

Project Title: IoT Road Health Monitoring Platform for Secure Urban Mobility in Smart Communities

Background:

- Urban roads in many ASEAN cities face rapid deterioration due to reactive and outdated maintenance practices. Reliance
 on manual inspections and public complaints leads to unsafe roads and disrupted mobility.
- Authorities lack real-time road health data. Monitoring focuses on highways while city and local roads are overlooked, causing delays, high repair costs, and safety risks.
- The absence of continuous, reliable road data hinders **secure and smart community development**. Integrating IoT-based IRI measurement and crowdsourced data enables proactive maintenance and sustainable urban mobility.

Targets:

- ✓ Develop an IoT-based platform using accelerometer and GPS data for IRI measurement, road defect detection, and maintenance prioritization with real-time deep learning analytics.
- ✓ Build two Class 3 IRI devices: a microcontroller-based unit for authorities and a smartphone-based tool for crowdsourced data collection.
- ✓ Deliver an **interactive dashboard** that visualizes road health levels and supports data-driven decisions for safer, smarter, and more sustainable urban mobility.

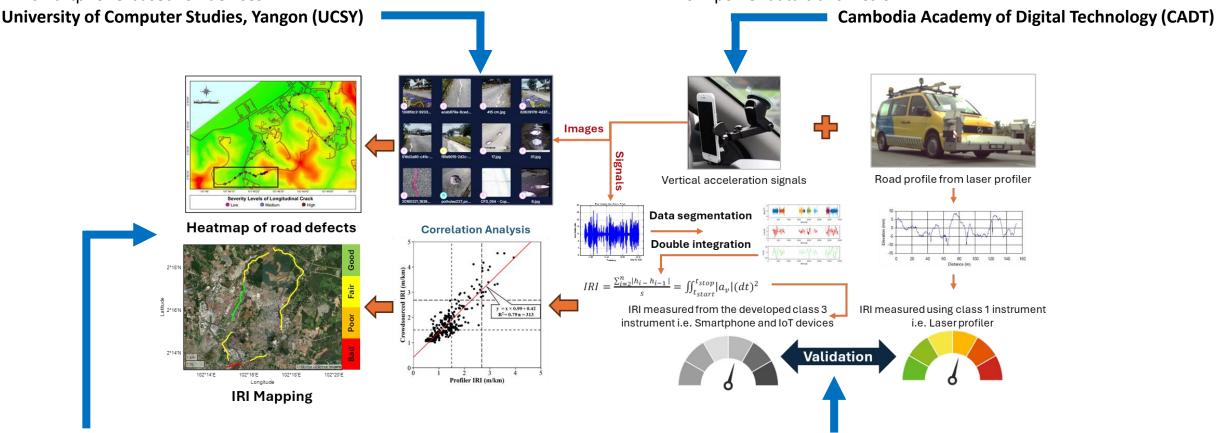
Speaker:

Hadyan Hafizh School of Computing and Artificial Intelligence Sunway University, Malaysia

Project Title: IoT Road Health Monitoring Platform for Secure Urban Mobility in Smart Communities

Project Members:

Name	Institution
Hadyan Hafizh	Sunway University, Malaysia
Rosdiadee Nordin	Sunway University, Malaysia
Anwar P.P. Abdul Majeed	Sunway University, Malaysia
Febri Zukhruf	Institut Teknologi Bandung, Indonesia
Lihour Nov	Cambodia Academy of Digital Technology, Cambodia
Ah Nge Htwe	University of Computer Studies Yangon, Myanmar
Ye Naing	University of Computer Studies Yangon, Myanmar
Nay Win Aung	University of Computer Studies Yangon, Myanmar
Zin May Oo	University of Computer Studies Yangon, Myanmar


Project Duration: 24 Months

Project Budget: USD 45,020

Project Activities: Task Distribution and Assignment

- Develop deep learning models for real-time road defect classification.
- Perform model evaluation and validation for real-time deployment in smartphone-based IoT devices.

Sunway University (SU)

- Develop vision-based AI devices for road defect recognition
- Develop smartphone-based IoT devices for IRI measurement.

- Develop microcontroller-based IoT devices for IRI measurement.
- Integrate state-of-the-art wireless communication for long-range, low-power data transmission.

Institut Teknologi Bandung (ITB)

- Perform data validation and field testing with Class 1 instrument.
- Provide **civil engineering expertise** for road maintenance standards and workflows.

