

Background :

Most people in rural and semi-urban areas afflicted with ocular diseases were diagnosed late due to a lack of ophthalmologists and costly immobile equipment. Digital ocular screening exists yet available in some places, especially in urban areas. Mobile applications are the current niche in healthcare, even for screening or analysing non-communicable ocular diseases (NCODs). Many industries are actively adopting mobile phone technology, and this does not make the healthcare industry left behind. This technology is a promising platform that can offer cost-effective solutions as the combination of smartphones and cloud computing facilitates a scalable solution. To make the best of the situation, the Internet of Things (IoT) has shown potency, representing an ideal solution to the limited medical attention received by people in developing countries. The IoT allows health practitioners and clinicians to conduct patient monitoring and diagnosis remotely and regularly. An integrated decision support system (DSS) using a collaborative cloud and machine intelligence approach may advance the prediction of NCODs, which inadvertently gives health practitioners and clinicians an efficient and prompt system that allows them a second opinion on a diagnosis.

Project Title: Integrated Decision Support System for Non-Communicable Ocular Diseases using Machine Intelligence

To develop an integrated cloud-based DSS for NCODs to detect anterior segment ocular diseases using machine intelligence, cloud technology and an integrated system approach.

- Development of the Decision Support System to screen anterior segment-related NCODs using ASPIs 1. captured using smartphone cameras.
- Development of machine intelligence models with the best classifier that provides the highest 2. classification and prediction accuracies to detect identified anterior segment NCOD
- Societal, health and well-being impact analysis with the underprivileged old folks and rural communities 3.

Dr. Marizuana Mat Daud Speaker:

Project Members :

UKM (MYS): AP Dr Haliza Abdul Mutalib

UKM (MYS): AP Dr Wan Haslina UKM (MYS): Prof Dr Rosilah Hassar Wan Abdul Halim

ITB (IDN): AP Dr Acep Purgon

Project Title: Integrated Decision Support System for Non-Communicable Ocular Diseases using Machine Intelligence

Project Duration : 1 June 2023- 31 Nov 2025 (18 + 12 months)

RESEARCH ACTIVITY			202	3							202	.4											2025	5				
	J	JA	\ S	0	Ν	DJ	F	M	Α	Μ	J	J	Α	S	0	Ν	D	J	F	Μ	Α	Μ	J	J	Α	S	0	Ν
INTEGRATED DECISION SUPPO)RT SY	(STEN	1 FOR		I-COI	MMU	NICA	BLE	ocui	LAR [DISEA	SES	S USII	NG I	MAC	HIN	e int	ELLI	IGEN	ICE								
Activity 1: Design of the overall DSS framework Activity 2: Design of the integrated structure of cloud information database																												l
Activity 3: Data and information collection Activity 4: Data association of corneal state in the related NCODs																												
Activity 5: Deep learning NN implementation for corneal state pattern classification and prediction Activity 6: Benchmarking of other machine learning algorithms Activity 7: Integration of output of Activity 2 and 8 to develop the DSS cloud-based DSS																												
Activity 8: System testing and validation Activity 9: Impact analysis and project finalisation																												
Resea	rch M	lilesto	one																									
ACTIVITIES												D	ATE															
Completion of designing cloud DSS framework												3	1 Au	igust	t 202	23												
Completion of gathering collaborative NCODs information and dat	a											3	1 De	ec 20)24													
Completion of developing machine intelligence and cloud-based D	SS											3	0 Jui	ne 2	025													
Completion of system testing and validation												3	0 No	ov 20	025													

Project Title: Integrated Decision Support System for Non-Communicable Ocular Diseases using Machine Intelligence

Revised Project Budget:

