ASEAN IVO 2020

Development of a Wearable Human Fall Detection System

GROUP MEMBERS

Azura Che Soh, Noor Ain Kamsani, Raja Mohd Kamil Raja Ahmad, Siti Anom Ahmad, Asnor Juraiza Ishak, Hafiz Rashidi Ramli@Harun, Siti Khadijah Binti Ali, Chikamune Wada

Universiti Putra Malaysia
Malaysian Research Institute on Ageing (MyAgeing™)
Kyushu Institute of Technology (KYUTECH), Japan
Introduction

• Falls can be defined as involuntary, unexpected and uncontrollable events resulting in a person impacting and coming to rest at a lower level

• It is estimated that 28-35% of people aged 65 and above fall each year

• Falls are the leading cause of injury and accidental death for those over 75. (70% of accidental deaths)

Source: World Health Organization
Global Report on Falls Prevention in Older Age
Problem Statement

• A typical commercial fall detection devices would have offered the basic function of detecting a fall and immediately alert caregivers or monitoring base unit to provide necessary actions depending on the person's condition.

• Most of the devices have no specific feature to monitor and classify physical activities of daily living (ADL) and also no specific feature to monitor the stability of the person who is wearing it to practice early prevention of falls.

• This idea conveys to propose a fall detection and monitoring stability device to be implemented in the future.
Objectives

To propose and develop a system that can detect fall of the elderly automatically using a wearable detector and able to alert the family members via mobile phone application.

Sub-objectives:

1. Develop a wearable/fall detection device that will send data in the occurrence of fall.
2. Develop a effective algorithm for fall detection by capturing patterns of falls
3. To enhance features of existing wearable/fall detection device by incorporating balance and physical activities of daily living (ADL)
4. Develop a caretaker alert system, health monitoring real-time system and health record collection
Methodology

Pattern Recognition

Signal Processing
- Signal Filtering
- Segmentation

Classification
- Feature Extraction
- Fall Classification

Wearable Device

Notification System
Design Concept
Proof of Concept

1st Prototype: Wearable Device

Block Diagram
Flow Chart

1. **Start**
2. Initialize Bluetooth buffer, data buffer, accelerometer and gyroscope
3. Set sampling frequency to 200 Hz
 - Set Bluetooth baud rate to 115200
4. While SVM < Threshold
 - Yes
 - Check incoming Bluetooth data
 - If data matches command
 - Reply and set settings
 - Insert accelerometer and gyroscope data into data buffer
 - No
 - Wait for 2 seconds
 - Transmit accelerometer and gyroscope raw data
Data Collection

• Study participants
 i) 15 total: 10 male, 5 female
 ii) Age range: 20 – 25
 iii) Height: 160 – 190 cm
 iv) Weight: 50-95 kg
• Each participant performed 3 sets of activities during testing. There are 7 types of activities to be performed as shown.
• Total data: 315 ADLs (15 subjects x 3 sets x 7 activities)
Test Activities and Their Respective Descriptions

<table>
<thead>
<tr>
<th>Activities</th>
<th>Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Falling</td>
<td>Stand for 2 seconds then fall forward</td>
</tr>
<tr>
<td>Running</td>
<td>Run at normal speed of 2.53 steps per second for 8 seconds</td>
</tr>
<tr>
<td>Jumping</td>
<td>Jump for 8 seconds</td>
</tr>
<tr>
<td>Walking</td>
<td>Walk at normal speed of 1.67 steps per second for 8 seconds</td>
</tr>
<tr>
<td>Standing</td>
<td>Stand for 8 seconds</td>
</tr>
<tr>
<td>Lying</td>
<td>Stand first, then sit, follow by lying on the bed</td>
</tr>
<tr>
<td>Sitting</td>
<td>Stand for 2 second and then sit on the chair</td>
</tr>
</tbody>
</table>
Results: Data Collection

