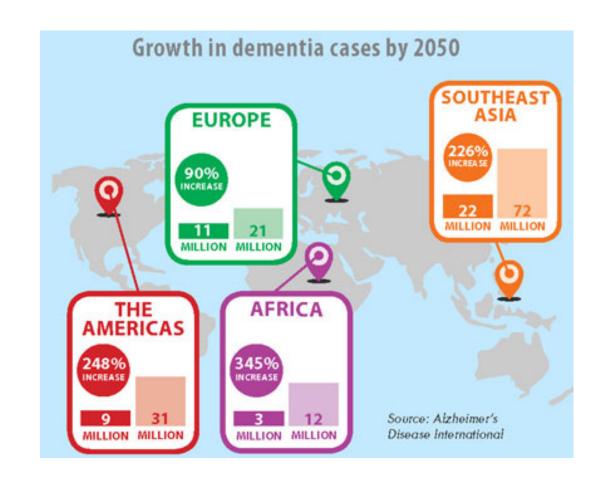


Qu-Alz: Quantum-Enhanced Early Prediction of Alzheimer's in Southeast Asia

Full name of the speaker

Sayed Tahlil Hossain Universiti Teknologi Malaysia, UTM



The Qure team: Muchammad Dimas Sakti Widyatmaja, Roi Victor Roberto, Mutawally Nawwar, Sayed Tahlil Hossain