Purchasing completed on 15 Feb 2024 & 20 Feb 2024

ITEM	BUDGET (USD)	SPENT (USD)
1. Equipment/ Software		
XOJO Pro Edition	1598	~USD 1584
Rental of Dedicated Server for Web Service Hosting with new domain	750	~USD 719
High performance laptop for mobile tests	2000	~ USD 1930
Note: Currency rate: 20 Feb 2024 4.7988 MYR Total:	4348	~USD 4233
2a. Travel: Data collection and information gathering in Malaysia (Sept 2023 – April 2025)		
Data collection in Malaysia x 3 trips (Accommodation, transport)	800/trip x2	
Total:	1600	
2b. Travel: On-site visit and meeting/MoU signing with HBB , Cambodia (2 researchers) - (Feb 2025)		
Economy roundtrip flight, accommodation, ground transport for 2 days	500/trip x 2	
Total:	1000	
2c. Travel: System testing and validation, and 1-day workshop in Cambodia (1 researcher from Indo Malaysia) - (May 2025)	nesia & 4 resea	archers from
Economy roundtrip flight, accommodation, ground transport for 3 days	7250	
Total:	7250	
2d. Travel: Final meeting in Malaysia (1 researcher from Indonesia & 1 researcher from Cambodia) -	(Sept –Oct 202	25)
Economy roundtrip flight, accommodation, ground transport for 3 days	2480	
Seminar room	1440	
Total:	3920	
3. Dissemination		
1.One article sent to an open access journal: USD 2,700	2700	
2. One conference proceeding (Flight, Accommodation, Ground transport, APC)	1713	
Total:	4013	
GRAND TOTAL (USD):	22,016	
(JPY):	2,907,432.96	

Project Activities:

November 7, 2024 at Phnom Penh

ASEAN IVO Project Review 2024

Project Activities:

November 7, 2024 at Phnom Penh

ASEAN IVO Project Review 2024

Phase 2: Collaborative NCODs information and data gathering

Disease Type	Data association of corneal state in the related NCODs
Pterygium	caused by fibrovascular tissue encroachment onto the corneal region. The tissue may cause vision
	blurring if it grows into the pupil region
Cataract	lens clouding and poses a significant risk of vision loss or blindness
Keratoconus*	corneal steepening and thinning and results in a corneal bulge due to the non-inflammatory corneal disorder
Dry Eye Disease*	relationship between corneal surface irregularities, tear film stability, and inflammation

Phase 3: Machine intelligence and cloud-based DSS development

Preliminary experimental work:

- Implement the novel algorithms and models we previously developed using digital image processing and deep learning techniques.
- ✓ Benchmarking with the current machine learning models

Automated PTERYGIUM Detection using ASPIs

FIGURE 2. Proposed block diagram of pterygium detection using a digital image processing and deep learning approaches.

¹N Syahira M Zamani, W Mimi Diyana W Zaki, Aqilah Baseri Huddin, Aini Hussain, Haliza Abdul Mutalib, Aziah Ali. (2020). Automated Pterygium Detection Using Deep Neural Network. - *IEEE Access.* 1659-1672.

Automated Nuclear CATARACT Detection using ASPIs

Laily Azyan Ramlan; Wan Mimi Diyana Wan Zaki; Haliza Abdul Mutalib; Aini Hussain; Aouache Mustapha. (2023). Cataract Detection Using Pupil Patch Classification And Ruled-based System In Anterior Segment Photographed Images. - *IEEE 13th Symposium on Computer Applications & Industrial Electronics*, 124-129.

R&D results:

Disease type	Nur	nber of data
	Normal	Disease
Pterygium	152	152
Cataract	50	50

Network	Batch Size	Epochs	Learning Rate	Optimizer	Accuracy	Precision	AUC
	10				95.72%	97.93%	98.73%
ResNet50	32				93.75%	97.16%	98.24%
	64				91.12%	98.45%	97.50%
	10				97.04%	97.99%	99.19%
VGG16wbn	32				93.09%	95.17%	98.87%
	64				90.46%	95.56%	98.29%
	10				93.75%	96.50%	96.79%
NasNetMobile	32	20	0.0001	SGDM	91.45%	94.37%	96.18%
	64				87.50%	94.53%	95.23%
	10				97.70%	99.32%	99.34%
MobileNetV2	32				94.08%	94.67%	98.57%
	64				90.46%	93.01%	97.39%
	10				94.41%	97.20%	98.82%
Xception	32				92.11%	97.06%	97.15%
	64				86.84%	95.90%	95.38%

FIGURE 4. Results of the pterygium detection using existing developed model and the current deep learning models

a) Normal

b) Non communicable ocular diseases that canbe captured using smartphone cameras ;pterygium (left) and cataract (right)