• Gyroscope Data
Results: Data Collection

• Accelerometer Data
Pattern Recognition

Signal Processing

Signal Filtering → Segmentation

Classification

Feature Extraction

Fall Classification

More detail:
Feature Extraction

Table 2: Lists of features

<table>
<thead>
<tr>
<th>No</th>
<th>Features</th>
<th>Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SVM_a</td>
<td>Sum vector magnitude of acceleration</td>
</tr>
<tr>
<td>2</td>
<td>SVM_w</td>
<td>Sum vector magnitude of angular velocity</td>
</tr>
<tr>
<td>3</td>
<td>NormAcc</td>
<td>L1 norm of acceleration, which is the total acceleration exerted on the device</td>
</tr>
<tr>
<td>4</td>
<td>Z_{min}</td>
<td>Minimum value of vertical acceleration Z_2 for impact detection</td>
</tr>
<tr>
<td>5</td>
<td>SV_{yzh}</td>
<td>High pass filtered acceleration on horizontal plane y-z</td>
</tr>
<tr>
<td>6</td>
<td>SV_{yzl}</td>
<td>Low pass filtered acceleration on horizontal plane y-z</td>
</tr>
<tr>
<td>7</td>
<td>MaxMin</td>
<td>Differences between maximum and minimum acceleration values in last 0.5 seconds</td>
</tr>
<tr>
<td>8</td>
<td>θ_{ratio}</td>
<td>Ratio of polar angle</td>
</tr>
</tbody>
</table>
Feature Extraction

Raw Accelerometer Signals

Raw Gyroscope Signals

High Pass Filter

Low Pass Filter

SVM₂ₐ

Zₘᵢₙ

NormAcc

SVₘₚₙ

ϕₙ ratio

MaxMin

SVᵣₑₙₗ

SVMₜₚ
Sensitivity of the Algorithm

<table>
<thead>
<tr>
<th>Falls (Number of Falls)</th>
<th>Fall detected (TP)</th>
<th>Fall not Detected (FN)</th>
<th>Sensitivity (TP)/(TP+FN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward Fall (45)</td>
<td>44</td>
<td>1</td>
<td>97.78%</td>
</tr>
</tbody>
</table>

Specificity of the Algorithm

<table>
<thead>
<tr>
<th>ADL (Number of tests)</th>
<th>Fall not detected (TN)</th>
<th>Fall Detected (FP)</th>
<th>Sensitivity (TN)/(TN+FP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Running (45)</td>
<td>43</td>
<td>2</td>
<td>95.56%</td>
</tr>
<tr>
<td>Jumping (45)</td>
<td>43</td>
<td>2</td>
<td>95.56%</td>
</tr>
<tr>
<td>Walking (45)</td>
<td>45</td>
<td>0</td>
<td>100.00%</td>
</tr>
<tr>
<td>Standing (45)</td>
<td>45</td>
<td>0</td>
<td>100.00%</td>
</tr>
<tr>
<td>Sitting (45)</td>
<td>45</td>
<td>0</td>
<td>100.00%</td>
</tr>
<tr>
<td>Lying (45)</td>
<td>45</td>
<td>0</td>
<td>100.00%</td>
</tr>
<tr>
<td>Total (270)</td>
<td>266</td>
<td>4</td>
<td>98.52%</td>
</tr>
</tbody>
</table>
Implementation of Notification system

• The system was then implemented using two Android smart phones. Each of them has the fall detection system’s Android applications installed. One smart phone was for the wearer and the other was for the caregiver.

• The wearer’s application was expected to transmit the fall event message to the notification application of the caregiver and at the same time, updates the event of the fall of the wearer in the database.

• The third-party application server was responsible for receiving the fall-related messages and registration ID to update the database and to send these messages to the GCM server, including the server ADI key (which was previously obtained from the Google account). The GCM server will then submit the messages to the caregiver’s Android phone.

• Hence, the fall event will be recorded in the database and messages related to the fall will be notified to the caregiver. This sequence produces the event-triggered fall notification system.
Notification Subsystem

The notification subsystem architecture

Database

The Notification Delivery
Next Phase Research/Project

Implementation of the work will be carried out as follows:

• To design a new wearable device with a slim and small size.

• To design the algorithm for improve the accuracy of fall/balance detection device by capturing patterns of falls/movements.

• The use of technology in a existing system that has been improved to be a smart wearable human fall detection system, incorporated with few others features.

• To develop a real-time system for fall detection & activity recognition, balance and health monitoring among older persons
Expected Outcome

• At the end of the project, it is expected that the innovation of this wearable human fall detection system could benefit the community especially to the elderly and caretakers.

• The caretakers could make use of this system to monitor the elderly and keep them alert of the elderly condition.

• The system can help to minimize any serious injuries and accidents that possibly could happen to the elders when they are under no supervision.

• An advanced fall detection system for older persons can be solved and help in improving their quality of life and develop for commercialization.
TERIMA KASIH/THANK YOU

www.upm.edu.my

Assoc. Prof. Dr. Azura Che Soh
Control System and Signal Processing (CSSP)
Depart. of Electrical & Electronic Engineering
Faculty of Engineering
UNIVERSITI PUTRA MALAYSIA
azuracs@upm.edu.my