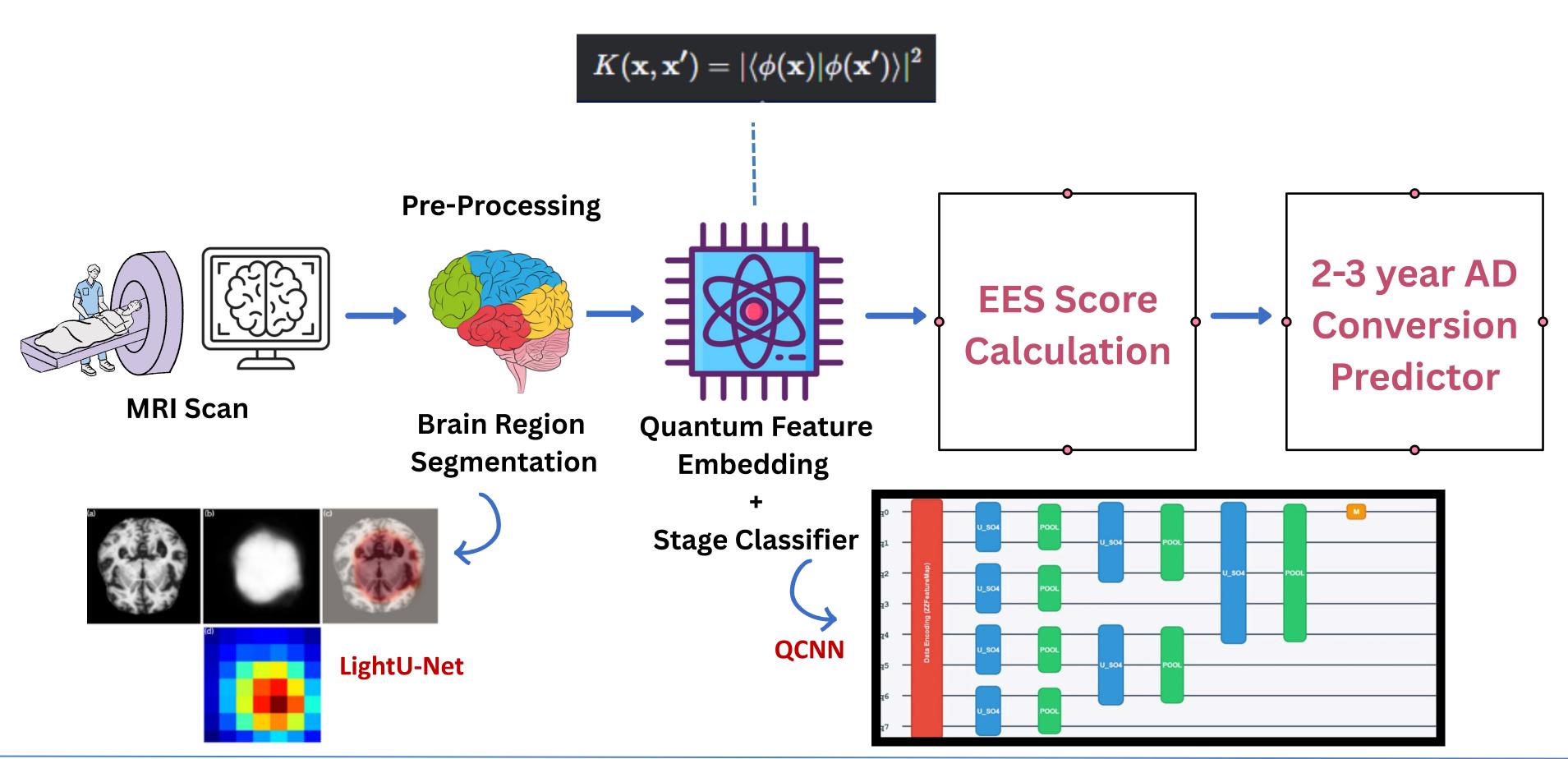
IDENTIFYING THE PROBLEM

- Alzheimer's disease accounts for 60–80% of global dementia cases.
- In Southeast Asia, prevalence rose from 29,000 (1990) → 95,000 (2021).
- Diagnosis often occurs too late, when irreversible neurodegeneration has already set in.
- Current diagnostics rely heavily on symptoms and volumetric MRI, detecting disease only after irreversible brain damage.
- Even with advances like CNNs, ResNets, and Vision Transformers, challenges remain:
 - Limited and imbalanced datasets
 - High computational costs
 - Low clinical interpretability and generalizability in lowresource settings

ASEAN BEAT

Is Southeast Asia Ready for a Future Dementia Epidemic?

Governments need clear plans to tackle an expected surge in dementia cases as the region ages.


Enable early-stage Alzheimer's prediction before severe cognitive decline.

Develop a quantum-enhanced diagnostic model that is:

Accurate and interpretable using quantum-derived biomarkers

Computationally efficient for use with smaller Southeast Asian datasets

Clinically accessible even on older MRI systems common in rural hospitals

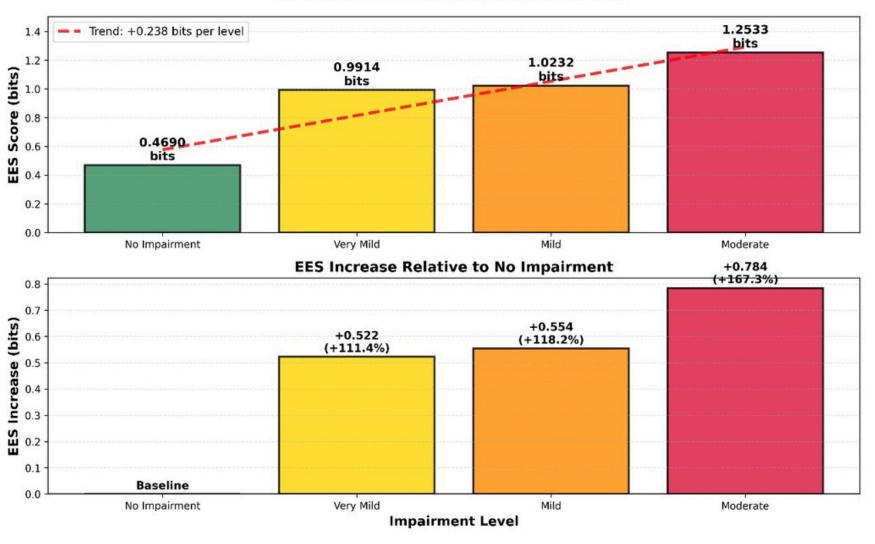
OUR METHOD- ENTANGLEMENT ENTROPY SCORE

EES (Entanglement Entropy Score) is a quantum-inspired metric derived from MRI slices. It quantifies how disordered or entangled a brain region appears [1][2].

$$\mathrm{EES} = -\mathrm{Tr}(
ho_A \log_2
ho_A)$$

```
def compute_ees(self, mri_features: np.ndarray) -> Tuple[float, dict]:
    # Step 1: Encode features in quantum circuit
    circuit = self.create_feature_map(mri_features)

# Step 2: Compute reduced density matrix (5:5 partition)
    rho_reduced = self.compute_reduced_density_matrix(circuit)


# Step 3: Calculate von-Neumann entropy - this is the EES!
    ees_score = self.von_neumann_entropy(rho_reduced)
```

```
def von_neumann_entropy(self, rho: np.ndarray) -> float:
    # S = -Tr(ρ log₂ ρ) = -Σ λ₁ log₂(λ₁)
    eigenvals = np.linalg.eigvals(rho)
    eigenvals = eigenvals[eigenvals > 1e-12] # Remove ~0 eigenvalues
    entropy = -np.sum(eigenvals * np.log2(eigenvals + 1e-12))
    return float(entropy)
```

As Alzheimer's progresses, the brain's spatial structure becomes noisier and more disorganized, especially in critical regions like the hippocampus.