Network	Batch Size	Epochs	Learning Rate	Optimizer	Accuracy	Precision	AUC
BocNotEO	5				98.11%	97.79%	99.65%
Resiletou	10				98.22%	97.59%	99.86%
VCC16wbp	5				93.78%	93.97%	96.26%
VGGTOWDII	10				91.67%	97.95%	95.90%
NacNatMabila	5	20	0 00001	Adam	87.67%	85.09%	90.34%
Nasivetiviobile	10	20	0.00001	Auam	94.78%	96.54%	98.79%
MabilaNat\/2	5				93.56%	90.66%	98.96%
MODIIeNetvz	10				95.44%	95.14%	99.19%
Veention	5				90.22%	87.87%	96.56%
Aception	10				95.11%	95.52%	99.02%

FIGURE 5. Results of the cataract detection using existing developed model and the current deep learning models

Presentations at International Conferences:

No:	Paper title:	Author names	Affiliation	Conference name:	The date of the conference	The venue of the conference
1.	Keynotes : Revolutionizing Ocular Health with Digital Image Processing	Wan Mimi Diyana Wan Zaki	Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi, Malaysia	SCI Wide Webminar - 4 th Edition of Electronics and Electricals Engineering Virtual 2023	1 December 2023	Virtual

Published Journal Papers:

No:	Paper title:	Author names	Affiliation	Journal name:	The publisher of the Journal	The volume number and Pages

Accepted for Publication Journal Papers:

No:	Paper title:	Author names	Affiliation	Journal name:	The publisher of the Journal	The volume number and Pages
1	The Impact of Mobile Application for Ocular Disease Screening in Community Outreach Program	Laily Azyan Ramlan, Wan Mimi Diyana Wan Zaki* Haliza Abdul Mutalib, Marizuana Mat Daud, Aouache Mustapha	Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi, Malaysia*	Jurnal Kejuruteraan	UKMPress	Vol. 37 (2): March: 2025

Our project has released the myMata dataset for public use, leveraging data from previous collection programs to drive innovation in ophthalmic research and technology.

- The dataset is currently being used to develop machine learning models aimed at accurately detecting anterior segment conditions
- 2. This open-access approach fosters collaboration and supports the development of Al-driven healthcare solutions with the potential to improve early diagnosis and patient outcomes.

For more details, visit: myMata Database: https://mymata298821234.wordpress.com/2022/09/13/mymata-database/

myMata@UKM		myMata Database	Publica
myMa	ta Database		
	About myMata dataset The myMata dataset consists of Lateral and An Photographed Images (LSPIs and ASPIs) of human eyes smartphone cameras. These images cover a range of including pterygium, keratoconus, and normal ASPIs detailed descriptions of these conditions, please refer publications. If you use the dataset, kindly cite the app which can be found in the <u>Publication</u> section.	terior Segment s, captured using eye conditions, and LPSIs. For r to the related propriate papers,	
	 This project is made possible through generous support from the Malaysia Ministry of Higher Education under: Fundamental Research Grant Schemes (FRGS): FRGS/1/2016/ICT01/UKM/02/4 and FRGS/1/2017) Prototype Research Grant Scheme (PRGS): PRGS/1/2019/TK04/UKM/02/1 Universiti Kebangsaan Malaysia (UKM) under the GUI The ICT Virtual Organization of ASEAN Institutes and IVO) under KK-2023-023 	m: TK0/UKM/02/6 P-2016-003 I NICT (ASEAN	
	The myMata dataset is provided free of charge for educational purposes, subject to permission. Please n condition may change in the future, so stay updated. Kindly fill out the form below to request database access:	or research and note that access	
	Name (required)		
	Email (required)		

- ✓ Phase 1 has been successfully completed, and the output from Activity 2 will be integrated with that of Activity 8 during Phase 3.
- Experimental results using archived datasets indicate strong performance. With optimized hyperparameters, the MobileNetV2 model achieved 97.7% detection accuracy and an AUC of 99.34% for pterygium detection, while the ResNet50 model achieved 98.22% accuracy and an AUC of 99.86% for cataract detection.
- Developing reliable and robust machine learning models, however, requires large datasets.
 Extending the project timeline would enable further data collection and allow for additional testing in real-time applications.
- ✓ Integrating the outputs from Activity 2 and Activity 8 will likely be challenging, as it requires careful optimization to achieve optimal system performance.