

Al-Enabled IoT-Based Hand Rehabilitation System

IR. TS. DR AHMAD AZLAN BIN AB AZIZ

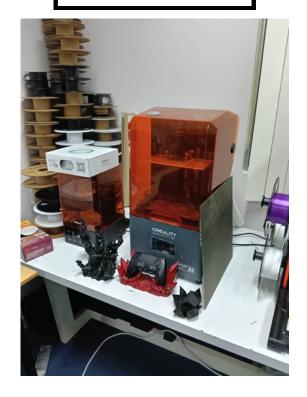
Background:

Stroke and neurological disorders limit upper-limb function across ASEAN, calling for AI- and IoT-based home rehabilitation to overcome limited clinical access.

- Stroke and neurological disorders cause severe upper-limb impairment across ASEAN
- Conventional rehab = labour-intensive, expensive, clinicdependent
- Low access in rural / low-resource ASEAN communities
- ICT (AI + IoT + AR) enables scalable, personalised, homebased rehabilitation

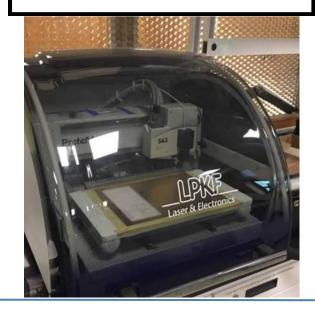
Lab facility

Experiments and system development were conducted at the MakersLab, Universiti Teknologi Brunei, equipped with essential tools and instruments.


Prusa XL

Laser Engraver

Creality


Bambulab X1

Creality

Pcb lpkf machine

Targets:

- Enable affordable soft hand rehabilitation outside hospitals
- Use Al + loT + AR to personalise therapy and boost adherence
- Support tele-rehab and remote clinical supervision
- Build a system compatible with ASEAN deployment at scale

System Architecture

Phase 1: System Development

- Built soft 3D-printed exoskeleton with flex + sEMG sensors
- Integrated AI (gesture + recovery), IoT and AR (Unity3D)
- Designed compact antenna for stable wireless data

Phase 2 — Testing & Validation

- Bench tests on sensor accuracy, Al performance, AR usability, and IoT stability
- Collected user feedback on comfort and motivation

Phase 3 — Outcomes

- Accurate sensing and reliable connectivity achieved
- Al models performed consistently
- AR feedback improved engagement
- Supports scalable home-based rehab for ASEAN communities

Scientific / Technical Method

Data Collection

• EMG and motion datasets were collected from both healthy and post-stroke participants to capture a wide range of movement patterns and muscle signals.

Al Module

- Machine learning models were trained for:
- Gesture classification identifying specific hand movements from sensor inputs.
- Motor recovery trend prediction estimating user progress over time for personalised therapy.

AR Interface

 Developed using Unity3D, the augmented reality interface overlays therapy tasks and provides real-time biofeedback to enhance engagement and motivation.

IoT Integration

 A closed-loop IoT pipeline continuously monitors sensor data via embedded system and cloud systems, ensuring seamless communication between hardware, Al processing, and AR feedback.

Antenna Design

 A compact, low-power antenna was designed and optimized to enhance wireless data transmission range and reliability, ensuring stable communication for IoT-based rehabilitation even in low-connectivity environments common in some ASEAN regions.

Implementation / Evaluation

Bench and Pilot Testing

- Conducted controlled bench tests to validate sensor accuracy and latency, ensuring reliable detection of finger motion and muscle activity.
- Evaluated Al inference accuracy to confirm that gesture recognition and recovery prediction models perform consistently in real-time use.
- Assessed AR usability and engagement, observing how effectively users interacted with virtual therapy tasks and responded to visual feedback.
- Tested tele-rehabilitation connectivity stability through IoT cloud monitoring to verify smooth data streaming and minimal communication delay.

User Feedback

- Collected usability feedback from both healthy and post-stroke participants, focusing on comfort, ease of use, and motivation during therapy sessions.
- Insights were used to refine exoskeleton ergonomics, AR interface design, and feedback mechanisms to improve overall user experience and compliance.

Impact: Scientific & Technical

- Converges AI + AR + IoT + soft robotics in one rehab platform
- Provides dataset foundation for clinical Al models
- Enables objective, quantified rehab metrics instead of subjective observation

Impact: Societal / ASEAN

- Affordable alternative for B40 and rural communities
- Reduces travel & clinician workload through home-based rehab
- Improves motivation via interactive AR feedback
- Enables remote therapist oversight across ASEAN borders

Impact: Collaboration

- Cross-discipline bridge (Robotics + AI + Rehabilitation + AR)
- Platform suitable for joint ASEAN research & telehealth pilots
- Expandable to upper-limb beyond hand

Outcome

- Working prototype with Al-enabled sensor integration
- Initial EMG + motion dataset established
- AR rehab interface and loT dashboard functioning

Basis for clinical validation and technology transfer

Conclusion

- Target: democratize stroke rehabilitation in ASEAN
- Method: Al-enabled IoT-integrated soft exoskeleton with AR feedback
- Impact: lowers cost, extends access, increases adherence, enables remote therapy
- Next: Al adaptation, clinical trials, ASEAN-wide telehealth deployment