Project Activities: Meetings and Stakeholder Consultation

Technical Meetings (SU, ITB, CADT, UCSY)

Company Visit (SU, Malaysia)

SELIA SELENGGARA SELATAN SDN BHD is the federal road concession holder for the southern region of Peninsular Malaysia.

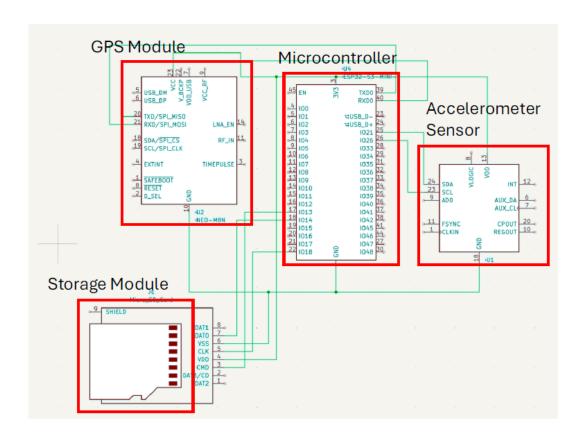
Project Activities: AI Model Development and Data Collection (UCSY)

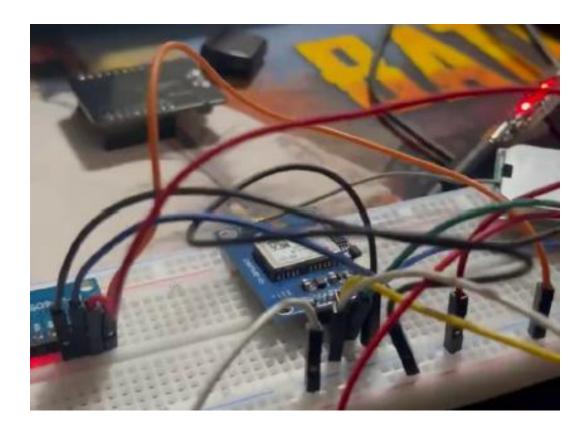
Dataset Information

Training Set: 139 images

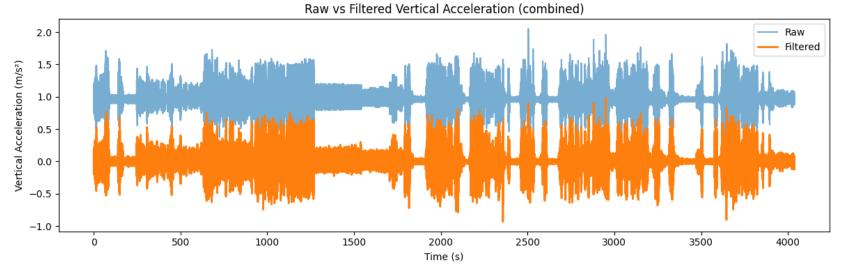
Validation Set: 40 images

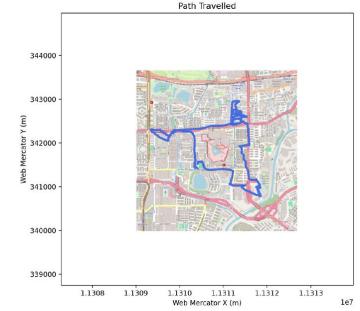
Test Set: 20 images

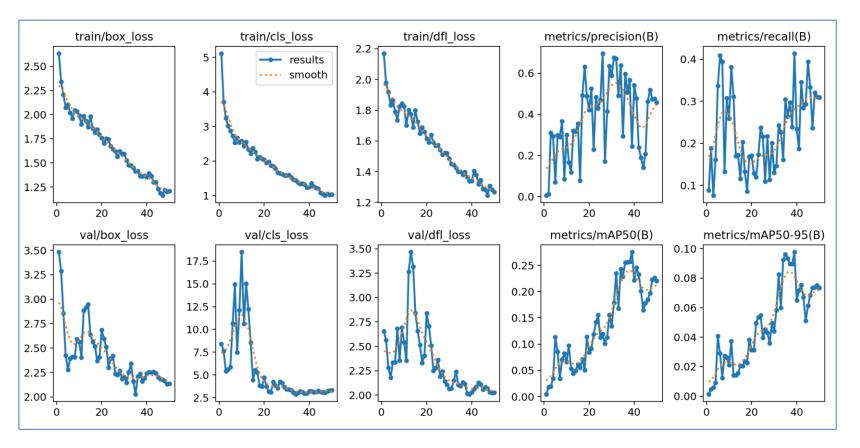

Parameter	Value
Number of Classes	4
Class Names	0: 'Alligator Cracks'
	1: 'Lateral Cracks'
	2: 'Longitudinal Cracks'
	3: 'Pothole'