This increases **entanglement in the quantum state** → **higher EES**. Thus, EES could serve as a **stage-sensitive biomarker**.

Quantum Entanglement Entropy Score (EES) Across Alzheimer's Impairment Levels

OUR METHOD

```
ALZHEIMER'S RISK ASSESSMENT REPORT

RISK PREDICTION:
Primary Assessment: 78.6% chance of Alzheimer's within 36 months
Uncertainty Band: ±0.2%
Risk Range: 78.4% - 78.8%

QUANTUM BIOMARKER:
EES Score: 0.926294 bits
Category: Moderate Impairment

INTERPRETATION:
VERY HIGH RISK - Urgent clinical assessment advised
```


Phase 1 (Clinical Validation) (1-2 YEARS)

Collaborate with neuroscience labs using datasets in South East Asia

<u>Phase 2</u> (3-4 YEARS)

Integrate via cloud with SEA hospitals/clinics.

Phase 3 (Global Collaboration)

(5-6+ Years)

Scale to LMICs and global partners.

Developing Qu-Alz requires collaboration between quantum research, clinics, and governments.

By enabling affordable, accessible, and early-stage Alzheimer's prediction, we bridge the diagnostic gap between high- and low-resource settings in SE Asia

Targets early detection and reduces burden of Alzheimers

Qu-Alz enables cuttingedge medical technology, driving innovation in healthcare infrastructure.

Developed Qu-Alz prototype with EES metric and hybrid LightU-Net + QCNN architecture.

Create a regional Alzheimer's MRI dataset and designed a cloud-based platform for hospital integration.

Establish multinational research team and training programs in quantum Al for healthcare.

Parkinson's disease (PD)

Produce publications on entanglement-based entropy in biomedical feature extraction.

Huntington's disease (HD)

©Targets

Early, accurate, and accessible Alzheimer's detection in Southeast Asia using quantum-enhanced MRI analysis.

**Method

Integrates classical and quantum models using EES as a novel biomarker for Alzheimer's stages.

Scientific & Societal Impact

Introduce quantum diagnostic tool for small datasets and standard MRI, promoting regional health equity.

Future Outlook

Validate clinically, expand the framework to other neurodegenerative diseases and scale through ASEAN collaborative networks.

- Abebech Jenber Belay, Yelkal Mulualem Walle, & Melaku Bitew Haile. (2024). Deep Ensemble learning and quantum machine learning approach for Alzheimer's disease detection. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-61452-1
- Babu, A., Ghatnekar, Saurabh G, Saxena, A., & Mandal, D. (2024). Can Entanglement-enhanced Quantum Kernels Improve Data Classification? ArXiv (Cornell University). https://doi.org/10.48550/arxiv.2406.01948
- Belanche-Muñoz, L. A., & Wiejacha, M. (2023). Analysis of Kernel Matrices via the von Neumann Entropy and Its Relation to RVM Performances. Entropy, 25(1), 154. https://doi.org/10.3390/e25010154
- Bomasang-Layno, E., & Bronsther, R. (2021). Diagnosis and treatment of Alzheimer's disease. Delaware Journal of Public Health, 7(4), 74–85. https://doi.org/10.32481/djph.2021.09.009
- Dementia cases set to triple by 2050 but still largely ignored. (2012, April 11). Www.who.int. https://www.who.int/news/item/11-04-2012-dementia-cases-set-to-triple-by-2050-but-still-largely-ignored
- Gopalakrishna, G., Joshi, P., Tsai, P.-H., & Patel, N. (2023). Advances in Alzheimer's Dementia: An update from Banner Alzheimer's Institute. The American Journal of Geriatric Psychiatry, 31(3, Supplement), S18–S19. https://doi.org/10.1016/j.jagp.2022.12.300
- Marcus, D. S., Fotenos, A. F., Csernansky, J. G., Morris, J. C., & Buckner, R. L. (2010). Open Access Series of Imaging Studies (OASIS): Longitudinal MRI Data in Nondemented and Demented Older Adults. Journal of Cognitive Neuroscience, 22(12), 2677–2684. https://doi.org/10.1162/jocn.2009.21407
- Modupe Odusami, Robertas Damaševičius, Egle Milieškaitė-Belousovienė, & Rytis Maskeliūnas. (2024). Alzheimer's disease stage recognition from MRI and PET imaging data using Pareto-optimal quantum dynamic optimization. Heliyon, 10(15), e34402–e34402. https://doi.org/10.1016/j.heliyon.2024.e34402