, Universitas Brawijaya	Frontiers in Internet of Things	Frontiers	Vol 2-2023
2.	Federated Learning for Intelligent Transportation System (ITS): Use Cases, Open Challenges and Opportunities	Yung-Wey Chong, Kok-Lim Alvin Yau, Noor Farizah Ibrahim, Sharul Kamal Bin Abdul Rahim, Sye Loong Keoh, Achmad Basuki	Universiti Sains Malaysia, Universiti Tunku Abdul Rahman, Universiti Teknologi Malaysia, University of Glasgow, Universitas Brawijaya	IEEE Intelligent Transport Systems Magazine	IEEE	Accepted.

Societal Impact:

- Aims to improve the use of public transport systems in developing countries through the following:
 - Easy access to the bus departure and arrival data
 - Shorten the passenger waiting time if the ETA is known in advanced
 - Effective monitoring of the bus services from the operator's perspective
- With the increase usage of public transport, it will result in less carbon emission, and less traffic congestion

Source: <u>https://thegreendivas.com/2015/09/28/green-transportation-</u> <u>4-tips-for-navigating-public-transit/</u>

November 7, 2024 at Phnom Penh

ASEAN IVO Project Review 2024

Conclusion:

- Great collaboration among the project members and other project stakeholders:
 - Field trials at Johor and Malang started, and data collection and data analysis.
 - UTM will <u>organize a workshop</u> to engage all the stakeholders, bus operators to present research work in 10-11 December 2025, and we are planning for Indonesia workshop in January 2025.
 - Journey prediction model established, showing <u>feasibility of using the GPS and BLE</u> <u>dataset to predict journey duration</u> between bus stops.
- Second year progress:
 - <u>Procurement</u> for the second year completed.
 - <u>Bi-monthly virtual meeting</u> to update project progress.
- Some of the Issues faced:
 - <u>Un-realiable power supply</u> and Internet connectivity at Johor sites.
 - Datasets collected from Raspberry Pi could be missing due to <u>unavailability of RPI and</u> <u>Internet</u>, hence would <u>impact the data analytics</u>.
 - Buses could be <u>out-of-service</u> due to repair and maintenance, hence <u>no fleet data logged</u> <u>for some times</u>.
 - <u>Display panel purchase</u> phase, working with NICT on equipment procurement

• System Development:

- Expand the system to other routes in Johor and Malang.
- Expand the system to other cities in Malaysia and Indonesia
- Expand the system to other ASEAN countries
- Install the display panels in more bus stop.

- Field Trips:
 - Organize field trips to Johor in 10-112 December 2024.
 - Run a workshop on data analytics for knowledge sharing in Indonesia in 9-10 Jan 2025