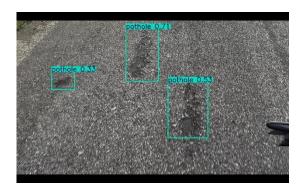

Tools

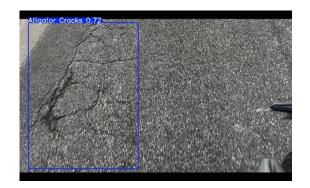
Project Activities: IoT Prototype Development & Lab Testing (CADT)


- CADT leads the development of the microcontroller-based Class 3 prototype for International Roughness Index (IRI) measurement.
- Prototype built on ESP-series microcontroller with integrated accelerometer and GPS modules.

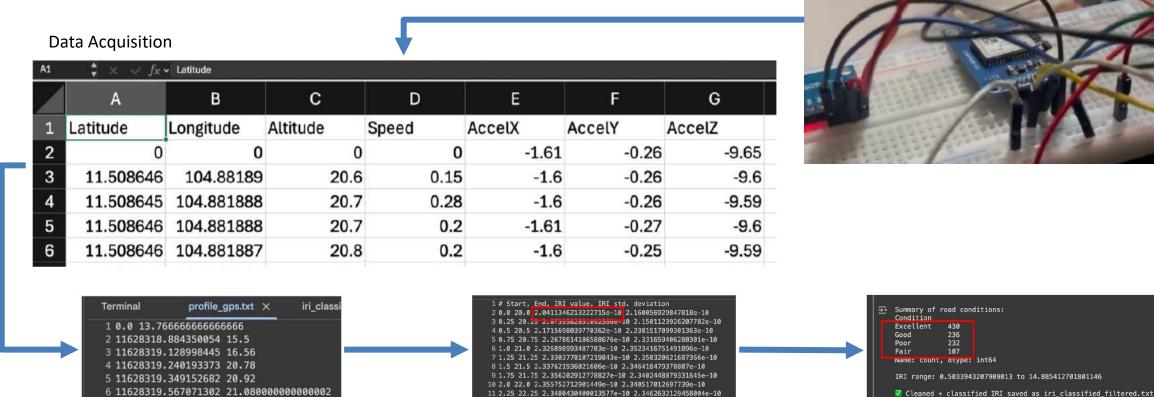

Project Activities: AloT Platform Development & Field Testing (SU)


- Aim: To evaluate the current app's performance in detecting and recording road surface roughness under real driving conditions.
- Route: Sunway University to Bandar Sunway, covering smooth and uneven road segments.
- Duration: ± 1 hour of continuous data collection.
- Data & Setup: Collected accelerometer (x, y, z), GPS, timestamps, and speed, with the smartphone mounted on the air vent for stability.




R&D results: AI Model Development (UCSY)

Ultralytics 8.3.205 🚀 Python-3.12.11 torch-2.8.0+cu126 CPU (Intel Xeon CPU @ 2.20GHz)								
Model summary (fused):	72 layers,	11,127,132	parameters,	0 gradients,	28.4 GFL	0Ps		
Class	Images	Instances	Box(P	R	mAP50	mAP50-95):	100%	
all	40	79	0.243	0.415	0.275	0.096		
Alligator Cracks	10	12	0.099	0.583	0.263	0.0903		
Lateral Cracks	5	6	0.406	0.24	0.263	0.0925		
Longitudinal Cracks	23	34	0.199	0.206	0.164	0.0753		
pothole	17	27	0.269	0.63	0.411	0.126		

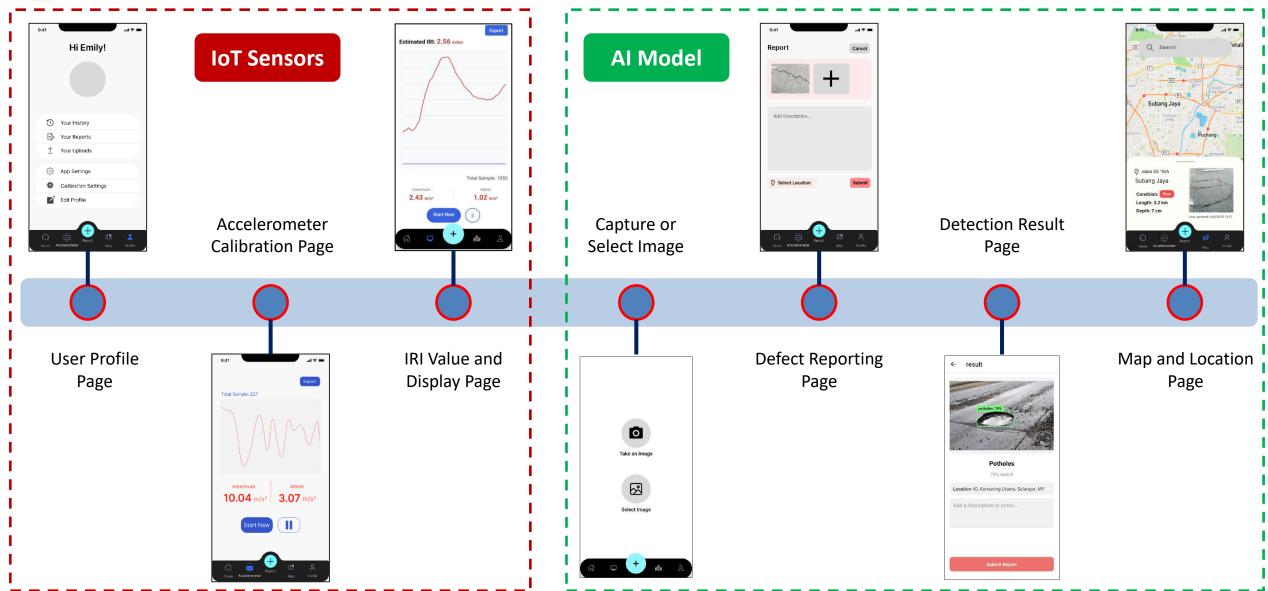


R&D results: IoT Prototype Development (CADT)

- The prototype was mounted on a test vehicle to evaluate performance under real driving conditions.
- Road profile data were collected along a designated route by recording accelerometer and GPS readings.

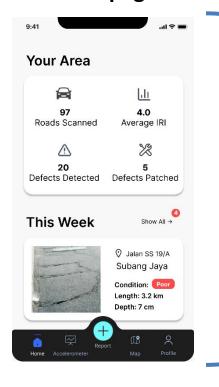
Extracted GPS Profile for

Subsequent IRI Calculation



November 20, 2025 in Singapore ASEAN IVO Project Review 2025

Computed IRI Values to Categorize Road Surface Condition


R&D results: Scalable AloT Platform for Crowdsensing (SU) - 1

R&D results: Scalable AloT Platform for Crowdsensing (SU) - 2

Homepage

CONTAINERIZATION

The trained YOLOv8 model, along with required libraries and services, is containerized using Docker for portability and efficient deployment.


Containerization

GOOGLE MAP SDK

Cloud functions integrate geolocation services to map detected road anomalies onto real-world coordinates.

CLOUD DATABASE

Collected sensor data and processed results are stored in Firestore for centralized, real-time data management.

Cloud Services

Google Cloud

MODEL TRAINING

Road defect images are used to train a YOLOv8 model using the Ultralytics framework in PyTorch for object detection and classification (e.g., potholes, cracks).

CLOUD SERVICES

results to the mobile app.

The container is uploaded to Google Cloud's Artifact Registry and deployed on Cloud Run, enabling serverless, scalable inference.

The REST API serves detection

MOBILE APP

The app captures accelerometer, GPS, and image data, displaying the map interface and detection results to the user.

Users can visualize road roughness levels and road defects location.

Next Step: Data Validation (ITB)

Road IRI Measurement with ROMDAS

No	Item	Unit		
1	Survey Equipment Rent	45 km	2 lane	
2	Operational Cost	3 persons	2 days	
3	Car rental	1 unit	2 days	

18-Jan						
Arrival (SU, CADT, UCSY)						
19-Jan						
Data Collection Day 1 with ROMDAS						
20-Jan						
Data Analysis and Validation						
21-Jan						
Evaluation and Optional Data Re-						
Collection						
22-Jan						
Departure						

Sample Road Data Collection Activity by **PT. Nusa Antara Jayatama**

Scientific Contribution

Presentations at International Conferences:

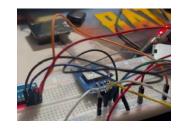
No	Paper title	Author names	Affiliation	Conference name	The date of the conference	The venue of the conference
1	AloT Platform for Intelligent Road Defect Recognition with Smartphone and Edge Vision	¹ Hadyan Hafizh, ² Yee Zhing Liew, ¹ Gan Caqin, ¹ Anwar PP Abdul Majeed, and ¹ Rosdiadee Nordin	¹ School of Computing and Artificial Intelligence, Sunway University, Bandar Sunway 47500, Selangor, Malaysia ² School of Intelligent Manufacturing Ecosystem, Xi'an Jiaotong-Liverpool University, Taicang Street, Suzhou, 215412, China	The 3rd International Conference on Intelligent Manufacturing and Robotics (ICiMR 2025)	11 – 12 November 2025	Sunway University, Malaysia

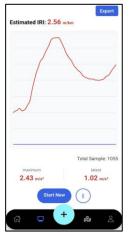
November 20, 2025 in Singapore ASEAN IVO Project Review 2025 12

- The automated AIoT system enables a transition from reactive to predictive road maintenance, improving infrastructure efficiency.
- By providing data-driven insights for repair prioritization, municipal authorities can allocate resources equitably and enhance urban mobility.

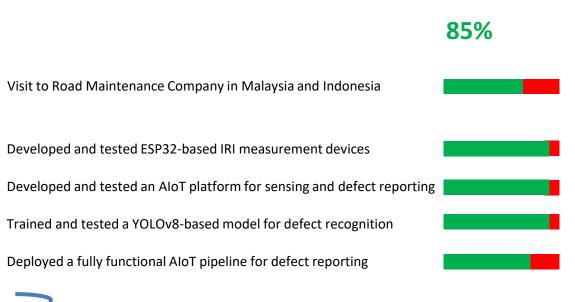
Improved road quality enhances public safety, reduces road-related accidents, and lowers vehicle repair and fuel costs, promoting safer, secure, and more sustainable transport.






 The road defect image dataset, collected by the project team and through crowdsourcing, will be publicly shared on the Roboflow platform to promote open research and innovation in intelligent road monitoring

- Benchmarked and deployed a YOLOv8 deep learning model on Google Cloud Run, achieving real-time defect classification with high accuracy and low latency, confirming the feasibility of the serverless, container-based architecture. (UCSY, Myanmar)
- Developed and tested a class 3 instrument for IRI measurement by means microcontroller equipped with accelerometer sensors and GPS module. (CADT, Cambodia)
- Integrate the IoT sensors data with AI model through the developed and tested a fully operational end-to-end pipeline AIoT platform for passive and active crowdsourced road condition data collection through a dual-function mobile app for road roughness sensing and defect reporting. (SU, Malaysia)
- Established a scalable framework for automated road defect detection and IRI data integration, forming the foundation for future inclusion of edge vision data streams and validation with class 1 instrument. (ITB, Indonesia)



14

Future works

	Year 1			Year 2				
Phases	PIC	Q2	Q3	Q4	Q1	Q2	Q3	Q4
		4-6	7-9	10-12	13-15	16-18	19-21	22-24
Requirement analysis and stakeholders' consultations	All							
Design of IoT devices and DL Model								
Microcontroller-based class 3 instrument design and configuration	CADT							
Smartphone-based class 3 instrument design and development	SU							
Deep learning model development	UCSY							
System integration and laboratory testing	All							
Testing and Validation								
Validation of both developed class 3 instrument with class 1 instrument at Bandung, Indonesia	SU+ITB							
Correlation analysis	All							
IRI calculation and map generation	All							
Validation of both developed class 3 instrument with class 1 instrument at Melaka, Malaysia	All							
Crowdsourced Data Collection								
Use case 1 (at Sunway City, Malaysia)	SU							
Use case 2 (at Bandung city, Indonesia)	ITB							
Impact analysis and project completion	All			<u> </u>				

Future Works:

- Validation with Class 1 Instrument will be conducted in Bandung, Indonesia in January 2026 to verify the accuracy and reliability of the developed IoT-based IRI measurement system.
- **Crowdsensing Use Case Deployment** will be carried out at Sunway University, Malaysia, and Institut Teknologi Bandung, Indonesia, to evaluate realworld performance, user participation, and data quality in diverse urban environments.

15 **ASEAN IVO Project Review 2025** November 20, 2025 in Singapore